
Increasing the Applicability of
Scalar Replacement

Byoungro So1 and Mary Hall2

1 IBM T. J. Watson Research Center
1101 Kitchawan Road / Route 134, Yorktown Heights, NY 10598

bso@us.ibm.com
2 University of Southern California / Information Sciences Institute

4676 Admiralty Way Suite 1001, Marina del Rey CA 90292
mhall@isi.edu

Abstract. This paper describes an algorithm for scalar replacement,
which replaces repeated accesses to an array element with a scalar tem-
porary. The element is accessed from a register rather than memory,
thereby eliminating unnecessary memory accesses. A previous approach
to this problem combines scalar replacement with a loop transformation
called unroll-and-jam, whereby outer loops in a nest are unrolled, and
the resulting duplicate inner loop bodies are fused together. The effect of
unroll-and-jam is to bring opportunities for scalar replacement into inner
loop bodies. In this paper, we describe an alternative approach that can
exploit reuse opportunities across multiple loops in a nest, and without
requiring unroll-and-jam. We also use this technique to eliminate unnec-
essary writes back to memory. The approach described in this paper is
particularly well-suited to architectures with large register files and effi-
cient mechanisms for register-to-register transfer. From our experimental
results mapping 5 multimedia kernels to an FPGA platform, assuming 32
registers, we observe a 58 to 90 percent of reduction in memory accesses
and speedup 2.34 to 7.31 over original programs.

1 Introduction

A standard strategy for reducing the high (and growing) cost of accessing exter-
nal memory is to identify multiple memory accesses to the same memory loca-
tion that reuse identical data, and replace unnecessary accesses with references
to local storage close to the processor, e.g., registers, caches, compiler-managed
buffers. With respect to array variables in loop nest computations, a data reuse
can be exploited when there are multiple references to an array element in the
same or a subsequent iteration of a loop. The first such dynamic reference may
either be a read or write; the reuse occurs on subsequent read references. A
related optimization opportunity is to eliminate redundant writes to memory,
where an array element is written, and on a subsequent iteration is overwritten;
only the final value must be written back to memory. In this paper, we refer to
this optimization as register reuse.

E. Duesterwald (Ed.): CC 2004, LNCS 2985, pp. 185–201, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

186 B. So and M. Hall

One specific code transformation for exploiting data reuse is scalar replace-
ment [1], which replaces array references with scalar temporaries. As such, two
references that access the same memory location will instead use the scalar tem-
poraries. This idea can be extended to exploit register reuse by replacing all but
the final write of a datum with writes to a register.

One previous approach to scalar replacement eliminates unnecessary read ac-
cesses based on true and input dependences in the innermost loop of a nest [2].
It is performed in conjunction with a transformation called unroll-and-jam,
whereby outer loops in a nest are unrolled, and the resulting duplicate inner
loop bodies are fused together. Unroll-and-jam can be used to decrease the dis-
tance in the loop nest’s iteration space between two dependent references, and
increase data reuse in the innermost loop. While this overall strategy has been
shown to be very effective at speeding up important computational kernels, the
reliance on unroll-and-jam has several limitations. Unroll-and-jam is not always
legal, and because it significantly transforms the code, leading to larger loop
bodies, it may conflict with other optimization goals.

In this paper, we describe a new approach for scalar replacement of array
variables that extends this prior work in several important ways.

1. Increases the applicability by eliminating the necessity for unroll-and-jam;
2. Increases the candidates for reuse both by exploiting reuse across multiple

loops in a nest (not just the innermost loop) and by removing redundant
write memory accesses (in addition to redundant reads);

3. Provides a flexible strategy to trade off between exploiting reuse opportuni-
ties and reducing the register requirements of scalar replacement.

This new approach was motivated by the opportunities arising in compiling
to FPGAs: (1) the amount of logic that can be configured for registers far exceeds
the number of registers in a conventional system (on the order of several hundred
to a few thousand); and, (2) data can be copied between registers in parallel.
For these reasons, the compiler stores reused data in registers across loops in
a nest, even though the reuse distance can be potentially large, and frequently
copies between registers. Further, it is beneficial to avoid the code size increase
associated with unroll-and-jam, since increased design complexity can lead to
slower achievable clock rates and may exceed device capacity.

