
Specification and Analysis of Real-Time Systems
Using Real-Time Maude

Peter Csaba Ölveczky1,2 and José Meseguer1

1 Department of Computer Science, University of Illinois at Urbana-Champaign
meseguer@cs.uiuc.edu

2 Department of Informatics, University of Oslo
peterol@ifi.uio.no

Abstract. Real-Time Maude is a language and tool supporting the
formal specification and analysis of real-time and hybrid systems. The
specification formalism is based on rewriting logic, emphasizes generality
and ease of specification, and is particularly suitable to specify object-
oriented real-time systems. The tool offers a wide range of analysis tech-
niques, including timed rewriting for simulation purposes, search, and
time-bounded linear temporal logic model checking. It has been used to
model and analyze sophisticated communication protocols and schedul-
ing algorithms. Real-Time Maude is an extension of Maude and a major
redesign of an earlier prototype.

Tools based on timed and linear hybrid automata, such as Uppaal [1],
HyTech [2], and Kronos [3], have been successful in modeling and analyzing an
impressive collection of real-time systems. While their restrictive specification
formalism ensures that interesting properties are decidable, such finite-control
automata do not support well the specification of larger systems with different
communication models and advanced object-oriented features.

The Real-Time Maude language and tool emphasizes ease and generality of
specification, including support for distributed real-time object-based systems.
The price to pay for increased expressiveness is that many system properties may
no longer be decidable. However, this does not diminish either the need for ana-
lyzing such systems, or the possibility of using decision procedures when applica-
ble. Real-Time Maude can be seen as complementing not only automaton-based
tools, but also traditional testbeds and simulation tools by providing a wide
range of formal analysis techniques and a more abstract specification formalism
in which different forms of communication can be easily modeled.

Real-Time Maude specifications are executable formal specifications. Our tool
offers various simulation, search, and model checking techniques which can un-
cover subtle mistakes in a specification. Timed rewriting can simulate one of
the many possible concurrent behaviors of the system. Timed search and time-
bounded linear temporal logic model checking can analyze all behaviors – relative
to a given treatment of dense time as explained below – from a given initial state
up to a certain duration. By restricting search and model checking to behaviors

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 354–358, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Specification and Analysis of Real-Time Systems Using Real-Time Maude 355

up to a certain duration, the set of reachable states is restricted to a finite set,
which can be subjected to model checking. For further analysis, the user can
write his/her own specific analysis and verification strategies using Real-Time
Maude’s reflective capabilities.

The time domain may be discrete or dense. Timed automata “discretize”
dense time by defining “clock regions” so that all states in the same clock region
are bisimilar and satisfy the same properties [4]. The clock region construction
is possible due to the restrictions in the timed automaton formalism but in gen-
eral cannot be employed in the more complex systems expressible in Real-Time
Maude. Real-Time Maude deals with dense time by offering a choice of different
“time sampling” techniques, so that instead of covering the whole time domain,
only some moments in time are visited. For example, one strategy offers the
choice of visiting at user-specified time intervals; another strategy allows time
to advance “as much as possible” before something “interesting” happens. Real-
Time Maude’s search and model checking capabilities analyze all behaviors up
to the given strategy for advancing time. Search and model checking are “in-
complete” for dense time, since there is no guarantee that the sampling strategy
covers all interesting behaviors. However, all the large systems we have modeled
in Real-Time Maude so far have had a discrete time domain, and in this case
search and model checking completely cover all behaviors from the initial state.

Real-Time Maude has been used in some large case studies, including the
specification and analysis of a new and sophisticated suite of protocols for reli-
able and adaptive multicast in active networks, where formal analysis uncovered
subtle design errors which could not be found by traditional testing, while in-
dependently finding all bugs discovered by testing [5]. Other tool applications
include: analyzing a series of new scheduling algorithms for real-time systems
and a reliable multicast protocol being developed by the Internet Engineering
Task Force, and developing an execution environment for a real-time extension
of the Actor model [6].

