Optimising Communication Structure
for Model Checking

Peter Saffrey! and Muffy Calder?

! Dept. of Computer Science, University College London
P.SaffreyQucl.ac.uk
2 Dept. of Computing Science, University of Glasgow
muffy@dcs.gla.ac.uk

Abstract. Model checking is an effective tool in the verification of con-
current systems but can require skillful use. The choice of representation
for a particular system can make a substantial difference to whether the
verification will prove tractable. We present a method for improving the
choice of representation by effective use of communication structure. The
main contribution is a technique for selecting a communication structure
which yields a reduced search space whilst preserving the essential be-
haviour of a representation. We illustrate our method with examples
based on the model-checker Spin.

1 Introduction

Concurrent systems consisting of a number of communicating processes are
present in many real world applications. However, the complexity inherent in
communication and parallelism makes it difficult to build concurrent systems
that behave as intended without errors or failures.

One technique to aid in the construction of reliable concurrent systems is
model checking [2]. Model checking attempts to verify the behaviour of a system
by exploring all possible behaviours of that system, the state space, by checking
each behaviour against a set of properties which are expected to hold, or be
violated. This procedure can be expensive and for some systems the state space
may be too large for a complete search: the verification is thus intractable.

When verifying a real world system using model checking, a particular repre-
sentation (i.e. a model) of that system must be chosen. It is usually possible to
choose a variety of representations, any one of which would accurately represent
the behaviour of that system.

An illustration of this phenomenon is shown in figure[I. Each representation
consists of a model and an associated set of specified properties. Each represen-
tation results in a state space, often of differing size.

Choosing, or developing a representation for a system is analogous to the act
of converting a specification into a piece of software, often called programming.
In most cases, a large number of programs can be written to conform to a single
specification, and they may vary widely in time efficiency, space efficiency or
other measure of quality.

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 310-B23] 2004.
© Springer-Verlag Berlin Heidelberg 2004

Optimising Communication Structure for Model Checking 311

m
Specification

System Description
+

Specified Properties

Model 1 Model 2 Model n
System Model - - - > System Model [« - -» System Model
+ + +
Specified Properties Specified Properties Specified Properties

< State Space 1 >« - - =< State Space 2 >« - K State Space n >

Fig. 1. Alternative models and their state spaces.

Although these observations are relevant to all aspects of representing a sys-
tem for model checking, we will apply these notions to one specific area: that of
communication structure. In a concurrent system, the communication structure
is the method by which information passes between components. More precisely,
it refers to the data structures used for communication, and which processes may
access those data structures (to read or write). Specification languages for model-
checkers provide a number of constructs to represent communication structure.
How these constructs are used can have a considerable influence over the size of
the resulting state space.

Communication structure is most pertinent to asynchronous communication
since in synchronous systems, messages are transmitted instantaneously and thus
the choice of structure has little impact on the state-space. We therefore concen-
trate on asynchronous communication and the use of channels. The focus of this
work is not generic, internal data structures for model checking, but rather the
specific, source language data structures used in problem representation. The
inspiration to explore the relationship between communication structure repre-
sentation and state space was provided by [6] in which the author demonstrated
a reduction in state space for an example based on the logical linked protocol.

The main contribution of this paper is a technique for selecting a communi-
cation structure which preserves the essential behaviour of a representation and
yields a tractable search space. We assume the starting point is an intractable
initial representation. Therefore, our technique must be applicable without model
checking the initial representation.

The remainder of the paper is organised as follows. We open with a motivating
example before justifying the model checker we have chosen to illustrate our
technique (sections 2l and). Sections [, B [B and @ outline our technique
for demonstrating property preservation between communication structures and

312 Peter Saffrey and Muffy Calder

how good communication structures can be chosen. Section [0l provides a case
study. Finally, sections [l 2 and [[3] provide related work, further work and
conclusions.

2 Communication Structure

To illustrate how communication structure can influence the size of a resulting
state space, we present a simple example.

Consider the system shown in figure[2 with its two alternative communication
structures. Two users may send messages to one another along communication
channels. In the first case, two dedicated channels are used, a channel for each
direction. In the second case, communication in either direction is mediated by
a single shared channel.