While FPGAs represent a unique computing platform, these extensions to
scalar replacement will become increasingly important due to a number of cur-
rent architectural trends, such as the larger register files of 64-bit machines (such
as the Itanium’s 128 registers), rotating register files [3], and software-managed
on-chip buffers (e.g., Imagine [4]). The algorithm described in this paper has been
fully implemented in the DEFACTO system, a design environment for mapping
applications written in C to FPGA-based systems [5]. We present results on
five multimedia kernels, demonstrating a 58 to 90 percent reduction in memory
accesses and a speedup of 2.34 to 7.32 over the original programs.

The remainder of this paper is organized as follows. The next section presents
background and motivation for this research and briefly introduces the prior
solution by Carr and Kennedy [2] for purposes of comparison with our approach.

Increasing the Applicability of Scalar Replacement 187

for (i = 1; i < 65; i++)
for (j = 1; j < 33; j++)

A[i][j]=A[i-1][j-1]+B[i]+
B[i-1]+C[j]+D[i][j];

(a) Original code

A [i][j] A [i-1][j-1]
<1,1>

B [i] B [i-1]
<1,*>

<0,+> <0,+>

C[j]

<+,0>

D [i][j]

(b) Reuse graph

for (i = 1; i < 65; i+=2)
for (j = 1; j < 33; j++)

A[i][j]=A[i-1][j-1]+B[i]+
B[i-1]+C[j]+D[i][j];

A[i+1][j]=A[i][j−1]+B[i+1]+
B[i]+C[j]+D[i+1][j];

(c) After unroll-and-jam of
loop i

A [i][j] A [i][j-1]
<0,1>

B [i] B [i]

<0,0>

<0,+>

C[j]

D [i][j]

A[i+1][j] A [i-1][j-1] D [i+1][j]

B [i+1] B [i-1]
<1,*>

<0,+> <0,+>

C[j]

<+,0> <0,0>

<1,1>

(d) Reuse graph after unroll-and-
jam

Fig. 1. An example code

In Section 3, we describe the details of our algorithm, followed by a discussion
of code generation in Section 4. Experimental results are presented in Section 5.
Related research is discussed in Section 6, followed by a conclusion.

2 Background and Motivation

We use an example code in Fig. 1(a) throughout this paper to illustrate our ap-
proach. The write reference A[i][j] and the read reference A[i-1][j-1] in Fig. 1(a)
represent a data reuse opportunity. The data written by A[i][j] will be read by
A[i-1][j-1] in the next iteration of loop i and loop j. Similarly, the data fetched
by B[i] is read again by B[i-1] in the next iteration of loop i. Both sets of ref-
erences carry other data reuse opportunities in that the same data is accessed
repeatedly in loop j. The read reference C[j] can be reused repeatedly during
the outer loop execution by keeping all portions of array C accessed by the inner
loop in a series of registers, provided that there are enough registers available.
Array reference D[i][j] does not carry any data reuse opportunity.

A dependence vector d = 〈d1, d2, · · · , dn〉 refers to a vector difference of dis-
tance in an n-dimensional loop iteration space [6]. If the first non-zero entity
of a dependence vector is positive, we call it lexicographically positive. Fig. 1(b)
shows an example of a lexicographically positive dependence. We use D to refer
to a set of dependence vectors.

188 B. So and M. Hall

For data reuse analysis, we only consider true, input, and output depen-
dences. Anti-dependences are not considered as candidates of data reuse and
are ignored. A dependence vector must also be lexicographically positive for the
data reuse to be realizable. Under these requirements, a dependence vector en-
tity which represents the difference in iteration counts between source and sink
references of the dependence edge is one of the following:

– c: an integer constant distance.
– +: a set of distances that range from 1 to ∞.
– ∗: a set of distances that range from −∞ to ∞, or an unknown distance.