Real-Time Maude is implemented in Maude [7] as an extension of Full Maude.
The current version is a complete redesign of a prototype developed in 2000 [8]
and emphasizes new analysis techniques, user-friendliness, and performance.
Since most symbolic simulation, search, and model checking commands are im-
plemented by translating them into corresponding Maude commands [9], Real-
Time Maude’s performance is in essence that of Maude; in particular, the model
checking performance is comparable to that of SPIN [10].

The tool – together with a user manual, related papers, and executable exam-
ple specifications – is available free of charge at http://maude.cs.uiuc.edu/.

Specification and Analysis in Real-Time Maude

Real-Time Maude extends the rewriting logic language Maude [7] to specify real-
time rewrite theories [11]. A Maude module specifies a rewrite theory (Σ, E, R)
where (Σ, E) is an equational theory specifying the system’s state structure and
R is a collection of conditional rewrite rules specifying the concurrent transitions



356 Peter Csaba Ölveczky and José Meseguer

of the system. A Real-Time Maude specification is a Maude specification together
with a specification of a sort Time for the time domain, and a set of tick rules
which model the time elapse in the system and have the form

{t} => {t′} in time u if cond

where u is a term, possibly containing variables, of sort Time denoting the du-
ration of the rule, and the terms t and t′ are terms of a designated sort System
denoting the system state. Rewrite rules that are not tick rules are instantaneous
rules assumed to take zero time. The initial state should always have the form
{t′′}, for t′′ a term of sort System, so that the form of the tick rules ensures that
time elapses uniformly in all parts of the system.

The following very simple example models a “clock” which may be run-
ning (in which case the system is in state {clock(r)} for r the time shown
by the clock) or which may have stopped (in which case the system is in state
{stopped-clock(r)} for r the clock value when it stopped). When the clock
shows 24 it must be reset to 0 immediately:
(tmod DENSE-CLOCK is protecting POSRAT-TIME-DOMAIN .
ops clock stopped-clock : Time -> System [ctor] .
vars R R’ : Time .
crl [tickWhenRunning] :

{clock(R)} => {clock(R + R’)} in time R’ if R’ <= 24 - R [nonexec] .
rl [tickWhenStopped] :

{stopped-clock(R)} => {stopped-clock(R)} in time R’ [nonexec] .
rl [reset] : clock(24) => clock(0) .
rl [batteryDies] : clock(R) => stopped-clock(R) .

endtm)

The built-in module POSRAT-TIME-DOMAIN defines the time domain to be the
nonnegative rational numbers. The two tick rules model the effect of time elapse
on a system by increasing the clock value of a running clock according to the
time elapsed, and by leaving a stopped clock unchanged. Time may elapse by any
amount of time less than 24 - r from a state {clock(r)}, and by any amount of
time from a state {stopped-clock(r)}. There is no requirement that the spec-
ification be “non-Zeno.” To execute the specification we should first specify a
time sampling regime, for example by giving the command (set tick def 1 .)
which says that time should advance by increments of 1 in each application of
a tick rule. The command (trew {clock(0)} in time <= 100 .) then sim-
ulates one behavior of the system up to a total duration 100. The command
(tsearch [1] {clock(0)} =>* {clock(25)} in time <= 100 .) checks whe-
ther the state {clock(25)} can be reached from the state {clock(0)} in time
less than or equal to 100.

Time-bounded search and model checking are crucial for analyzing systems
where the set of reachable states – relative to the chosen strategy for advancing
time – is infinite, since the set of states reachable within the time bound should
be finite. Such a time bound is not needed when the reachable state space, again
relative to the chosen “time sampling” strategy, is finite, as in our example. For
these cases, Real-Time Maude offers untime(bounde)d search and model checking



Specification and Analysis of Real-Time Systems Using Real-Time Maude 357

commands, which apply the selected strategy for advancing time but where the
search/model checking is not bounded by a time value.

