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Abstract. The topic of software architecture (SA) based testing has recently 
raised some interest. Recent work on the topic has used the SA as a reference 
model for code conformance testing, to check if an implementation fulfills 
(conforms to) its specification at the SA level. In this context, on previous pa-
pers, we have analyzed: i) how suitable test cases can be “selected” from the 
SA specification and ii) how they may be “refined” into concrete tests executa-
ble at the code level. While the selection stage has been done systematically, 
the refinement step has been left to be done manually, based on the software 
engineer knowledge on how to map “abstract values of the specification to the 
concrete values of the implementation”. In this paper, we extend previous ap-
proaches, by providing a systematic way to perform the refinement step. We 
show how choosing a specific architectural style, which supports implementa-
tion and facilitates the mapping among SA-based and code-based test cases, a 
completely systematic SA-based testing approach can be delivered. 

1   Introduction 

Software testing consists of the “dynamic verification of the behavior of a program on 
a finite set of test cases, suitably selected from the usually infinite executions domain, 
against the specified behavior” [5]. Traditional approaches to software testing select 
test cases based on the source code of the program to be tested [16].  

With the advent and use of software specifications, source code no longer has to be 
the single source for selecting test cases: formal, informal and model-based specifica-
tions can be used for this purpose [5, 16]. The importance of the use of formal meth-
ods in software specification and design does not need to be stressed here. Several 
authors have highlighted the advantages of formal methods in testing, and different 
techniques have been proposed to select tests from semi-formal specifications [24], 
algebraic specifications [3], model-based specifications [12] and Software Architec-
ture-based specifications [4, 25].  
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Particular interest has been devoted to specification-based conformance testing [8, 
14, 30]. Conformance testing checks that an implementation fulfills its specification. 
Several authors [8, 14, 30] have dealt with the problem of automatically generating 
test suites to test the conformance of an implementation under test (IUT) to its speci-
fication, where both specifications and IUT are expressed in the form of Labeled 
Transition Systems (LTS), Finite State Machines (FSM) or Input/Output LTS (de-
pending on the approach). 

Some interest has been devoted to Software Architecture-based conformance test-
ing [6, 7]. Given a software architecture (SA) description, conformance testing has 
been used to detect conformance errors between the SA specification and its imple-
mentation. The SA specification has been used as a reference model to which the 
source code should conform. 

One of the most challenging problems of SA-based conformance testing is the ne-
cessity of a common model that makes it possible to compare the expected behavior 
of a SA with its real implementation. A common model would bridge or map the 
elements from these two different abstractions, addressing the so called “mapping 
problem” or “traceability problem”. Traceability concerns “relating the abstract val-
ues of the specification to the concrete values of the implementation” (as quoted from 
[12]). Several researchers have recognized the importance and difficulty of this step 
[12, 32, 27], which has been deeply analyzed in [6].  

The main goal of this paper is to review and extend our previous work on SA-
based conformance testing, to provide a systematic way to use an SA for code testing. 
This research is driven by a previous analysis we performed in [7],  where we identi-
fied the factors making the distance between SA and code high. As a result, the de-
velopment process, the relationships among architectural components and the source 
code, and the SA-level of abstraction strongly influence that distance. If “explicit 
mapping rules (could) drive the source-code implementation from architectural com-
ponents, connectors, and messages” [7], then the mapping problem could be easily 
managed. 

In this paper, we propose a specialization and refinement of our general approach 
for SA-based conformance testing, in order to obtain a systematic approach for per-
forming code level conformance testing based on SA specifications. Here, we deal 
with this problem in a specific SA style, the C2 style [29, 10]. We show how the SA 
to code mapping rules imposed by the C2 framework helps to limit the mapping prob-
lem, and allows a systematic testing approach. 

This research is part of a project called SARTE (SA-based regression testing) [22], 
which aims to provide an approach and framework to test software architectures and 
code, when both are subject to changes. 

