
Automating Decisions in Component
Composition Based on Propagation

of Requirements

Ioana Şora1, Vladimir Creţu1, Pierre Verbaeten2, and Yolande Berbers2

1 University Politehnica of Timisoara, Department of Computer Science
and Engineering, Bd. V. Parvan 2, 1900 Timisoara, Romania

ioana@cs.utt.ro
2 Katholieke Universiteit Leuven, Department of Computer Science

Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract. Automatic component composition is a way to achieve self-
customizable systems that are able to adapt themselves through struc-
tural configuration to changing conditions in their environment. In this
paper, we propose an automatic composition strategy for multi-flow ar-
chitectures with hierarchically composable components. Our composition
strategy takes automatic decisions for the composition of a target that
is specified through a set of required properties imposed over its given
structural constraints. The composition decisions are taken knowing the
properties provided by individual available components. Properties char-
acterize functional or non-functional aspects of a component. The com-
position strategy is driven by a mechanism of propagation of required
properties, detailed in this paper.

1 Introduction

Component-based development is a proven approach to manage the complexity
of software and its need for customization. An important challenge is to build new
systems that provide certain properties, by systematically composing reusable
components. Our research approaches the problem of component composition
from the point of view of the decisional question: how to decide what components
will be deployed and what collaborations will be between them?

The need for rigorous strategies for compositional decisions appears partic-
ularly in circumstances when the composition decision must be a machine deci-
sion, as it is the case when automatic component composition is used as a means
to realize self-customizable systems. Our work addresses self-customizable sys-
tems that are able to adapt themselves to their evolving runtime environment.
Such automatic software composition is based on a compositional model that
comprises:

– A component description scheme and formalism. This establishes what in-
formation is needed to be known about the components in order to make
composition decisions.

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 374–388, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Automating Decisions in Component Composition 375

– A well defined requirements driven composition strategy. This establishes the
rules for selecting the necessary set of components and determining their
integration, based on the available information about the components.

Many approaches tackle composition in domain-specific ways. We argue that
compositional models should be architectural style specific and independent from
application domains, to create a premise for generic solutions. We have developed
a compositional model for multi-flow architectures based on composable compo-
nents. It comprises a component description scheme for hierarchically compos-
able components with its description language CCDL (introduced in [ŞVB03])
and a requirements driven composition strategy, which is described in this paper.

The composition strategy implements rules for finding a component compo-
sition with desired properties, based on the properties of individual components
described according to the CCDL scheme ([ŞVB03]). Supporting unanticipated
compositions (in terms of deployed components and structure) is a main ob-
jective of our composition approach. This paper presents the principles of our
composition strategy, introducing the mechanism of propagation of requirements
as its driving element.

The remainder of this paper is organized as follows: Section 2 presents briefly
our architectural component model as the premise of our work on automatic
composition. Section 3 details the mechanism of propagation of requirements
and Section 4 presents the composition strategy. Finally, Section 5 discusses our
research in the context of related work, while the last section summarizes the
conclusions.

2 Architectural Model and Composable Components

This section presents briefly the main concepts of our component model.
A software system is viewed as a set of components that are connected by

connectors. A software component is an implementation of some functionality,
available under the condition of a certain contract, independently deployable
and subject to composition [Szy97]. Moreover, a component in our approach is
also an architectural abstraction.

We consider that the system architecture reflects interaction relationships
among the components. A component has a set of ports for the interaction
with the rest of the system. A port is “a logical point of interaction between the
component and its environment” [AG97]. Distinction is made between input and
output ports. In our approach all components are considered plug-compatible in
the sense that an input port can be connected to an output port.

Our current work on composition investigates systems that have a multi-flow
architecture. The concept of flow corresponds to the data-flow relation among
pairs of ports. A flow has parts where it is internal to a component (from an
input to an output port of that component) and parts where it is between two
components (a connection). We define the multi-flow architecture as a varia-
tion of the pipes-and-filters architecture, where the architecture of a system is
completely defined by the dataflow relations (the “flows” in our terminology).