A constant dependence vector entity c means that the distance between two
dependent array references in the corresponding loop is c. A loop-independent
data dependence whose vector entities are all zeros occurs when an array element
is referenced multiple times in the same loop iteration. Since we are considering
only lexicographically positive dependences, all dependence vectors must have
as their first non-zero entity a positive integer, or ‘+’.

Just like a dependence graph in dependence analysis, we represent a set of
data reuse relations by a directed graph called a data reuse graph, which in-
cludes a set of reuse instances. A reuse instance consists of two dependent array
references, one source and one sink, and a reuse edge which represents the repre-
sentative dependence vector between the two array references. A reuse instance
is referred to in the literature as temporal reuse. Temporal reuse from an array
reference to itself is referred to as self-temporal, while temporal reuse among
different array references is called group-temporal. A self-loop reuse edge � in
Fig. 1(b) represents self-temporal reuse across loop iterations. Array references
with no incoming true or input dependence edges are called reuse generators.
Array references with no outgoing output dependence edges are called finaliz-
ers. In Fig. 1(b), A[i][j] in reuse edge {A[i][j] → A[i-1][j-1]} is both the reuse
generator and the finalizer.

We briefly introduce a previous approach to scalar replacement by Carr and
Kennedy [2] for the purposes of comparison with our approach. As stated earlier,
their approach relies on unroll-and-jam to shorten reuse distance and thus re-
duce the number of registers required to exploit a reuse instance. (It is also used
to increase instruction-level parallelism.) Carr and Kennedy’s approach restricts
scalar replacement to array references with dependences carried by the inner-
most loop, thus of the form 〈0, 0, · · · 0, dn〉. Further, each dependence must be
consistent, which means that the dependence distance for the loop that carries
the dependence is constant throughout the loop [6]. Unroll-and-jam is used to
bring dependences carried by outer loops into the innermost loop. In Fig. 1(c),
for example, the array references A[i-1][j-1], B[i-1], and C[j] that induce the de-
pendence vectors 〈1, 1〉, 〈1, ∗〉, 〈+, 0〉, identified by dotted arrows, are not of the
form 〈0, 0, · · · 0, dn〉. After unroll-and-jam, as in Fig. 1(c), some dependences are
〈0, 1〉, 〈0, 0〉, 〈0, +〉 as illustrated in Fig. 1(d), increasing the innermost loop reuse.
Similarly, the dependence 〈+, 0〉 of array reference C[j] in Fig. 1(b) is not carried
by the innermost loop. By unrolling the outer loop, it creates a loop-independent
dependence 〈0, 0〉.

Increasing the Applicability of Scalar Replacement 189

The overall algorithm is to reduce unnecessary memory accesses and to match
memory and floating point operations with the peak performance of the target
architecture [2]. In this paper, M refers to the number of memory accesses
remaining after scalar replacement, and R the number of registers required to
exploit data reuse. As unroll factors increase, data reuse increases monotonically.
However, R also increase and can exceed the number of available registers. Thus,
the algorithm attempts to derive the best unroll factors computed as a function
of M and the number of floating point operations under the constraint that R is
less than the total number of available registers for a given architecture. Thus,
the core of their analysis is to compute M and R, parameterized by the unroll
factors u1, · · · , un−1 for loops 1 to n-1; the algorithm never unrolls the innermost
loop because doing so does not affect the data access patterns.

However, their approach still cannot exploit some data reuse opportunities
that the outer loop carries even after unroll-and-jam. Thus, array C and B in
Fig. 1(c) repeatedly accesses the same array element across outer loops. Fur-
ther, unroll-and-jam is not always safe, and may conflict with other compiler
optimizations.

Compared to Carr and Kennedy’s approach, our approach does not require
any further unrolling to expose data locality to the innermost loop. In addition,
our approach does not have the limitation of applicable dependences of the form
〈0, 0, · · · 0, dn〉. We show how we achieve these goals in the next section.