The rest of the paper is structured as follows: Section 2 provides an overview on 
Software Architecture-based Testing. Section 3 describes the research outline and our 
proposal. Section 4 describes the C2 architectural style and presents the case study 
used in this paper. Section 5 explains how the general approach mentioned in Section 
2 can be specialized to C2 style architectures. Some results from our experiment are 
presented in Section 6. We discuss some related work in Section 7, and our conclu-
sions and future work in Section 8. 
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2   Software Architecture-Based Testing: An Overview 

The topic of architectural testing has recently raised some interest [25, 4, 16, 27, 7].  
In [25], the authors define six architectural-based testing criteria, adapting specifi-

cation-based approaches; in [4] the authors analyze the advantages of using SA-level 
testing for reuse of tests and to test extra-functional properties. In [16] the author 
presents a discussion on the use of software architecture for testing. In [27], the au-
thors present an architecture-based integration testing approach that takes into con-
sideration architecture testability, simulation, and slicing. 

The approach proposed in [7] is, to the best of our knowledge, the first effort to 
tackle the whole cycle of SA-based testing with a comprehensive and concrete ap-
proach. It spans the spectrum from test derivation based on architecture dynamics 
down to test execution over system implementation.  

The general approach is composed by some logical steps which can be outlined 
with the help of Figure 1.  

In Step 0, a topological and behavioral specification of the SA is required.  
In Step 1, a software architect, by looking at the software architecture dynamics 

from different viewpoints, defines various testing criteria [5]. Each criterion high-
lights a specific perspective of interest for a test session and is realize through an obs-
function.  

Step 2 derives, through the selected obs-function, an Abstract LTS (ALTS), which 
still expresses all high-level behaviors we want to test, but hides any other irrelevant 
behavior.  

Step 3 uses the ALTS in order to select an architecture-level test suite. Each “archi-
tectural test” is a sequence of architecture-level actions meaningful  with respect to 
the testing criterion.  

Finally, Step 4 uses the architectural test cases to actually test whether the source 
code conforms to the architectural description. This step has to identify how SA-level 
abstract test cases can be related to concrete values of the implementation (i.e., trace-
ability/mapping among SA and code) and how the code may be run over the identi-
fied test cases. The traceability problem has been handled by using an informal 
“mapping” function while the execution traces are analyzed to check whether the 
system implementation works correctly with respect to the architectural tests.  

The goal of this paper is to improve and refine that work, in order to handle, in a 
systematic way, all the testing approach, as outlined in Section 3. 

 

 

Fig. 1. An Activity Diagram of a SA-based Testing. 
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3   Research Outline 

The SA-based testing process proposed in [7] is largely mechanical, but some impor-
tant human interventions are required.  

The test selection stage (steps 0 to 3) is systematic: the SA is formally specified 
using an ADL of a model-based specification, the LTS is automatically generated 
from the specification, the ALTS can be automatically generated using existing tools, 
the SA test selection process is implemented using existing tools to cover the ALTS.  

The test execution stage (step 4), instead, is informal and left to the software engi-
neer ability. In particular, a software engineer has to manually deal with the traceabil-
ity problem, i.e., “relating the abstract values of the specification to the concrete val-
ues of the implementation” [12]. This important problem has been already recognized 
by other researchers [32, 27] but never formally handled.  

In previous papers [6, 7], we managed such problem in a very general context, 
supposing that a well-formalized architecture-based development process was not in 
place (as happens in real world) and the SA specification and the low-level design 
have been intermixed without any formal mapping. One advised solution was to use 
some development support which explicitly adopts a formal mapping between archi-
tectural and implementation elements. 

In this paper we specialize and refine some of the activities presented in Figure 1. 
We choose a specific architectural style, the C2 style, which supports implementation 
and facilitates the mapping among SA-based and code-based test cases. We enrich the 
C2 structural specification with a behavioral one, to accommodate a behavioral model 
of the system. We reuse and adapt previous experience to identify and select relevant 
architectural test cases. In particular, we completely revise steps 3 and 4. 

We use existing tools (namely, Argus-I [2]) in order to run deterministic testing. 
We thus apply this technology to the Elevator case study, described in Section 4.2. 

4   Preliminary Information 

In this section we provide information which will be useful in the following. We 
outline the C2 style for describing software architectures and we present the Elevator 
case study, used in Section 5 to put in practice the proposed approach. 

4.1   C2 Style Software Architectures 

C2 [10, 29] is an architectural style introduced in 1995 by researchers from the Uni-
versity of California, Irvine. This style imposes some compositional and behavioral 
rules [29] enabling some level of independence (called “substrate independence”) 
between the components used to describe the SA.  