376 Ioana Şora et al.

The flows are fixed, while the positions of components on these flows are not
important. Components must just fit on the fixed flows. For every component,
the internal flows must be known so that they can be integrated in such a flow
architecture.

Components can be simple and composed. A simple component is the ba-
sic unit of composition, has one input port and one output port. A composed
component is an aggregation of several other components, it may have several
input and output ports. Multi-flow architectural style applies to the internal
configuration of composed components.

A component’s contract specifies the services provided by the component
and the obligations of its clients and environment. In our approach, contracts
are expressed through sets of required-provided properties. A component prop-
erty is a fact that is known about the component. In our approach, a property is
expressed through a name from a vocabulary set and may have attributes or re-
fining subproperties. The name of the property is treated in a semantic-unaware
way: this means that a match between required and provided properties is es-
tablished by matching names and attributes. Provided properties are associated
with components as a whole, requirements are associated with ports.

An important element of our approach is that composed components are
also “first class” components, they have their own properties and contractual
interfaces. A composed component as a whole is always defined by its own set of
provided properties, which expresses the higher-abstraction-level features gained
through the composition of the subcomponents. The vocabulary used to describe
the own provided properties of a composed component is distinct from the vocab-
ulary deployed for describing the provides of its subcomponents. This abstraction
definition must be done by the designer of the composed component.

The internal structure of a composed component is mostly not fixed, these
components are composable in the limits of certain structural constraints. These
structural constraints ensure the preservation of the identity of the composable
component. As they have been introduced in [ŞVB03], the structural constraints
are flexible guidelines for future compositions of the internal structure but not a
full configuration description. Structural constraints of a composable component
are expressed through: the set of internal flows, the properties that must exist
on these flows, and possibly the order relationships between these properties.
The structural constraints are a solution that balances between the need to
support unanticipated customizations of the internal structure of a composable
component and the need to preserve the properties that determine the identity
of the composable component.

An important strength of our approach is that it does not limit the cus-
tomization of composable components to filling in a given structure with right
implementations. It is possible that new components, which can provide further
enhancements or customizations for the composed component, are discovered.
The insertion of these new subcomponents is permitted anywhere on the ex-
isting flows, as long as their component descriptions do not contradict existing
requirements (structural constraints of the composed component or requirements
of the components already present on that flow). The composition strategy au-

Automating Decisions in Component Composition 377

tomatically decides which subcomponents to deploy on the internal flows of the
composed target, starting from the requirements imposed by the client and com-
plying with the structural constraints of the target. This strategy is based on
a mechanism of propagation of requirements that will be detailed in the next
sections.

3 The Mechanism of Propagation of Requirements

The operation of matching required properties of one component with provided
properties of other components can be a complex process. The complexity resides
in the fact that interactions of properties cannot be isolated to pairs of interacting
components, but most often there are large groups of components with transitive
interaction relationships between them. In order to manage the complexity of
such situations we define and use a mechanism of propagation of requirements.
This is discussed here, starting in subsection 3.1 with a simplified case and
developing to the general case in subsection 3.2.

3.1 The Linear Case

First we introduce the mechanism of propagation of requirements in the lin-
ear case, corresponding of a single-flow system containing a sequence of simple
components.

In this case, each component has one input port and one output port. The
requirements associated with the input port address components that are before
the current one on the flow. These requirements are upward requirements. The
requirements associated with the output port address components that are below
the current component and we name them downward requirements. By default,
it is sufficient that a required property associated with a port is provided by a
component that is present somewhere on the flow connected to that port. The
requirements of a component are not necessarily met by immediate neighbors of
that component, but by some components situated further on the corresponding
flows. One can specify immediate requirements, which apply only to the next
component on that flow. Also negative requirements (a property should not be
present in a flow) are possible.