User 0 User 1 User 0 User 1

Fig. 2. A simple system with alternative communication structures.

Assume that each user can only send one type of message and that each
channel can contain a maximum of one message. Table[llenumerates the message
combinations for the shared and dedicated configurations: [] denotes all channels
empty, (user0,userl) a message from user0 to userl and (userl,user0) a message
from userl to user0. Note that a state where both messages are being passed
simultaneously is only possible for the dedicated structure; its state space size
is greater by 1.

Table 1. Enumeration of combinations for simple system.

Dedicated Shared
{ [
(userO,userl) (user0,user1)
(userl,user0) (userl,user0)
(userO,userl), (userl,user0) —

The simple system can be extended to three users, where the dedicated struc-
ture has 6 channels (2 between each user) and the shared structure 3 channels (1
between each user). Here the dedicated structure has 64 possible states while the
shared structure only 27. As the topology becomes more complex, the difference
in the number of combinations which can achieved with various communication
structures tends to increase.

It is clear that a change from a dedicated to a shared structure alters the
size of the state space in this simple example. However, these systems are not
isomorphic: one state is only reachable with the dedicated structure. There are
also differences in the possible series of events that that can occur. For example,
in the dedicated system, it is possible for a send event from user0 to immediately
follow a send event from userl; in the shared configuration, there must be a
receive event to clear the channel.

Optimising Communication Structure for Model Checking 313

This example demonstrates how a change to communication structure can
affect state space size but with a loss of certain behaviour. Whether such differ-
ences in behaviour influence the verification of specified properties for this system
is a primary question addressed by our work. A further question is which repre-
sentation will result in the smallest state space. We will consider some guidelines
for selecting a representation later, in section [@l For now we concentrate on the
more problematic issue of altering a representation, i.e. traversing the horizon-
tal arrows in figure [l For alteration to be applicable, we must provide some
demonstration of equivalence between the initial and the altered system.

3 Spin and Promela

Our method is designed to apply to any systems that are modelled with asyn-
chronous communication. To validate the techniques we have constructed an
implementation based on the model checker Spin [5] and its accompanying spec-
ification language Promela. Spin applies state of the art, on the fly, model check-
ing techniques. Promela is a succinct and easy to use language that supports the
use of channels for communication. All the examples presented in this paper
were represented in Promela and model checked using Spin.

4 Communication Structure Alteration

In this section, we address communication structure alteration: altering the com-

munication structure of a representation to result in a smaller state space.
Communication structure alteration takes as input an initial representation

with an initial communication structure. The aim is to produce an alternative

representation which results in a smaller state space and which preserves the

specified properties of the initial representation. It is important to note that

only the specified properties must be preserved, other properties might change.
The procedure follows the following stages:

1. The initial representation is analysed including the extraction of the com-
munication structure.

2. Using a best communication structure framework (see section [), a new
communication structure is selected that results in a smaller state space.
The initial representation with this new communication structure is referred
to as the candidate representation.

3. The initial and candidate representations are compared to test for property
preservation. Details of this procedure are in section [0l After comparison,

— If the candidate representation preserves the properties of the initial
representation, the candidate representation, with its smaller resulting
state space, can be used to verify specified properties of that system.

— If alteration is not property preserving, return to stage 2 and choose
another communication structure.

314 Peter Saffrey and Muffy Calder

A communication structure alteration only alters the communication struc-
ture: no other part of the system — for example, the number of components, the
behaviour of those components or which components interact with each other —
is altered.

Communication structure alteration should only be applied when the spec-
ified properties can be preserved by the alteration. Our method for testing
whether or not properties are preserved is described in section [0 Recall that
in most cases, the initial representation is intractable.

To illustrate the basic principles behind our technique, we apply them to a
small worked example. The example is described in the next section.

