
M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 261–266, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The GOPCSD Tool:
An Integrated Development Environment

for Process Control Requirements and Design

Islam A.M. El-Maddah and Tom S.E. Maibaum

Department of Computer Science, King’s College London
London WC2R 2LS, UK

{elmaddah,tom}@dcs.kcl.ac.uk
Fax +4402078482851

Abstract: The GOPCSD (Goal Oriented Process Control Systems Design) tool
is an integrated environment, where the process control systems engineer can
construct, import, check, reason about, modify, validate requirements specifica-
tions and generate in the B specification language a formal specification of such
process control requirements. Borrowing from the KAOS method, the
GOPCSD tool adopts the goal-oriented hierarchy concept to enable easy tracing
of the user needs to the requirements level, as well as the requirements to the
design specification level. The tool offers a library and formal and informal
checks and tests to aid correction and enhancement of the requirements; in ad-
dition, the normal systems engineer can use the tool effectively and automati-
cally generate a B formal specification, thus not demanding a high-level of
knowledge about the sophisticated mathematics supporting formal methods
like B.

1 Introduction

In reactive systems, such as process control systems, where safety and security are
considered important aspects, along with the system’s operational constraints, the B
formal method has been demonstrated to provide effective support at the early design
stages. However, a requirements stage before the formal method is still needed, con-
cerned with the construction, reuse, correction, modification, testing and enhance-
ment of the requirements.

In addition, tracing the user needs to the requirements level, as well as tracing each
requirement to the design specification level decreases the gap between the user’s
perspective and the specification level. This motivated us to adopt the goal-oriented
requirements analysis method of KAOS [3] as a starting point. The goal driven re-
quirements analysis method of KAOS uses goal-models as the formal model to struc-
ture the software requirements gradually and precisely; the main goals of the goal-
model usually represent the user needs, while the low-level goals will be translated to
specification building blocks. This ensures the traceability goal as well as the under-
standability of the goal-model by the user.

262 Islam A.M. El-Maddah and Tom S.E. Maibaum

Thus, we were motivated to start the requirements analysis as close to the view of
the systems engineer as in [8] and, furthermore, to extend the formalisation, via an
automated tool, to the B specification level [1], as in [6, 9]. In this paper, we intro-
duce the GOPCSD tool that serves as a front end for the B toolkit [7] or other envi-
ronments that adopt B, to hide the mathematical details of the B method and to allow
the systems engineer to focus on providing precise and formal requirements, while
preparing the stage for the software engineer to use the generated B specification to
produce code that is not only correct with respect to the high-level B specifications,
but is also much more likely to satisfy the systems engineer’s stated requirements.

2 The GOPCSD Tool

The GOPCSD tool [2] (as shown in fig.1) is designed to analyze the requirements of
process control systems and automatically generate B formal specifications. To build
an application within the tool, there are three main phases. In the first phase, the re-
quirements can be constructed using different (process control specific) entities
(components, agents, variables, goals, goal-models, and variable types). The second
phase checks the consistency, completeness, reachability, and the validity of the goal-
model. The tool suggests different goal-model modifications to resolve goal-conflict
or unreachable goals, avoid obstacles, or complete the requirements. Thus, the first
and second phases can be regarded as a feedback loop to devise consistent and com-
plete requirements. Finally, after the goal-model is considered satisfactory, the appli-
cation proceeds to the third and final phase producing automatically the software
specification through translating the goal-model to a B specification. The GOPCSD
tool hides the details of the B language from the systems engineer, and increases the
separation of concerns between the software and systems engineers.

Although the GOPCSD method is based on KAOS, there are some significant ad-
aptations of the KAOS method to fit with the nature of Process Control Systems and
to enable an automatic phase to generate B specifications to be added. The tool re-
stricts the variables of the application to have finite domain in order to enable feed-
back for the completeness, consistency and validity of the requirements.

2.1 GOPCSD Tool Support for Reusability

Since the main target of the GOPCSD tool is process control systems, this motivates a
need for building systems from sub-systems and components. Therefore, the
GOPCSD tool supports reusability in building the goal-models based on two basic
concepts: similar applications are built of the same kinds of physical components, and
similar applications can have similar high-level goals, even if they have different
components.