Given a component C, it has, at an arbitrary moment during the composition
process, a set CU of n upward requirements, CU = {CUi}i=1...n and a set CD
of m downward requirements, CD = {CDi}i=1...m. To ensure that the contract
of C is fully complied, C must be part of a composition where the components
placed above C fulfill all its upward requirements CU and the components below
C fulfill all downward requirements CD.

The goal of the composition process is to find the two sets of components that
placed above C and below C fulfill all its requirements. Of course, each of these
components introduces their own requirements, that have to be also fulfilled.

The initial requirements of C can be propagated to its neighbor components,
if the neighbor component does not provide them itself. This mechanism works
like delegating the responsibility for these requirements to the neighbor compo-
nents.

378 Ioana Şora et al.

Let a component X provide the set of properties XP and have the upward
requirements XU . It makes sense to connect component X above component C
(make X the top neighbor of C by connecting the output port of X to the input
port of C) if it provides a part of component’s C current upward requirements.
The subset of C’s upward requirements that are fulfilled by component X is a
set of properties named XPCU ,

XPCU = XP
⋂

CU (1)

If XPCU is not void (that means, component X provides at least some of
the upward requirements of component C), component X will be connected at
the input port of C.

Most often, component X does not fulfill all the current upward requirements
CU of C, such that a subset XNPCU of CU remain not fulfilled:

XNPCU = CU − XPCU (2)

All the properties belonging to the set XNPCU are requirements that must
be fulfilled by other components connected above C. These properties will be
added to the set of upward requirements of component X, process that is called
upward propagation of requirements.

Following this propagation, the new set of upward requirements of component
X becomes XU ′:

XU ′ = XU
⋃

XNPCU (3)

The set of properties XU ′ is a new set of requirements to continue the upward
searching of components.

The downward propagation of requirements is defined in a similar manner.
Let a component Y provide the set of properties Y P and have the downward
requirements Y D. It makes sense to connect component Y below component C
(connect the output port of C to the input port of Y) if it provides a part of
component C’s current downward requirements. The subset of C’s downward
requirements that are fulfilled by component Y is a set of properties Y PCD,

Y PCD = Y P
⋂

CD (4)

A subset Y NPCD of component C’s downward requirements remain not
fulfilled by component Y :

Y NPCD = CD − Y PCD (5)

All the properties belonging to the set Y NPCD will be added to the set
Y D of downward requirements of component Y , process that is called downward
propagation of requirements.

Y D′ = Y D
⋃

Y NPCD (6)

Figure 1 depicts an example of linear propagation of requirements.

Automating Decisions in Component Composition 379

Req: CU1, CU2

Req: CD1, CD2

 XP1

 YP1, YP2

C

In

Out

Req: XU1

X

Req: YD1

Y

Req: CU1, CU2

Req: CD1, CD2

 XP1≡CU1

 YP1≡CD2, YP2

C

In

Out

Req: XU1, CU2

X

Req: YD1, CD1

Y

Upward
propagation

Downward
propagation

Components in a repository Use of components in a composition

Fig. 1. Linear propagation of requirements

The example in Figure 1 involves three components: component C, compo-
nent X, and component Y . Component C has the upward requirements CU ,
where CU = {CU1, CU2} and the downward requirements CD, with CD =
{CD1, CD2}. A composition that solves the requirements of C must be found.
Let a component repository contain among others components X and Y . Compo-
nent X provides XP = {XP1} and has own upward requirements XU = {XU1}.
Component Y provides the set of properties Y P = {Y P1, Y P2} and has own
downward requirements Y D = {Y D1}. We ignore at this step of the example
the upward requirements of Y and the downward requirements of X.

It is given that property XP1 matches property CU1 and property Y P1
matches property CD2. That means that component X fulfills one of C’s up-
ward requirements and component Y fulfills one of C’s downward requirements.
Component X will be connected on top of component C, making a connection
X.Out → C.In and component Y will be connected below component C through
a connection C.Out → Y.In. After these connections, the subset XNPCU ,
XNPCU = {CU2}, of C’s upward requirements remain unfulfilled and will be
propagated to the port X.In.