Real-Time Maude’s model checker extends Maude’s high-performance linear
temporal logic explicit-state model checker [10]. Temporal formulas are formed
by user-defined atomic propositions and operators such as /\ (conjunction),
\/ (disjunction), ˜ (negation), [] (“always”), <> (“eventually”), U (“until”), etc.
Atomic propositions, possibly parameterized, are terms of sort Prop and their se-
mantics is defined by stating for which states a property holds. Propositions may
be clocked in that they also take the elapsed time into account. A module defining
the propositions should import the built-in module TIMED-MODEL-CHECKER and
the module to be analyzed. The following module defines the unclocked proposi-
tions clock-dead (which holds for all stopped clocks) and clock-is(r) (which
holds if a running clock shows r), and the clocked proposition clockEqualsTime
(which holds if the running clock shows the time elapsed in the system):

(tmod MODEL-CHECK-DENSE-CLOCK is including TIMED-MODEL-CHECKER .
protecting DENSE-CLOCK .
ops clock-dead clockEqualsTime : -> Prop [ctor] .
op clock-is : Time -> Prop [ctor] .
vars R R’ : Time .
eq {stopped-clock(R)} |= clock-dead = true .
eq {clock(R)} |= clock-is(R’) = (R == R’) .
eq {clock(R)} in time R’ |= clockEqualsTime = (R == R’) .

endtm)

The model checking command (mc {clock(0)} |=u [] ˜ clock-is(25).)
checks whether the clock is different from 25 in each computation (relative
to the chosen time sampling strategy). The timed model checking command
(mc {clock(0)} |=t clockEqualsTime U (clock-is(24) \/ clock-dead)
in time <= 1000 .) checks whether the clock always shows the correct time,
when started from {clock(0)}, until it shows 24 or is stopped.

While Real-Time Maude model checking is not complete in general, it is a
decision procedure for time-bounded temporal properties when the time domain
is discrete (which would be case if the imported module POSRAT-TIME-DOMAIN
were replaced by NAT-TIME-DOMAIN) and the instantaneous rules terminate.

References

1. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. Journal on Software
Tools for Technology Transfer 1 (1997) 134–152

2. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer 1 (1997) 110–122

3. Yovine, S.: Kronos: A verification tool for real-time systems. Software Tools for
Technology Transfer 1 (1997) 123–133

4. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126 (1994) 183–235



358 Peter Csaba Ölveczky and José Meseguer

5. Ölveczky, P.C., Keaton, M., Meseguer, J., Talcott, C., Zabele, S.: Specification and
analysis of the AER/NCA active network protocol suite in Real-Time Maude. In:
FASE 2001. Volume 2029 of Lecture Notes in Computer Science., Springer (2001)
333–347

6. Ding, H., Zheng, C., Agha, G., Sha, L.: Automated verification of the dependability
of object-oriented real-time systems. In: 9th IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS’03), IEEE Computer
Society Press (2003)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: Specification and programming in rewriting logic. Theoretical
Computer Science 285 (2002) 187–243

8. Ölveczky, P.C., Meseguer, J.: Real-Time Maude: A tool for simulat-
ing and analyzing real-time and hybrid systems. In: Third Interna-
tional Workshop on Rewriting Logic and its Applications. Volume 36
of Electronic Notes in Theoretical Computer Science., Elsevier (2000)
http://www.elsevier.nl/locate/entcs/volume36.html.

9. Ölveczky, P.C., Meseguer, J.: Real-Time Maude 2.0. Submitted for publication.
http://heim.ifi.uio.no/˜peterol/RealTimeMaude/rtm-papers.html (2004)

10. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In:
Fourth International Workshop on Rewriting Logic and its Applications. Volume 71
of Electronic Notes in Theoretical Computer Science., Elsevier (2002)

11. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science 285 (2002) 359–405


	Specification and Analysis in Real-Time Maude
	References