Components have visibility only on components up to them but they do not need 
any information on components beneath them. Moreover, communication may hap-
pen only through the explicit use of connectors. Each component and each connector 
exposes exactly two interfaces, to send “requests” and receive “notifications”; a re-
quest consists in requiring a service to other components while a notification identi-
fies the output of a request. “Links” are used to configure a C2 style architecture, by 
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relating component and connector interfaces. C2 components, connectors, interfaces 
and links can be visualized and analyzed using, for example, the Argus-I [2] tool. 

The C2 framework [10] helps software engineers to produce the actual implemen-
tation of the architecture. In the following, we assume our SA complies to the C2 
style and the implementation is realized through the C2 framework. 

4.2   The Elevator Case Study and Its Software Architecture 

Elevator systems have been widely used in testing and analysis literature because of 
two main reasons: everyone is familiar with elevator systems, and can easily under-
stand the requirements for such application domain; and these systems contain con-
current, stateful components and timing requirements, which give them a level of 
complexity that is interesting for verification purposes. 

In the configuration for our case study, the elevator system contains the building 
panel (which includes all the panels from different floors of the building), two eleva-
tor cars, and a scheduler algorithm to assign calls requested through the building to 
the closest elevator car. 

The components of this elevator system are: 

• ElevatorADT: this component maintains the information about the elevator 
car state, such as: motion {moving, stopped-closed, stopped-opened} and di-
rection {up, down}. In addition to state information, the ElevatorADT keeps 
a list of all the calls it needs to attend. 

• ElevatorPanel: this component represents the internal panel of an elevator 
car. After entering the elevator, the passenger can request calls through it, 
and see the current floor. 

• BuildingPanel: this component represents all the elevator call panels of the 
building. Through this component, users in different floors can request a call 
to the elevator system, indicating the desired direction. 

• Scheduler: this component receives call requests from the BuildingPanel, 
and selects which elevator should attend such call. In our case study we are 
using a “runtime” scheduling policy so that if a call is made at time “t”, it 
initially selects the elevator car (EC) that, at time “t”, could attend it with the 
lower waiting time required. At time “t+i”, i = {1, …, n}, the Scheduler 
checks if EC is still the best option, and, if it is not anymore, can switch to 
another elevator. This process is repeated until the call is served by one ele-
vator. 

• Synchronizer: this component synchronizes the elevator movements, so that 
all of them makes a move at the same time. 

5   Systematic Testing of C2 Style Architectures 

In this section we describe how the generic SA-based conformance code testing pro-
posed in [7] and outlined in Section 2 can be instantiated to C2 style architectures in 
order to become systematic. The theory is thus applied to the Elevator example de-
scribed in Section 4.2.  



300      Henry Muccini, Marcio Dias, and Debra J. Richardson 

5.1   Step 0: SA Specification 

The system software architecture is modeled following the C2 style. Figure 2 shows 
the Elevator architecture, as visualized by Argus-I [2]. Many requests and notifica-
tions are sent and received by components, through the five connectors shown in 
Figure 2 (thick horizontal lines). Such requests are used to realize different services, 
like AddCall, CallAttended, GetId, Suspend Clock, Resume Clock. (The description of 
the C2 architecture, complete of requests and notifications, may be found in [23], 
Appendix A).  

It is to be noticed that the C2 specification is just structural, and a behavioral de-
scription of components and connectors interaction is missing. Some work has been 
done in the past on this direction, formalizing a portion of C2 in the Z specification 
language [19] or by using pre- and post-conditions, but they are still really prelimi-
nary. We thus decided to complement the C2 style specification with a behavioral 
one. We use the Finite State Process (FSP) [18] algebra. In this notation, each com-
ponent and each connector is represented through a process. The behavior of each 
process can be automatically represented through a Labeled Transition System (LTS) 
and those LTSs can be combined together (following the FSP semantics of composi-
tion) in order to produce a global LTS, describing how components and connectors 
work together. We choose this language, since it is tool supported (LTSA tool [17]) 
and we had previous experience with it. We modeled the behavior of each single 
Elevator component in FSP. The FSP specification for the Elevator architecture can 
be found in [23], Appendix B. 

By using the LTSA tool over the FSP specification, an LTS has been generated for 
each component. Such LTSs have been combined together generating a global LTS 
composed by 4288 states and 26336 transitions (before minimization), representing 
how the system evolves when different services are requested or notified. 