3 Extending Scalar Replacement

Since we do not perform unroll-and-jam, a key distinction in our approach is
a strategy for analyzing reuse distance across multiple loops in a nest. In con-
junction with the analysis, we perform register rotates and shifts, as discussed
in the next section, to exploit this reuse. Another key difference is the use of
reuse chains, rather than pairwise dependences, to identify and group together a
collection of references that may refer to the same location. The effect of a reuse
chain is that the number of registers needed to exploit the reuse can be reduced
as compared to considering reuse among pairs of references. We consider output
dependences, not just input and true dependences. As a consequence of this and
the goal of exploiting reuse across multiple loops in a nest, the way in which we
partition references is also different.

The steps of our algorithm are the following:

1. Perform the dependence analysis for a given code.
2. Build a reuse graph, where we partition all array references into reuse chains

C∅, Cc, Ci∅, and Cic, as described below.
3. Compute R and M for each reuse chain. We compute M as part of register

pressure control, as described in Section 3.3.
4. If needed to control register pressure, compute efficiency metric of each reuse

chain, and tile some inner loops to tradeoff some data reuse opportunities
with a smaller number of registers.

5. Replace array references with appropriate scalars.

190 B. So and M. Hall

6. Insert register shift/rotation statements to transfer a data item from the
generator down to other references in a reuse chain.

7. Perform loop peeling and loop-invariant code motion to initialize or finalize
registers for loop-invariant array references.

3.1 Definitions

A reuse chain, denoted as C , is a connected component of a reuse graph. A
reuse generator provides the data that is used by all the references in the reuse
chain, and the finalizer finalizes the value of the array element that may have
been overwritten several times by previous write references.

Since we are exploiting data reuse across multiple loops in a nest, we need a
concept of the distance between the references to the same array element across
outer loop iterations. A group temporal reuse distance is defined by the mini-
mal difference in iteration counts of the innermost loop between two dependent
references. A reuse distance is different from a dependence distance in that it
represents only the smallest dependence distance between the two dependent
array references when there are multiple distances. For a given d = 〈c, · · · , c〉
in an n-deep loop nest, we define the group temporal reuse distance ε(d, n) as
follows:

ε(d, n) =
n−1∑

l=1

{(
n∏

k=l+1

Ik

)
× dl

}
+ dn, (1)

where Ik is the iteration count of the k -th loop in a nest, and c is an integer
constant. In Fig. 1(b), for instance, the reuse distance of a dependence vector
〈1, 1〉 of {A[i][j] → A[i-1][j-1]} is 33 (=1×32+1).

We partition reuse chains that exploit different kinds of data reuse across
loop iterations into four categories; i.e.,

– C∅: reuse chains that carry no data reuse opportunities.
– Cc: reuse chains that carry only group-temporal reuse opportunities.
– Ci∅: reuse chains that carry only self-temporal reuse opportunities.
– Cic: reuse chains that carry both self-temporal and group-temporal reuse

opportunities.

Reuse chain categories C∅ and Cc can contain a loop independent data reuse
among lexically identical array references in addition to the conditions above.

Our categorization is different from Carr’s in two ways. First, since we are
exploiting data reuse across outer loops as well as the innermost loop, we dis-
criminate reuse chains that exploit data reuse only in invariant loops (category
Ci∅) from reuse chains that exploit data reuse in the invariant loops as well as
with a constant dependence distance in some loops (category Cic). Secondly, we
categorize both read and write references, which allows us to eliminate redundant
writes back to memory. Table 1 shows the characteristics of the dependences in
each category and examples of reuse chains from Fig. 1(b). Note that we compute
M and R throughout the entire execution of a loop nest.

Increasing the Applicability of Scalar Replacement 191

Table 1. Comparison of reuse chain categories.