The new set of upward requirements of X is now XU ′ = {XU1, CU2}.
Similarly, the subset of C’s downward requirements not fulfilled by Y is

Y NPCD = {CD1}, and will be propagated from C to the port Y.Out. The
new downward requirements of Y are now Y D′ = {Y D1, CD1}. After having
connected component X as the neighbor on top of C and component Y the
neighbor below C, the searching for new components continues having XU ′ and
Y D′ as driving requirements.

The downward requirements of component X as well as the upward require-
ments of component Y have been ignored until now. If C does not fulfill the
downward requirements of X, then a propagation of these from X to C will also
occur; the same for upward requirements of Y .

380 Ioana Şora et al.

An example of using linear propagation of requirements for the automatic
composition of customized network protocol stacks is our early work1 [ŞMBV03],
where a protocol stack is automatically built as a composition of protocol layer
components according to client requirements.

The linear case is simple and intuitive, yet not sufficient for the building of
more complex systems according to fine-tuned requirements. In the next sub-
section, the mechanism of propagation of requirements is generalized for com-
ponents with an arbitrary number of input and output ports that are part of
multiflow architectures of hierarchically composable components.

3.2 The General Case

In the general case, the terms “upward” requirements and “downward” require-
ments become obsolete as they loose their semantics. In this general case, one
cannot identify one component as being “over” or “under” another component.
This kind of order relationships can be established only between ports that are
connected to the same flow. The components have requirements associated with
their ports (input ports as well as output ports). The requirements associated
with input ports address the flow that comes into this port, while the require-
ments associated with output ports address the flow that goes out this port.

In order to be able to accurately study the interactions between components
with multiple ports that are in a chain of connections, it is necessary to know
for each component the relationships between its input port and output ports
(the intracomponent pathways as they are named in [SW01]). In our model, the
internal flows fixed by the structural constraints of a composable component
identify the intracomponent pathways. Propagation of requirements in the case
of components with multiple ports will occur only along the intracomponent
pathways.

Given a component C, it has NIC input ports and NOC output ports. The
requirements associated with an output port C.Outo, o ∈ [1 . . . NOC] are a set
COo of properties.

A component Y has NIY input ports and NOY output ports and provides
the set of properties Y P . The component Y fulfills a subset Y PCOo of the
requirements COo associated with port C.Outo,

Y PCOo = Y P
⋂

COo. (7)

If Y PCOo is not empty, the decision to connect port C.Outo to an input port
of component Y (the port Y.Ini, i ∈ [1 . . . NIY]) is taken. The selection as
connection port of the port i out of the NIY input ports is based on additional
tests of contracts and is part of the composition strategy, hence not discussed in
this section. After doing this connection, most of the cases there will still remain
some requirements of Y that are not provided by C.Outo, the set Y NPCOo

Y NPCOo = COo − Y PCOo. (8)
1 Paper written in 2001, delayed in publication.

Automating Decisions in Component Composition 381

In the component Y , the input port Y.Ini affects only a subset Y FIi of all the
output ports Y out of the component,

Y FIi ⊂ Y Out, Y Out = {Y.Outo|∀o ∈ [1 . . . NOC]} (9)

The elements of Y FIi are those output ports of Y that are situated on intra-
component pathways originating in Y.Ini. The properties in the set of unfulfilled
requirements Y NPCOo will be propagated to all the ports in Y FIi. After the
propagation, at every port Y.Outo the new set of requirements Y O′

o will be:

∀Y.Outo ∈ Y FIi : Y O′
o = Y Oo

⋃
Y NPCOo (10)

This is the mechanism of propagation of requirements associated with output
ports. The propagation of requirements associated with input ports is defined in
a similar way.

Figure 2 presents an example of the general case of propagation of require-
ments.