5 The Simple System in Promela

The example is taken from figure B, with two processes User 0 and User 1,
instantiations of a generic process given in Promela by the following:

mtype = { send, receive, u0, ul };
mtype lastaction [2];
proctype user(chan inchan, outchan;mtype myid, oppid)

{

do

::outchan ! (myid, oppid) —>
lastaction [myid] = send

::inchan?eval (oppid),eval (myid) —>
lastaction [myid] = receive

od

Promela has a C-like syntax. Briefly, mtype is a Promela keyword for an
enumerated type; so send, receive, etc. are constants. c¢!m denotes write m on
channel ¢, c?m denotes read m from channel ¢ (destructive read). Statements
(e.g. assignments denoted by “=”) can be guarded by other statements, with
the form statement -> statement. The second statement executes only if the
guard is not blocked. The eval functions ensure that incoming messages must
match these variable values rather than overwriting them.

All channels are parameters: this allows us to instantiate the process with
either communications structures from figure Plwithout having to alter the body
of the process. Promela representations to be used with our method must be
encoded in this way to allow the communication structure to be altered without
other changes to the representation.

The whole system consists of two instantiations of the process user, thus
assuming that chans is an array of channels, the initial representation would
use a separate channel for each parameter as shown below:

run user (chans[0], chans[1], u0, ul);
run user (chans[1], chans[0], ul, u0)

and the candidate representation would use the same channel thus:

Optimising Communication Structure for Model Checking 315

run user (chans[0], chans[0], u0, ul);
run user (chans[0], chans[0], ul, u0).

Note also that the send and receive statements in the process definition in-
clude variables denoting the intended recipient of the message. This is to prevent
a user process receiving its own message in a shared channel configuration. This
annotation of messages is necessary to ensure messages arrive as intended re-
gardless of communication structure.

5.1 Specified Properties

In Spin, properties are expressed using linear temporal logic (LTL) [11]. The
properties are as follows:

— User0 will eventually receive a message. This is expressed in LTL as OCp
where p is the boolean expression lastaction [0]==receive. We refer to this
property as userQ receive.

— There exists a reachable state where the last message action for both User(
and Userl are receive actions. This is expressed in LTL as <(p A ¢) where
p is the boolean expression lastaction [0]==receive and ¢ is the boolean ex-
pression lastaction [1]==receive. We refer to this property as both receive.

We now return to the task of testing for property preservation.

6 Property Preservation Testing

The communication structure alteration procedure described in section M re-
quires that we determine whether a specified property is preserved between two
alternative communication structures. In this section we present an overview of
our procedure for testing for property preservation which involves comparing
traces in message automata.

6.1 Message Automata

To compare alternative representations we use message automata, an abstrac-
tion we have devised to reason about communication structure. The message
automata for example system are shown in figure Bl the initial model on the left
and the candidate model is on the right.

Message automata consist of message states linked by message statements.
A message state is labelled with a name and the messages that are present on
all channels, messages that have been sent but not yet received, at that state.
We are only interested in whether messages have been sent or received: which
channels are used for their transit is irrelevant. A message statement is a Promela
statement that sends or receives a message, here prefixed by its (local) process
name.

316 Peter Saffrey and Muffy Calder

The two message automata in figure Bldiffer by only a single state: the state
$3. This non-shared state is known as a difference state (denoted by a rectangle)
and is crucial to determining whether properties are preserved between the two
communication structures.

6.2 Traces

The key idea behind testing for property preservation is comparing traces
through the message automaton. In particular, we are concerned with difference
traces and emulating traces. A difference trace is a trace which exists in the
message automaton for one communication structure, but not for the other.
In the simple example, the trace sOsls3 is a difference trace, since it can only
be achieved by the message automaton for the initial system. By definition,
every difference trace contains at least one difference state. An emulating trace
is a trace which emulates the behaviour of a difference trace with respect to
a specified property. To emulate a difference trace, the emulating trace must
match both the initial and final message states and must also match the effect
of the trace on a specified property. We will describe the exact meaning of effect
in section [6.4] in the next section we discuss how to reduce the number of traces
under consideration.

6.3 Difference Sub-traces

To reduce the emulation effort, we will emulate only difference sub-traces, illus-
trated in figure @ The figure shows two disjoint sets of states (think of them as
rings, this is not a Venn diagram): an inner set containing the states shared by
the two message automata and an outer set containing the difference states. In
our example, the shared set would contain s0, s1 and s2 and the difference set
s3.