C∅ Cc Ci∅ Cic

D ∅ or {0, · · · , 0} {〈c, · · · , c〉} {〈· · · , +/∗, · · · , 0, · · ·〉} {〈· · · , +/∗, · · · , c, · · ·〉}
e.g. {D[i][j]} {A[i][j] → {C[j] �} {� B[i] → B[i-1]�}

A[i-1][j-1]}
G 2,048 2,048 32 64

A 1,953 63

M 2,048 2,143 32 65

R 0 34 32 2

In the next section, we use the following terms to describe the algorithm.
A refers to the group-temporal reuse associated with a particular incoming de-
pendence or reuse chain; i.e., how many memory accesses associated with one
or more dependences can be eliminated. G refers to the number of memory ac-
cesses incurred, associated with a reuse generator. In addition, we assume that
there are enough registers to exploit all the data reuse opportunities exposed
by data reuse analysis, and that the loop bounds are constant. We relax these
assumptions by generalizing the algorithm in Section 3.3.

3.2 Computing R and M for Each Reuse Chain

We compute the number of registers and the number of memory accesses for each
reuse chain, while Carr’s approach does so for each individual array reference.
Because the data of a reuse generator may be used several times until the last
reference in a reuse chain uses it, the dependence vector d between the generator
and the last reference in a reuse chain decides the required number of registers
to fully exploit possible data reuse.

For a given d and a set of loop iteration counts, we compute A and G for
each data reuse chain as follows:

G =
n∏

l=1

α(dl, Il), where α(dl, x) =
{
x, if dl is a constant;
1, otherwise, (2)

A =
n∏

l=1

β(dl, Il), where β(dl, x) =






1, if dl is not a constant;
x − dl, if x ≥ dl;
0, if x < dl.

(3)

The above equations are functions of I rather than unroll factors, since we exploit
data reuse in the entire loop nest and do not unroll the loops. In Table 1, for

example, G=2,048 and A=1,953 for reuse chain {A[i][j]
〈1,1〉→ A[i-1][j-1]}.

In the rest of this subsection, we describe how to compute R and M for each
type of reuse chain for a given dependence vector d = 〈d1, d2, · · · , dn〉 between
the generator and the last array reference in the reuse chain.

192 B. So and M. Hall

Regis ter Ac c esses

(I1,I2)

(0,0)

(r1,r2)

Mem ory Ac c esses

(a) Cc

Regis ter Ac c esses

(I1,I2)

(0,0)
(0,1)

M
em

or
y

A
cc

es
se

s

(b) Ci∅

Regis ter
Ac c esses

(I1,I2)

(0,0)

(r1,r2)

Mem ory Ac c esses

Regis ter
Ac c esses

(c) Partial data reuse

Fig. 2. Memory/register access behaviors of full and partial data reuse.

Reuse chains in C∅ carry no reuse across iterations, but multiple references in
the chain may carry loop-independent reuse within the loop body. In this case,
we use one register to exploit loop-independent data reuse from the generator.
Thus, M and R for reuse chains in C∅ can be computed as follows:

M∅ = G, R∅ =
{

0, if d = ∅
1, if d = 〈0, · · · , 0〉.

In Table 1, for example, M∅=2,048 and R∅=0 for reuse chain {D[i][j]}, since it
does not exploit any data reuse.

Reuse chains in Cc captures only group-temporal reuse. Therefore, M and R
required for reuse chains in Cc can be computed as follows:

M c = 2G − A, Rc = ε(d, n) + 1,

where the function ε(d, n) is defined in Equation 1.
The reuse generator accesses memory in the entire iteration space, which

leads to G memory accesses. Other references in the same reuse chain fetch data
from memory only in the initial dl iterations of each loop l. Figure 2(a) illustrates
the general data access behavior for a reuse chain with reuse distance 〈d1, d2〉.
In the shaded region, which represents the group-temporal reuse amount A, the
sink reference of a reuse instance gets necessary data from the source reference.
However, the sink references access memory in the L-shaped white region. To
exploit data reuse for reuse chains in Cc, a series of registers are necessary to
keep the data until it is fully reused. The reuse generator fetches data from
memory to the first register in a series, and each register Ai shifts the data to
its neighboring register Ai+1 in every innermost loop’s iteration. Finally, after
iterations of the innermost loop corresponding to the reuse distance ε(d, n), the
last register Aε(d,n) gets the necessary data. Meanwhile, the reuse generator keeps
fetching a new datum from memory in every iteration; i.e., G memory accesses.
The L-shaped white region can be computed by subtracting the shaded region
from the whole region; i.e., G − A.