This model will be used in the following to extract SA-level test cases. 
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Fig. 2. The Elevator C2 style architecture. 
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5.2   Step1: Definition of an Observation 

In principle, the global LTS could directly be used as the reference model for deriving 
the test scenarios, assuming that an architectural test is essentially a sequence of sys-
tem actions meaningful at the architectural level. Unfortunately, by considering this 
global graph, it is very difficult to realize the testing selection stage [7], i.e., to “suita-
bly” select a set of test cases. In fact, the LTS provides a tremendous amount of in-
formation flattened into a graph (i.e., many messages, services, parallelism, interleav-
ing, many components interacting and so on). By identifying some testing criteria 
[5], we can select only such behaviors suitable for the criterion itself, abstracting 
away uninteresting behaviors. We can thus focus on a subset of relevant behaviors. 

An obs-function (as defined in [7]) which partitions LTS actions into “relevant in-
teractions” R (i.e., those we want to observe by testing) and “non-relevant interac-
tions” NR (i.e., those we are not interested in at this time) can realize such a testing 
criterion.  

In the context of a C2-FSP specification, we extend the concept of obs-function 
into structural and functional observations. A structural observation focuses on the 
SA topological description provided by C2. The software tester, looking at the C2 
specification, identifies components/messages/connectors she is more interested to 
test. A functional observation, instead, tries to capture relevant information from the 
behavioral model. With a functional observation, the tester can identify system func-
tionalities she is more interested to test.  

In this paper, due to space limitations, we describe one functional observation. 
The functional observation of interest is “all those behaviors involving the AddCall 
and CallAttended services”. In other words, we consider as “relevant” all and only, 
those interactions necessary to realize the AddCall and CallAttended services, while 
hiding the others. In the following, we refer to this testing criterion as the 
“AddCall+CallAttended” obs-function. 

5.3   Step 2: Derivation of the Abstract LTS 

An obs-function allows to derive an Abstract LTS (ALTS) which satisfies the crite-
rion itself and still expresses all high-level behaviors we want to test in the initial 
LTS. 

The AddCall+CallAttended observation has been produced by modifying the Ele-
vator FSP specification, hiding all such events not relevant for our testing criterion. 
The new FSP specification produces an ALTS composed by 41 states and 51 transi-
tions. This ALTS reduces the initial LTS by describing those requests and notifica-
tions related to the AddCall and CallAttended services only.  

It is to be noticed that the hiding operator does not delete the components from the 
specification. It just makes invisible the messages sent and received by the hidden 
components, still guaranteeing  the model correctness.  
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5.4   Step 3: Selection of a Test Suite over the Observed Behavior 

In code-based testing, a test case is usually defined as the input value provided to a 
program P, with the corresponding expected output. At the architecture level, a test 
case can be defined as: 

 

Definition: SA Test case 
An SA test case is an ordered sequence of architectural events observed when a cer-
tain initiating event is performed. 

 

This definition encompasses two different keywords: the sequence of actions, 
which represent expected behaviors, and the initiating event, that is, the architectural 
input which should allow the sequence to happen. 

The expected sequence of actions, for a certain testing criterion, can be extracted 
by applying a path coverage over the ALTS. Each ALTS path represents a sequence 
of expected architectural events. Many coverage criteria can be applied. A complete 
path coverage criteria can be applied when the ALTS dimension is reasonable, and 
when we are interested in a thorough coverage. In [7] we proposed to use McCabe’s 
path coverage criteria [31] in order to provide a less thorough coverage by identify-
ing only independent paths.  

In this paper, we adapt the category partition method [24]. Given a functional unit 
of interest, the category partition method requires to identify functional “parameters” 
and “environment conditions”. A parameter is an input to the functional unit while the 
environment condition is a characteristic of the system’s state at the execution time. 
Following the category partition method, mutually exclusive “choices” are identified 
for each parameter and condition (i.e., parameters and conditions values), “con-
straints” are identified for each choice (i.e., when a choice may occur) and “test 
frames” are identified by computing the cross-product of the different choices (i.e., 
choices are combined together). 