C

Out

Y

In1

Out1

In2

In3

Out2

Out3

Out4

CO11, CO12

YO11, CO12 YO41, YO42, CO12

YP1 ≡ CO11

Fig. 2. Propagation of requirements – the general case

The example contains a component C that has one output port C.Out1 with
the associated set of requirements CO1 = {CO11, CO12}.

Component Y in this example has NIY =3 inputs and NOY =4 outputs. The
set of properties provided by Y is Y P = {Y P1} and it is known that property
Y P1 is a match with property CO11. Component Y has four internal flows
and they are: In1 → Out1, In1 → Out4, In2 → Out2 and In3 → Out3. If
port C.Out1 is connected to port Y.In1, this fulfills requirement CO11 of port
C.Out1. The requirement CO12 of C.Out1 remains not provided yet and will
be propagated to ports Y.Out1 and Y.Out4 (the ports that are connected with
input Y.In1).

382 Ioana Şora et al.

4 Composition Strategy

We formulate the automatic composition problem as: given a set of require-
ments describing the properties of the desired system (the composable target),
and a component repository that contains descriptions of available components,
the composition process has to find a set of components and their interactions to
realize the desired system. This composition decision occurs through the compo-
sition strategy implemented in a Composer tool.

We address the requirements driven composition of a multi-flow system by
dividing it into subproblems of linear compositions on each flow of the system.
Achieving fine-tuned compositions and managing the complexity of the system
are possible in our approach by deploying hierarchical composable components.
This leads to hierarchically recursive compositions. The driving force of the
composition search are the requirements and the propagation of requirements.

First we present the strategy for linear composition on a flow. In the linear
case, the composition problem is to determine an ordered sequence of compo-
nents aligned on a single flow. For presentation terminology, we consider this
flow to have a descending orientation. The components align in a layered form
on this flow. The client level is the first layer (the “highest” one) and expresses
the requirements set REQ imposed for the composable target as its downward
requirements. The requirements in REQ are expressed as sets of required prop-
erties defined using the same vocabulary as that used for the component de-
scriptions, and possibly as ordering restrictions between properties. Ordering
restrictions are generated in most of the cases by the structural constraints. The
set of requirements REQ results from the set of requirements CR directly im-
posed by the client and from the set of requirements SCR that emerge from the
structural constraints of the target. Figure 3 depicts the start assumptions for
linear composition.

A dummy start component C0, having REQ as its downward requirements,
is created, as Figure 3 shows. The set of requirements REQ is the current driving
force for the composition. The search begins looking for components that provide
at least a part of the required properties from REQ. If such a component Cx,
providing part of REQ, is found, it will be connected below C0. Component
Cx has also its own requirements, upward and downward. The new downward
composition driving requirements are now the downward requirements of Cx,
together with the propagated part of the initial requirements and the search
continues. A component is selected for the solution if it matches at least a subset
of the current driving requirements. Similarly, the upward requirements of Cx

become the upward composition driving set.
A solution is considered complete when the current composition driving re-

quirements set becomes empty. It is possible that for certain sets of requirements
no exact solution can be found. The Composer can be configured to respond to
this problem in alternative ways, either to relax the client requirements and
produce a solution, or to abort composition.

The general case addresses complex systems with multi-flow architecture. An
example of how composition results through stepwise refinements is depicted in

Automating Decisions in Component Composition 383

In

Out

In

Out

REQ=CR ∪ SCR

SCR
(requirements
emerging the
structural constraints
of the composable
target)

CR
 (client
 requirements)

C1

CN

Dummy
Component

Composition
structure

Fig. 3. Composition strategy - the linear case

Figure 4, where the composition target is the internal structure of the composable
component C. The set REQ of requirements for the target results by uniting
the direct client requirements and the own structural constraints of C.

?

?

?