[(u0,ul), (ul,u0)]

user0O:chans [0] 'u0,ul user0O:chans [0] u0,ul

o
o

(a) (a)

(b) userl:chans[0]?eval (u0,ul) (b) userl:chans[0]?eval (u0,ul)
(c) userO:chans[1]?eval (ul,u0) (c) user0O:chans[0]?eval (ul,u0)
(d) (d)

userl:chans[1] !ul,u0 userl:chans[0] ul,u0

Fig. 3. Message automata for the simple system. (left) Initial communication structure.
(right) Candidate communication structure.

Optimising Communication Structure for Model Checking 317

Difference

— Difference sub-trace
---= Emulating sub-trace

Fig. 4. Emulating sub-trace illustration.

When emulating a trace, any sub-trace which exists only within the shared
set can be emulated by simply copying the appropriate transitions: the states are
common to both automata. Only when a trace enters the difference set is more
sophisticated emulation required. We can take advantage of this observation
by only emulating the difference sub-traces, the sections of a trace which enter
the difference set. Once the trace re-enters the shared set, direct emulation is
possible: an emulating trace for this section already exists since the shared set
of states and their transitions is identical in the two message automata.

From the simple example, consider the trace sOs1s3s2s0. The subtraces sOsl
and s2s0 use only shared states and can be emulated directly. We need only
find an emulating sub-trace for the difference sub-trace s1s3s2. This emulating
sub-trace must not only match the effect on a specified property, but also the
start and end states of the difference sub-trace. This would allow the emulating
sub-trace to form a direct substitution for the difference sub-trace as part of
a longer trace. In the example above, assume s1s0s2 is an emulating sub-trace
for the difference sub-trace sls3s2. We can now use the emulating sub-trace to
substitute in the complete trace. The trace s0s1s0s2s0 has the same effect on a
specified property and contains no difference states: it is an emulating trace.

This principle can also be applied to traces of infinite length. For example,
consider the difference trace s0s1s3s2s0 where these states cycle infinitely often.
Assume that s1s0s2 is an emulating sub-trace for the difference sub-trace s1s3s2.
On each occasion the difference trace enters the difference sub-trace sls3s2 we
can substitute the emulating trace sl1s0s2; this provides an emulation of the
infinite trace.

Our approach is therefore to identify every possible difference sub-trace and
then to find an emulating sub-trace to emulate its behaviour using only non-
difference states.

This method can be thought of as an exhaustive search, as would be per-
formed by a Spin verification, of the difference behaviour for a system. As with
Spin, we are able to cope with traces that are potentially infinite by capturing
the finite number of effects on a property these traces may cause. With a fi-
nite number of effects, and a finite number of states which could begin and end
the difference sub-traces, there are also a finite number of difference sub-traces.
Some exceptional cases will be discussed in section

318 Peter Saffrey and Muffy Calder

Note that an emulating sub-trace need not contain the same number of states
as its difference sub-trace, provided it starts and ends in the same place and
emulates the behaviour with respect to a specified property. How we determine
this behaviour is discussed in the next section.

6.4 Trace Effect

In Spin, a property is represented as a Biichi automaton. Transitions between
states are labelled by propositional logic formulae where the propositions are
boolean expressions from the Promela model, for example, the propositions p
and ¢ from the examples in section Bl To verify a property, the automaton is
treated as a process and run concurrently (synchronously) with the model, with
property transitions traversed as the labelling conditions become true. It is the
sequence of property states which dictates whether the property will be true
or false. For more on the theoretical background to model checking temporal
properties, see [4].

To determine the effect of a trace, such as a difference trace, we determine
what variables will have values assigned by the statements associated with a
trace. From this, we can identify what possible sequences of property states will
occur. To ensure enough information for this analysis, we must carry in each
trace the possible property states along with the relevant variable values as they
are altered. By emulating difference sub-traces we make no assumption about
the property states or variable values at the start of the sub-trace and therefore
must check all combinations.