Given the ALTS for the AddCall+CallAttended obs-function previously defined, 
we applied the category partition method in order to select ALTS paths of interest. 
The AddCall service represents the functional unit of interest. The only input this 
service receives is the “add call” request from the Building Panel. There are no 
choices or constraints related to this input. However, there are many environmental 
conditions to be considered, as reported in Table 1 and described in the following: 

• The Scheduler selects which elevator should attend the call, based on the lower 
waiting time required. ADT0 or ADT1 can be selected to handle the call (condi-
tion #1, Table 1); 

• The Scheduler can check again which is the best elevator for the call, depending 
on a periodical check (condition #2, Table 1);  

• The Scheduler can reselect the elevator, if the check again condition is true. If 
the initial choice is still the best, the initial elevator attends the call, otherwise, 
there is a switch to another elevator (condition #3, Table 1). 

Table 1 describes the environmental conditions, with the possible choices and con-
straints. Table 2, instead, reports the test frames we are interested to test. Test frame 
#1, for example, means that we are interested to test the following behavior: the ele-
vator ADT0 is selected initially and a reselection process does not happen. 
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Table 1. Environmental Conditions, choices and constraints. 

# Environment Condition Choice Constraint 
1 Elevator selection (ES) ADT0 or ADT1 Lower waiting time 
2 Check again (CA) YES or NOT Periodical check 
3 Elevator reselection (ER)  ADT0 or ADT1 Lower waiting time 

 
Since the conditions, their choices and constraints were selected for the AddCall 

and CallAttented services, a mapping among the ALTS paths and the test frames is 
always possible. In our example, 144 complete paths were extracted from the selected 
ALTS and partitioned into the six test frames. Table 2, column three, says that 8 dif-
ferent paths satisfied test frame #1 and #4, while 32 paths satisfied the others (for a 
total of 144 different paths). Reusing the idea proposed in the category partition 
method, we can select one ALTS path for each test frame, as representative of the all 
set. The six representative paths are listed in [23], Appendix C.  

Table 2. Test Frames and ALTS paths. 

# Test Frames # of ALTS paths 
in the partition 

1 ES = ADT0, CA = NOT 8 
2 ES = ADT0, CA = YES, ER = ADT0 32 
3 ES = ADT0, CA = YES, ER = ADT1 32 
4 ES = ADT1, CA = NOT 8 
5 ES = ADT1, CA = YES, ES = ADT1 32 
6 ES = ADT1, CA = YES, ES = ADT0 32 

5.5   Step 4: Tests Execution over the Source Code 

This step describes how i) SA-level abstract test cases can be related to concrete val-
ues of the implementation (i.e., traceability/mapping among SA and code) and how 
ii) the code may be run over the identified test cases. We analyze those two distinct 
topics in the following subsections. 

Refinement of the Architectural Tests into Code-Level Tests 

One of the reasons we decided to start this research using the C2 style, instead of a 
generic SA, is that C2 is supported by the C2 framework [10], which dictates how C2 
style architectures have to be implemented. The C2 framework can be considered as a 
set of predefined abstract classes and interfaces that have to be implemented follow-
ing certain constraints when developing a C2 style architecture. The framework al-
lows the software engineer to implement a C2 style architecture in a straightforward 
manner: each architectural component is implemented by a Java component. Auxil-
iary classes can be introduced in order to implement specific aspects. SA events have 
exactly the same signature in the code and in the FSP architectural specification, the 
mapping is one-to-one based on signature matching.  
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Thanks to the strong relationship among a C2 specification and its implementa-
tion, the mapping between architectural test cases and code-level test cases may be 
performed systematically. In order to test the code conformance to a selected SA test 
case, we could run the code, make an elevator call and check if one of the architec-
tural test cases is traversed. However, depending on the system status (e.g., elevators 
floor and direction, call made in a specific floor to go up or down), all the 144 ALTS 
paths, in the six test frames, could be executed. This means that we need to refine the 
parameters and environment conditions previously identified in order to use an SA 
test case as an oracle. 

Let’s see how the refinement process may work, by using the ALTS path in Fig-
ure 3 (path #1 in [23], Appendix C). This path is representative of the test frame #1 in 
Table 2. We are interested to test if this specific behavior can be executed at the code 
level, when the constraints identified in test frame #1 are verified, that is, assuming 
that ADT0 has the lower waiting time (ES = ADT0) and the periodical check does 
not apply (CA = NOT). In order to refine path #1 (as any other path), we identified 
execution parameters which allow ADT0 to have the lower waiting time and the peri-
odical check not to apply. We found out that: 

• the waiting time constraint depends on the direction and current floor of the two 
elevators, on the floor the call is made, and on the direction the user wants to go; 

• the periodical check does not apply only when the building panel and the eleva-
tor ADT0 are at the same floor and the call has the same direction of ADT0. 