Client
requirements

Structural
constraints

C

C1

C2

Compose
C1, C2

Compose
C21, C22

Compose
C11, C12, C13

Fig. 4. Composition through stepwise refinements

384 Ioana Şora et al.

After a composition search has determined that it wants certain component
types (C1 and C2 in the example in Figure 4) in place to fill in the structure,
a new search may be launched for composing the internal structure of these
components. Such hierarchically recursive compositions will occur especially if it
is necessary to satisfy subproperties of the required properties. Let the original
requirements set containe a property p1 with the subproperties p11 and p12
and component C1 provide property p1. Component C1, found to provide p1,
will have to be fine-tuned so that its internal structure is compliant to the set
of subrequirements p11, p12. The set of required properties p11, p12 represent
direct client requirements for the composition of target C1. Together with the
structural constraints for C1, these requirements lead to the composition of the
internal structure of C1 from components C11, C12, C13.

?

encrypt,
compress WITH huffm

compress >
encrypt SENDER

COMPRESSER

ENCRYPTER

Compose
COMPRESSER,
ENCRYPTER

compress

encrypt

SENDER

compalg

huffm

compalg,
huffm

frecv

REQ:frecv

COMPRESSER

ALSR

HUFCR

Compose
ALSR, HUFCR

Fig. 5. Composition example

As an example illustrating the concepts presented, we consider the simple
scenario depicted in figure 5. The compositional target is a SENDER com-
ponent that can be customized according to different client requirements. The
client requirements in this example contain both encryption and compression
of sent data with a particular compression algorithm. These requirements are
expressed as properties from the universal properties vocabulary, encrypt and
compress. Property compress is specified with a subproperty huffm (com-
pression with the Huffmann algorithm is required). The structural constraints
of the SENDER in this example state the ordering restriction that if the
property compress is present, it should be on the internal flow above property
encrypt. Through propagation of all these requirements results immediately the
solution of composing SENDER from the components COMPRESSER and
ENCRY PTER as in the figure. (Without the ordering restriction, both se-
quences COMPRESSER before ENCRY PTER and ENCRY PTER before

Automating Decisions in Component Composition 385

COMPRESSER are possible.) Further, the component COMPRESSER is
also a composable one and its internal structure must be composed according
to the current client requirements, specified by property huffm. The structural
constraints of the COMPRESSER component specify that it must contain
the property compalg on its internal flow (it must contain the implementa-
tion of an arbitrary compression algorithm). Starting from these requirements
the solution search on the internal flow of COMPRESSER begins. Compo-
nent HUFCR provides properties huffm and compalg and will be deployed
inside COMPRESSER. HUFCR requires property frecv at its input port (as
Huffmann compression requires a static analysis of the data), thus the search
continues in the upward direction of the flow and adds the analyzer compo-
nent ALSR which provides frecv. Since no requirements are left unfulfilled,
component COMPRESSER is ready composed from components ALSR and
HUFCR.

5 Discussion and Related Work

A distinctive characteristic of our composition approach is that it works with
abstractions of the architectural level. This is according to our insight that archi-
tectural style dependent composition models, independent from the application
domains, are needed. This permits a generic solution, avoiding coding of spe-
cific solutions for each application domain. The approach is to build a system
by assuming a certain defined architectural style. Treating component composi-
tion in the context of the software architecture is a largely accepted approach
([Ham02], [Wil03], [IT03],[BG97], [KI00], as it makes the problem manageable
and eliminates the problems of architectural mismatch. Also, we argue that at the
architectural level compositional decisions are made with knowledge of the ar-
chitectural style, but ignoring technological details of the underlying component
model, as long as this provides the infrastructural support needed for runtime as-
sembly of components. Components are described through their properties, seen
as facts known about them – in a way similar to Shaw’s credentials ([Sha96]). The
composition strategy interprets properties in a semantic-unaware way by having
a general matching criteria, thus no application-domain specific code occurs in
the Composer. The general composition strategy described in this paper emerges
from our experience with automating composition in two different application
domains where systems have multi-flow architectures – self customizable net-
work protocols ([ŞMBV03], [ŞVB02]) and an intelligent environment for virtual
instrumentation in measurements and control.