Consider the example difference sub-trace s1s3s2 and the specified property
user0 receive. The difference trace sls3s2 corresponds to the message state-
ments {userl:chans[1]!ul,u0; userl:chans[0]7eval(u0,ul)}. By examining the
Promela representation in section [§] we can see that the first message event
causes the assignment lastaction [myid] = send. This assignment alters the
value of the variable lastaction [0] (for this particular process instance), which
is referenced in the proposition p in the property userQO receive. In this case,
the value is set to send, making the proposition false. This effect on the truth
value of the proposition will cause some transitions in the property automaton:
it is this effect that we must emulate. Note that other statements may only alter
variables which have no effect upon the specified property: such statements can
be safely ignored.

6.5 Emulation Checking

So far we have discussed only emulating an individual difference trace, but prop-
erty preservation testing involves checking all difference sub-traces. We call this
procedure emulation checking. Emulation checking works in two stages:

1. Identify all difference sub-traces and their effect on the specified property.
2. Attempt to find an emulating sub-trace for each difference sub-trace.

Optimising Communication Structure for Model Checking 319

In the first step, to identify all difference sub-traces, we identify all the mes-
sage states at which there is a transition to a difference state. From these states
we find all the traces that contain a number of difference states concluding with a
non-difference state. In the simple example, from the state sl there are difference
sub-traces sls3sl and sl1s3s2. From the state s2 there are difference sub-traces
$2s3s2 and s3s2sl. The effect of each difference sub-trace, on the specified prop-
erties, is then determined by the method described in section [6.41

In the second step, we attempt to find emulating sub-traces for each difference
sub-trace. This part of the procedure is uncertain because the identification of
emulating sub-traces is based on heuristic search. There may be a variety of
routes that match the start and end states of a difference sub-trace and pass
through only non-difference states but we must find one which also matches the
effect of the difference sub-trace. Details of how we carry out this search and
various optimisations are detailed in [13].

6.6 Further Detail

Due to space constraints we have not described the full detail of the property
preservation test here. This includes dealing with ambiguous message states,
addressing infinite difference traces and reducing the effort of calculating trace
effect. This detail can be found [13].

7 Soundness and Completeness

It is crucial that our method is sound. If it is not sound, a user could believe
that a property was preserved when in fact it is not. This could lead to an unsafe
change to a communication structure — obviously undesirable. If our method is
not complete, some safe alteration will be rejected as not property preserving,
but then the user is back to where they started. Although they cannot verify
their system, at least they do not have an untrustworthy verification result. Our
method aims to be sound, but not necessarily complete. (Note, an algorithmic
method cannot be complete, if the initial representation is intractable.)

Throughout section [6] we have implicitly justified the soundness of our tech-
nique. In section [G.3]we described how even infinite difference traces must consist
of parts which can be emulated directly and difference sub-traces, of which there
are a finite number. In section[6.4] we described how to ensure we capture all the
possible behaviours which may be due to a difference sub-trace. In fact, there are
some cases in which our method is not sound, based on the use of control vari-
ables within the Promela representation. These are relatively specialised cases
and can be easily identified; for more detail, see [13].

The method is not complete because, as discussed in section .5, identifying
all emulating traces can be a difficult task which may not be achieved. In fact,
even if the identification of emulating traces was perfect, our method would
still not be complete because the method only determines whether any unique
behaviour exists, not whether this behaviour necessarily alters the verification
of a specified property.

320 Peter Saffrey and Muffy Calder

8 Implementation

We have implemented a tool based on the techniques described in section 6l The
tool is approximately 8000 lines written in the scripting language Python [8] and
interfaces with Spin as well as providing output via the graph drawing package
dot [7]. As input, the tool requires a system modelled in Promela using two
different communication structures and a specified property in the file format
used by Spin. As output, it returns whether the property is preserved between
the two structures. If the property is not preserved, it provides a trace for one
communication structure which cannot be emulated by the other. This tool was
used to generate the results presented in section

9 Communication Structure Selection

Whether we are constructing a new representation or applying communication
structure alteration, we must be able to choose a communication structure that
will result in a small(er) state space. To achieve this, we have devised a set of
guidelines for choosing a communication structure.