It means that path #1 has to be executed when BP(x,y), ADT0(x,y), ADT1(*,*) holds, 
that is, both BP and ADT0 are at the same floor “x”, BP makes a call to go up/down 
when ADT0 is going in the same direction “y” and ADT1 may be in a generic floor 
with a generic direction. 

Table 3 shows seven code-level test cases. Test case 7, for example, states that 
when the AddCall is sent, if both BP and ADT0 are at the third floor going up, ADT0 
should be selected to get the call and the ALTS path #1 should happen. 

Summarizing, the idea is to reproduce the initial condition so that the architectural 
test case should happen. This is not in general an easy step, but as shown in the next 
paragraphs, it is made mechanic thanks to the use of  Argus-I. 

Tests Execution 

Our pragmatic approach here is to make a deterministic [9] analysis of the code exe-
cution to observe the desired sequence. The deterministic approach forces a program 
to execute a specified test sequence by instrumenting it with synchronization con-
structs that deterministically reproduce the desired sequence. This determinist analy-
sis is performed through monitoring and debugging capabilities provided by Argus-I 
[2], by setting breakpoints during code execution. 
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BP ADT0 ADT1 EP0SC

AddCall
GetDistanceToCall

GetDistanceToCall

DistanceToCall
DistanceToCall

AddCall

CallAdded CallAddedCallAdded

BP = BuildingPanel, SC = Scheduler, ADTi = ElevatorADTi, EP0 = ElevatorPanel0

CallAttended

CallAttended

CallAttended
RemoveCall

Input: AddCall, ALTS path: as above

 

Fig. 3. Architectural Test Case for the AddCall+CallAttended observation. 

Table 3. Mapping the SA path 1 to low level test cases. 

Test Path Test Case 
Path 1 1) BP(1,up) ADT0(1,up)  ADT1(1,up)   

 2) BP(5,down) ADT0(5,down)  ADT1(5,down)   
 3) BP(5,down) ADT0(5,down)  ADT1(5,up)   
 4) BP(10,down) ADT0(10,down)  ADT1(5,down)  
 5) BP(1,up) ADT0(1,up) ADT1(2,up)  
 6) BP(3,up) ADT0(3,up) ADT1(2,up)  
 7) BP (3,up) ADT0(3,up) ADT1(4,down) 

 

We force the system to be in a state described by the test case (as in Table 3), then 
we try to deterministically force the execution of one of the ALTS paths compliant 
with the test frame. 

When it is not possible to reproduce one of the expected architectural behaviors, 
the system implementation is not behaving as expected, i.e., it is not conform to the 
architecture specification. In such cases, an architectural error is revealed. 

6   Results and Considerations 

We used the C2 framework in order to produce a Java implementation of the Elevator 
system. Moreover, we produced a faulty version of the same system, injecting some 
faults. We thus tested the two systems for conformance to the six architecture level 
test cases selected in Section 5.2 (also listed in [23], Appendix C). 
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Table 4 summarizes relevant results. We used 42 (code level) test cases over the 
two versions of the code (V1 is the faulty implementation while V2 is the initial one). 
SA level test cases #3 and #6 (related to the test frames #3 and #6 in Table 2) de-
tected many faults in the code faulty version V1. These errors are due to the fact that, 
when a call request R is rescheduled from one elevator (A) to the other (B), while 
elevator B receives the AddCall(R) event, both elevators receive the RemoveCall(R) 
event. Therefore, since elevator B received a RemoveCall(R) just after the 
AddCall(R), it does not attend call R, which is left unattended by the elevator system. 

More importantly, SA level test case #4 (related to the test frame #4  in Table 2) 
detected a “real” error in both the original and faulty version. Basically what happens 
is that although elevator ADT1 was supposed to receive the AddCall event, elevator 
ADT0 is the one actually receiving it. 

Table 4. Results. 