The mechanism of propagation of requirements used in our approach is a
generalization rooted in Perry’s mechanism of propagation introduced in [Per87],
[Per89]. Perry defines a semantic interconnection model for the verification of
program semantics, at the level of procedural programming. It extends Hoare’s
specification of program semantics with pre- and postconditions, proposing an-
other category of clauses, the obligations. Preconditions must be satisfied by the
postcondition of an operation that follows on the control flow. Obligations are

386 Ioana Şora et al.

conditions that must be satisfied by postconditions of operations that precede
them on the control flow. In Perry’s mechanism, preconditions and obligations
are propagated to the interface of the containing module. Our upward require-
ments may be similar to preconditions, obligations to downward requirements
and postconditions to provided properties.

Perry’s model deals with the composition of small-grained entities: proce-
dures and functions. Batory et. al. ([BG97], [BCRW00]) propose a similar model
for the composition of components in GenVoca architectures (layered systems).
The entities subject to composition are components, implemented as classes, and
are used in layered compositions that can be seen as components being put on
top of each other. From the compositional point of view, these components can
distinguish only between two interaction points, one upper and one lower inter-
action point. A particularity of their approach is that a layer provides different
properties for the layer on top of it as it provides for the layer below it. This leads
to two kinds of pre- and postconditions. Postconditions are named the properties
that are provided to the components below it and postrestrictions the properties
provided to the components on top. Preconditions are requirements that are di-
rected toward components on top while prerestrictions are requirements directed
to components below. In [BG97] an algorithm for the verification of the correct-
ness is given, verification done by downward propagation of postconditions and
upward propagation of postrestrictions.

Our approach brings two important contributions. First, we generalize the
principle of propagation to non-linear structures. Also we adapt it in the context
of components. Our model considers that the provided clause is associated to
the component as a whole; a component provides the same properties to all its
interacting entities. Requirements are associated with individual ports of the
component.

Second, the goal of our model is to serve the automatic component compo-
sition (to generate the structure of the target assembly) rather than only the
verification of a given assembly structure as in the related works. The mechanism
of propagation of requirements is the driving force of our searching algorithm.
Therefore, in our model the propagated elements are the required properties and
not the provided properties.

Our current implementation of a composition algorithm does exhaustive
searches and thus has the disadvantage of exponential time. We foresee to im-
plement improvements of it using a search based on heuristics. The mechanism
of propagation of requirements as described in this paper will remain a central
element of the search.

Our work tackles composition decisions at the semantic level. Other research
in automating the composition or adaptation of components deal with the prob-
lem at the behavioral level. Different kinds of finite automata or message se-
quence charts (MSC) are used to model the behavior of components ([SR00],
[SVSJ03], [IT03]). The behavioral compatibility tests for components check the
matching according to syntactic and synchronization criteria. Without consider-
ing also semantic level information it is possible that a behavioral test declares

Automating Decisions in Component Composition 387

as compatible semantical different components that happen to have compatible
automata, so semantic checking is needed together with behavioral checking.

6 Conclusions

Our research defines a compositional model for multi-flow architectures that
comprises

– a scheme and a language for the description of composable components by
semantic–unaware properties and structural constraints.

– a requirements driven composition strategy capable to implement automatic
composition decisions starting from the descriptions of the available compo-
nents and from the requirements for the compositional target.

In this paper, we presented the principles of our composition strategy, intro-
ducing the mechanism of propagation of requirements as the central element
of our composition strategy. This strategy is implemented by an automatic
Composer tool that facilitates the building of self-customizable systems. The
strengths of our strategy are its simplicity, its application domain independence,
and the possibility to compose unanticipated configurations.

References

AG97. Robert Allen and David Garlan. A formal basis for architectural con-
nection. ACM Transactions on Software Engineering and Methodology,
6(3):213–249, 1997.