The first concept suggests a library for the frequently used components with their
associated low-level goal-models to enable the user to import them into his/her appli-
cations. The second concept recommends high-level goal-model templates that can be

The GOPCSD Tool: An Integrated Development Environment 263

used in similar systems with possibly different component details. For example, a
production cell with a single press can have some of the same high-level goals as a
double-press production cell.

2.2 Constructing Goal-Models (Phase I)

The GOPCSD method mainly depends on reusing elements of the library to increase
the reusability and the maintainability of the developed applications. Thus, the design
starts by importing components from the library in addition to the high-level goal-
model templates. After the systems engineer decides on the components and/or the
high-level goal-model templates to be imported, a re-naming and/or mapping process
can take place in order to change the components’ or the templates’ variables and/or
agents’ names into the corresponding ones to be used in the new application.

Then, the systems engineer formulates the application’s main goals; these gener-
ally can be considered as medium-level goals between the high-level goal-model
templates and the low-level component goal-models. The main goals can be placed in
separate empty goal-models until the user links them by combining them into a
higher-level goal. The process of producing a single complete goal-model requires
the user to link the high-level goal models, the main goals and the low-level goal-
models of the components.

Fig. 1. The desktop of the GOPCSD tool, showing the requirements elements (components,
variables, agents and goal-models lists) to the right and a goal-model to the left.

2.3 Checking the Goal-Model (Phase II)

The GOPCSD tool enables the user to perform various checks and tests to enhance
the requirements and to detect any incorrect or undesirable behaviours implied by the
requirements, as early as possible. The tool offers the following checks:

264 Islam A.M. El-Maddah and Tom S.E. Maibaum

Checking Correctness of Goal-Models. There are some essential constraints the tool
enforces on the goal-models in order to build correct B specification (and correctness
is defined with respect to these constraints and those pertaining to the structure of
goal trees). These constraints address the basic definitions of terminal goals, variable
controllability, and refinement patterns. This utility will highlight the goals that vio-
late the constraints.
Reasoning and Investigation Utilities. The GOPCSD tool enables the user to reason
about the how and why of the different goals of the goal model. Reasoning how to
achieve one goal lists the sub-goals of this goal and their sub-goals; while reasoning
why to achieve one goal ascends the goal-model level by level listing the details of
the ancestor goals. The reasoning utility can be regarded as an informal early level of
checking to validate parts of the goal-model, on the one hand; on the other, it can be
used to guide the user to elicit new goals to complete the construction of the goal-
model, either upward answering why or downward answering how [3]. Another util-
ity offered by the tool is highlighting the goals containing a specific variable or the
goals that are affected by a specific agent. This utility is similar to dependence
graphs, or tracing utilities, which can be helpful to judge variable and agent coupling.
Checking the Reachability of the Requirements. Another important check that is
helpful to amend the requirements is detecting unreachable goals. The user usually
errs in specifying the conditions of some of the goals or locates them in inappropriate
positions where they will never be activated. Thus, the goal-model can be valid, com-
plete and consistent but some of its goals’ pre-conditions can be unreachable.
Checking Completeness. Completeness means that for each combination of the
application’s variables there is a defined action(s) to be taken. Some incompleteness
can occur as a result of ignoring unexpected variable combinations or ignoring vari-
able combinations under specific situations. The systems engineer may choose not to
include such combinations for normal operation, but during the application execution
they might occur and produce a hazard or incorrect operation.
Checking Obstacles. An obstacle is a sequence of events that can occur during ap-
plication run-time and can obstruct some of the goals from being achieved [4]. Obsta-
cle analysis can be performed at the lowest level within the complete goal-model,
when all the terminal goals have a complete formal description. Each formal descrip-
tion of a terminal goal will be negated in turn and the user attempts to find cases that
validate the negated conditions and, hence, the goal-model can be modified in order
to prevent the obstacles from occurring or to attenuate their effects.
Checking Goal Conflict. Conflict arises when two or more goals prescribe the per-
formance of inconsistent actions under the same conditions [5]. Conflicts are checked
by comparing the conditions for goals that assign different values to the same vari-
ables. When a goal-conflict is detected, the tool suggests that one of the conflicting
goal’s formal pre-conditions should be modified. This utility can be employed to
bring together the various process control requirements aspects, such as safety, secu-
rity and productivity. In case of conflicts, the GOPCSD tool will suggest to modify
the operational goals in order to pay attention to the various issues.