In general, we cannot know which communication structure will result in
the smallest state space without model checking all conceivable communication
structures. So, for some unusual systems, these guidelines may not provide the
best choice of state space. However, intuition and empirical observation suggest
that they are effective in most cases.

Few Channels. As demonstrated by the example in section[2] a smaller number
of channels results in fewer combinations of messages. This in turn should
result in a smaller state space.

Short Channels. As with few channels, the shorter the channels the fewer
combinations and therefore the smaller the state space.

Use Exclusive Send/Exclusive Receive. Spin includes constructs to im-
prove the application of partial order reduction [10] to communication
operations. As far as possible within the other guidelines, channel structures
which make use of these constructs should be employed.

Avoid Too Many Shared Channels. If channels are shared between more
than 2 groups of processes it is very common for deadlocks to be created.
To maintain a model without deadlocks, too many shared channels should
be avoided.

10 Case Study

To illustrate our method, we expand the simple example from section

10.1 System Description

The system we have chosen to model is based on the simple system with three
users, where each process is an Email relay server, transmitting Email messages

Optimising Communication Structure for Model Checking 321

to the other servers. Once the Email arrives at the server it is either read or
discarded by its intended recipient. To introduce some extra complexity into the
model, each relay is capable of sending either legitimate Email or unsolicited junk
Email, also known as spam. If a particular relay sends more than a fixed number
of spam Emails, it is placed on a block list, and no further Emails from this relay
are read — they are received, but immediately discarded. The identification of
a message as spam is assumed to be perfect.

10.2 Specified Properties
We consider three specified properties, which we describe informally by:

— no spam spam messages are received but are not read.

— blocked once a relay is blocked, its messages are never read again.

— arrival unless a relay is blocked, sent non-spam messages are eventually
read.

10.3 Communication Structures

The communication structures are as shown in figure 2] with three users. The
initial structure, i.e. case (a), uses dedicated channels, one for each connection.
The candidate structure, i.e. case (b), uses shared channels, where one channel
is used to connect each pair of processes. In both cases all channels are of size 1.

10.4 Property Preservation Test Results

Applying our property preservation testing method to the example shows that all
three properties are preserved. For detailed statistics about each run, see [13]. In
summary, in the worst case the message automata for the initial and candidate
representations were of size 1745 and 112 respectively and this resulted in a total
of 356 difference sub-traces comprising 11970 trace states. The longest run of
the tool took around half an hour.

10.5 Spin Results

Table[Zshows the results of using Spin to verify the specified properties with both
representation. In this table, N/A indicates that Spin was unable to complete
an exhaustive search with the available memory.

From this table we can see that in each case, the number of states in the
candidate communication structure is less than that of the initial communication
structure. In the case of the properties blocked and arrival, state spaces which
were previously intractable — too large to fit into available memory — have been
made tractable by altering the communication structure. In the no spam case,
where both the initial and the candidate models are tractable, Spin confirms
that the properties are preserved (and the candidate state space is smaller).

This case study shows that our method yields smaller state spaces, and is
applicable to systems with (initially) intractable state spaces.

! These tests were run with a PC running Linux, with memory set to 1GB.

322 Peter Saffrey and Muffy Calder

Table 2. Spin verification results.

Result States Stored
Initial |Candidate Initial Candidate
no spam|| True True 6.67341e+406 [1.27515e+06
blocked ? True N/A 5.59176e+06
arrival ? True N/A 9.11464e+-06

11 Related Work

The idea that alteration of a Promela representation to reduce the state space
has also been presented in [12]. The results presented in [12] is more from the
perspective of a Promela programmers guide, whereas we aim for a more rigorous
semantic equivalence.

The construction of a communication automaton is similar to the use of
slicing [14,9], since it slices away non-communication behaviour. Our method
differs from slicing in that it attempts a more radical alteration of the Promela
code. Instead of simply trimming away parts of the model which are unnecessary,
we alter the underlying structure of the system.