BCRW00. Don Batory, Gang Chen, Eric Robertson, and Tao Wang. Design wizards
and visual programming environments for GenVoca generators. IEEE
Transactions on Software Engineering, 26(5), May 2000.

BG97. Don Batory and Bart Geraci. Composition validation and subjectivity in
GenVoca generators. IEEE Transactions on Software Engineering, 23(2),
February 1997.

Ham02. Dieter K. Hammer. Component-based architecting for component-based
systems. In Mehmet Askit, editor, Software Architectures and Component
Technology. Kluwer, 2002.

IT03. Paola Inverardi and Massimo Tivoli. Deadlock-free software architectures
for COM/DCOM applications. Journal of Systems and Software, Special
Issue on Component-Based Software Engineering, 65(3):173–183, March
2003.

KI00. Christos Kloukinas and Valerie Issarny. Automating the composition of
middleware configurations. In Automated Software Engineering, pages
241–244, 2000.

Per87. Dewayne E. Perry. Software interconnection models. In Proceedings of
the 9th International Conference of Software Engineering, pages 61–69,
Monterey CA, USA, May 1987.

Per89. Dewayne E. Perry. The logic of propagation in the Inscape environment.
In Proceedings of SIGSOFT ’89: Testing, Analysis and Verification Sym-
posium, Key West FL, USA, December 1989.

388 Ioana Şora et al.

Sha96. Mary Shaw. Truth vs knowledge: The difference between what a com-
ponent does and what we know it does. In Proceedings of the 8th Inter-
national Workshop on Software Specification and Design, pages 181–185,
1996.

SR00. Heinz Schmidt and Ralf Reussner. Automatic component adaptation by
concurrent state machine retrofitting. Technical Report 2000/81, School
of Computer Science and Software Engineering, Monash University, Mel-
bourne, Australia, 2000.

SVSJ03. Pieter Schollaert, Wim Vanderperren, Davy Suvee, and Viviane Jonckers.
Online reconfiguration of component-based applications in PacoSuite. In
Proceedings of Workshop on Software Composition, affiliated with ETAPS
2003, volume 82 of Electronic Notes in Theorethical Computer Science,
Warsaw, Poland, 2003. Elsevier.

SW01. J. A. Stafford and A. L. Wolf. Architecture-level dependence analysis
for software systems. International Journal of Software Engineering and
Knowledge Engineering, 11(4):431–452, August 2001.

Szy97. Clemens Szypersky. Component Software: Beyond Object Oriented Pro-
gramming. Addison-Wesley, 1997.

ŞMBV03. Ioana Şora, Frank Matthijs, Yolande Berbers, and Pierre Verbaeten. Au-
tomatic composition of systems from components with anonymous de-
pendencies. In Theo D’Hondt, editor, Technology of Object-Oriented Lan-
guages, Systems and Architectures, pages 154–169. Kluwer Academic Pub-
lishers, 2003.

ŞVB02. Ioana Şora, Pierre Verbaeten, and Yolande Berbers. Using component
composition for self-customizable systems. In I. Crnkovic, J. Stafford,
and S. Larsson, editors, Proceedings - Workshop On Component-Based
Software Engineering at IEEE-ECBS 2002, pages 23–26, Lund, Sweden,
2002.

ŞVB03. Ioana Şora, Pierre Verbaeten, and Yolande Berbers. A description lan-
guage for composable components. In Mauro Pezze, editor, Fundamental
Approaches to Software Engineering, 6th International Conference, Pro-
ceedings, number 2621 in Lecture Notes in Computer Science, pages 22–36.
Springer Verlag, 2003.

Wil03. David Wile. Revealing component properties through architectural styles.
Journal of Systems and Software, Special Issue on Component-Based Soft-
ware Engineering, 65(3):209–214, March 2003.

	1 Introduction
	2 Architectural Model and Composable Components
	3 The Mechanism of Propagation of Requirements
	3.1 The Linear Case
	3.2 The General Case

	4 Composition Strategy
	5 Discussion and Related Work
	6 Conclusions
	References