The GOPCSD Tool: An Integrated Development Environment 265

Animating Goal-Models. The systems engineer usually needs to validate the re-
quirements. Such validation should emulate the execution of the controller during
run-time. The GOPCSD provides different utilities, such as saving, loading and exe-
cuting event lists, emulating output delay and faults, and displaying the description of
the activated goals, cycle by cycle. This validation utility provides the user with an
easy to use means of understanding the requirements model. In addition, it guides the
user to fine-tune the goal-model of the application to enhance the requirements and
remove bugs as early as possible.

3 Translating Goal-Models to B Machines (Phase III)

After the user validates the goal-model and approves the description of the controller,
the tool translates the corrected requirements into formal specifications represented as
B machines. The translation from goal-models to B specifications consists of two
steps, as follows:

3.1 Splitting Compound Goal-Models

Alternative refinement is used to enable the user to express more than one alternative
solution for the control application. To reduce the effort expected form/by the user,
the shared parts of the compound goal-model are available for each version. How-
ever, to build controller specifications, only a single solution can be used. Thus, the
translation into B specifications starts by splitting the goal model if it has alternative
refinement sites.

3.2 Translating Goal-Models to the B AMN Language

The complete goal-model, which represents a separate solution, will be automatically
translated by the tool to a main controller B machine and a number of actuator B
machines, depending on the number of the active agents used within the goal-model.
In addition, the definitions of the various data types of the variables will be collected
in a data type B machine. The different values that can be assigned to the output vari-
ables will be represented as operations of the actuator machines. The terminal goals
of the goal-model will be grouped by the output variable they control and will be
translated to parallel parts of one operation of the main controller machine; this will
ensure that the controller can manipulate the output variables in parallel.

References

1. J. R. Abrial, The B Book: Assigning Programs to Meaning, Cambridge University Press,
1995.

2. I. A. El-Maddah and T. S. Maibaum, Goal-oriented Requirements Analysis of Process Con-
trol Systems, first MEMOCODE, France, 2003

266 Islam A.M. El-Maddah and Tom S.E. Maibaum

3. A. Van Lamsweerde, A. Dardenne, B. Delcourt, and F. Dubisy, The KAOS Project: Knowl-
edge acquisition in automated specifications of software, proceeding AAAI Spring Sympo-
sium series, Track: Design of Composite Systems, Stanford University, March 1991, pp 59-
62.

4. A. Van Lamsweerde and E. Letier, Obstacles in Goal-driven Requirement Engineering,
proceeding ICSE’98 20th international conference on software engineering, Kyoto, ACM-
IEEE, April 1998.

5. A. Van Lamsweerde, R. Darimont and E. Letier, Managing Conflicts in Goal-Driven Re-
quirement Engineering, IEEE Transactions on Software Engineering, Special Issue on Man-
aging Inconsistency in Software Development, Nov. 1998.

6. K. Lano, K. Androutsopoulos, and D. Clark, Structuring and Design of Reactive Systems
using RSDS and B, FASE, ETAPS 2000

7. K. Lano and H. Haughton, Specifications in B, An introduction using the B toolkit, 1996,
Imperial College Press

8. E. Letier and A. V. Lamsweerde, Deriving Operational Software Specifications from System
Goals, SIGSOFT 2002/FSE-10, Nov. 18-22 Charleston, SC, USA.

9. E. Sekerinski, Graphical Design of Reactive Systems, D. Bert (Ed.) 2nd International B
conference, Montpellier, France, Springer-Verlag, 1998.

	1 Introduction
	2 The GOPCSD Tool
	2.1 GOPCSD Tool Support for Reusability
	2.2 Constructing Goal-Models (Phase I)
	2.3 Checking the Goal-Model (Phase II)

	3 Translating Goal-Models to B Machines (Phase III)
	3.1 Splitting Compound Goal-Models
	3.2 Translating Goal-Models to the B AMN Language

	References