In [3], the authors describe the abstraction of communication channels in
Promela to explore an otherwise intractable search space. They advocate re-
ducing the number of messages that are passed. Like our work, [3] recognises
the significance of communication however, the authors apply abstraction to the
messages on the channels, rather than by altering the communication structure.

12 Limitations and Further Work

The difficulty of identifying emulating traces makes our prototype tool fairly
slow: some of the results presented took several hours to generate. A more effi-
cient implementation would make the method more accessible.

The communication structure choice guidelines are a good starting point,
but would be difficult to apply them automatically. An algorithmic method for
choosing good communication structures would be preferable.

13 Conclusion

We have proposed a method for reducing the state space size for a model of a
communicating system by altering the communication structure. We have pro-
vided guidelines for choosing an appropriate communication structure, and pre-
sented a method for determining property preservation between two models with
different communication structures. We have also presented an example which
shows these principles in action. The major contribution is a method which is
applicable even when the initial representation is intractable. The method is
sound (except for a few special cases), but not necessarily complete.

Optimising Communication Structure for Model Checking 323

References

1.

=1

10.

11.

12.
13.
14.

Mufty Calder and Alice Miller. Using SPIN for feature interaction analysis - a case
study. In Lecture Notes in Computer Science, volume 2057 of Proceedings of the
8th International SPIN Workshop (SPIN2001), pages 143-162, May 2001.
Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, Cambridge, Massachusetts, 1999.

E. Fersman and B. Jonsson. Abstraction of communication channels in promela:
A case study, 2000.

Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Protocol Specification Testing
and Verification, pages 3-18, Warsaw, Poland, 1995. Chapman & Hall.

Gerard Holzmann. The model checker spin. IEEE Transactions on Software En-
gineering, 23(5):279-295, May 1997.

G.J. Holzmann and Doron Peled. An improvement in formal verification. In Proc.
Formal Description Techniques, FORTES], pages 197-211, Berne, Switzerland,
October 1994. Chapman & Hall.

Eleftherios Koutsofios and Stephen North. Drawing graphs with dot. Techni-
cal Report 910904-59113-08TM, AT&T Bell Laboratories, Murray Hill, NJ, USA,
September 1991.

Mark Lutz. Programming Python. O'Reilly & Associates, Inc., 103a Morris Street,
Sebastopol, CA 95472, USA, Tel: +1 707 829 0515, and 90 Sherman Street, Cam-
bridge, MA 02140, USA, Tel: +1 617 354 5800, Fall 1996.

L. Millett and T. Teitelbaum. Slicing promela and its applications to model check-
ing, 1998.

D%Pclcd. Combining partial order reductions with on-the-fly model-checking. Lee-
ture Notes in Computer Science, 818:377-390, 1994.

Doron Peled. Partial order reduction: Linear and branching temporal logics and
process algebras. In Partial Orders Methods in Verification, DIMACS, pages 233
257, Princeton, NJ, USA, 1996. American Mathematical Society.

Theo C. Ruys. Low-fat recipes for spin. In Lecture Notes in Computer Science,
volume 1885 of 7th SPIN workshop, pages 287-321. Springer Verlag, sep 2000.
Peter Saffrey. Optimising Communication Structure for Model Checking. PhD
thesis, Department of Computing Science, University of Glasgow, July 2003.
Frank Tip. A survey of program slicing techniques. Technical Report CS-R9438,
CWI - Centrum voor Wiskunde en Informatica, July 31, 1994.

	1 Introduction
	2 Communication Structure
	3 Spin and Promela
	4 Communication Structure Alteration
	5 The Simple System in Promela
	5.1 Specified Properties

	6 Property Preservation Testing
	6.1 Message Automata
	6.2 Traces
	6.3 Difference Sub-traces
	6.4 Trace Effect
	6.5 Emulation Checking
	6.6 Further Detail

	7 Soundness and Completeness
	8 Implementation
	9 Communication Structure Selection
	10 Case Study
	10.1 System Description
	10.2 Specified Properties
	10.3 Communication Structures
	10.4 Property Preservation Test Results
	10.5 Spin Results

	11 Related Work
	12 Limitations and Further Work
	13 Conclusion