SA test 
case # 

# of Code level  
test cases 

V1  
Faulty Implementation 

V2 
Original Implementation 

1 7 No faults detected No faults detected 
2 8 No faults detected No faults detected 
3 6 5 faults detected No faults detected 
4 7 1 fault detected  1 fault detected 
5 8 No faults detected No faults detected 
6 6 5 faults detected No faults detected 

In order to produce unbiased results, we performed this evaluation separately: one 
of the authors produced the SA specification of the system and the SA-level test cases 
while the other implemented the system, refined the SA test cases into code level test 
cases and run the test cases. 

The first consideration to be done is that C2 is used in this paper as representative 
of all such frameworks which support a code generation process. The interest of this 
research, in fact, is to analyze how a generic framework, supporting the code genera-
tion, may help to make systematic the testing process. Moreover, the assumption that 
the code generation process is driven by a superimposed framework is not to be con-
sidered too restrictive. Recent research is investigating how ADLs can support the 
generation of executable code [20, 25]. In particular, in [25] the authors analyze how 
ADLs are evolving in order to bridge the gap between a software architecture specifi-
cation and its implementation. Both Monroe [21] and Garlan [15] point out how 
skeletal code automatic generation may reduce implementation time. Moreover, Ae-
sop, C2, and Darwin generate skeletal code in C/C++ and Rapide executes the design 
code internally. Furthermore, MetaH is supported at the implementation level by Ada, 
and ArchJava. For more details, please refer to [25]. 

It may be of interest, for future research, to analyze how this experience may be 
reused in contexts different from C2. We expect that when the code generation proc-
ess is systematic, the testing process may be performed systematically too. 

Some problems we initially found were  how to run the code and deterministically 
analyze the code execution and how to identify parameters. Thanks to the Argus-I 
tool we overcame the first problem. Following the category partition method, we 
easily learned how parameters may be identified. 
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7   Related Work 

In this section we briefly present important research areas related to our approach.  
The topic of  specification-based conformance testing has been extensively ana-

lyzed by many authors [8, 30, 14] , as already pointed out in the Introduction. Com-
paring our approach with their, we can notice that we also use the SA-derived LTS as 
a reference model to derive test cases. However, all such approaches produce a model 
of the implementation under test and define some implementation relations (conf, 
ioconf, ioco, etc.) between code and specification. In our case, we do not assume to 
be able to produce an LTS model of the implementation thus we compare architecture 
level sequence of events with lower level execution paths. 

The topic of SA-based testing has been already discussed in Section 2. Again, the 
main difference between our and other approaches is the challenge to consider the 
whole cycle of SA-based testing, from architecture specification to test execution 
over system implementation.  

The difficulty of tracing information is not new, as already recognized in [12, 32, 
27]. Some relevant papers have been written on the topic. We can here mention refer-
ence [13] which shows a way to detect traceability between software systems and 
their model and proposes a list of interesting references on traceability techniques. 
Some work has been done in bridging the gap between requirements and software 
architectures (e.g., [28]), and much other work addresses requirements traceability. 
The problem of mapping abstract tests into the System Under Test is under study in 
the ongoing AGEDIS project [1]. 

8   Conclusions and Future Work 

In this paper we refine our previous experience [6, 7] on SA-based testing. While our 
previous papers were dealing with a generic architecture in a generic software devel-
opment process (without assuming any relationship between SA and code), we here 
make a stricter assumption on the software development process, in order to make 
more formal the full testing process.  

In particular, by adopting the C2 style architecture and the related C2 framework, 
we are able to systematically implement the test execution stage described in step 4, 
handling both traceability/mapping among SA and code execution over the identified 
test cases problems. By using C2, in fact, traceability is explicitly maintained between 
the architectural events and the code-level sequences while code execution is allowed 
through the Argus-I tool. 

In future work we want to investigate how a similar approach can be applied to 
those other ADLs which support code generation. Moreover, we want to apply this 
approach for SA-based regression testing, in the SARTE project [22].  

In the long term, we plan to use the experience gained in this paper in order to re-
lief some constraints. Our desire is to be able to specify and test architectures in a 
generic ADL (assuming that a behavioral model can still be produced). In particular, 
we would like to take a generic architecture described using the XADL ADL [11], 
providing a behavioral description in the form of state-based machine model, to im-
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plement this architecture using a component-based technology through a middleware 
(Java/RMI, COM+ of CORBA) and test the system implementation. 
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