Increasing the Applicability of Scalar Replacement 193

Therefore, the total number of memory accesses for a reuse chain in Cc is
G + G − A = 2G − A, since the generators as well as other references belong to

Cc.In Table 1, for example, M c=2,143 and Rc=34 for reuse chain {A[i][j]
〈1,1〉→

A[i-1][j-1]}.

Reuse chains in Ci∅ have a dependence vector that consists of ‘+’, ‘∗’, and
0. Let dj be the first non-zero dependence distance, which should be ‘+’ in this
reuse chain category; i.e., 〈0, · · · , 0, +, · · ·〉. Then, M and R required for each
reuse chain in Ci∅ can be computed as follows:

M i∅ = G, Ri∅ =
n∏

l=j

α(dl, Il), where dj = ‘+’.

The data in a register can be reused without any additional registers during the
entire execution of loops corresponding to ‘+’ or ‘∗’.Figure 2(b) illustrates the
general data access behavior for a reuse chain with dependence vector 〈0, +〉.
Array elements along the dimensions corresponding to the dependence distance
0 are kept in a series of registers for the outer loops corresponding to dependence
distance ‘+’ or ‘∗’ to exploit self-temporal reuse. In the dimensions corresponding
to leading zero dependence distances (i.e., dimensions from 1 to j -1 if j > 1),
the reuse chain does not exploit data reuse at all, so they do not affect the
number of registers. In Table 1, for example, M i∅=32 and Ri∅=32 for reuse
chain {C[j] �〈+,0〉}.

Reuse chains in Cic contain self-loop edges and data reuse edges between
different array references. As such, a dependence vector of reuse chains in Cic

consists of ‘+’, ‘∗’, and constants. In this category, at least one constant should
be non-zero.

Let dj be the first non-constant dependence distance; i.e., 〈c, · · · , c,+/∗, · · ·〉.
Then, the number of memory accesses remaining after scalar replacement for
reuse chains in Cic can be computed as follows:

M ic = 2G − A, Ric = {ε(d, j − 1) + 1} ×
n∏

l=j

α(dl, Il).

In Table 1, for example, reuse chain {� B[i]
〈1,∗〉→ B[i-1]�} can exploit self-

temporal data reuse in the inner loop (corresponding to ‘∗′) and group-temporal
data reuse in the outer loop (corresponding to ‘1’). Since two references are
invariant in the inner loop, we can determine the reuse distance in terms of the
outer loop, which is 1. Thus, Ric=1+1=2 for this chain.

Consider dependence vector 〈+, 1〉. A data item is reused in the next iteration
of the inner loop. In addition, the data is reused during the entire iterations of
the outer loop. Thus, the same number of registers as the inner loop iteration
count are necessary, no matter how small c is. Therefore, the first non-constant
dependence distance in dimension j means that exploiting self-temporal reuse in
j through n dimensions requires the following number of registers just like Ri∅;
i.e.,

∏n
l=j α(dl, Il).

194 B. So and M. Hall

for (i = 1; i < 65; i++) {
B0 = B[i];
if (i==1) B1 = B[i-1];
for (j = 1; j < 33; j++) {

if (i==1)
{ A33 = A[i-1][j-1]; C0 = C[j]; }

else if (j==1) A33 = A[i-1][j-1];
A0 = A33 + B0 + B1 + C0 + D[i][j];
A[i][j] = A0;
shift registers(A0, · · · , A33);
rotate registers(C0, · · · , C31);

}
B1 = B0;

}

(a) Full data reuse

for (jt = 1; jt < 33; jt+=16)
for (i = 1; i < 65; i++) {

B0 = B[i];
if (i==1) B1 = B[i-1];
for (j = jt; j < jt+16; j++) {

if (i==1)
{ A17 = A[i-1][j-1]; C0 = C[j]; }

else if (j==jt) A17 = A[i-1][j-1];
A0 = A17 + B0 + B1 + C0 + D[i][j];
A[i][j] = A0;
shift registers(A0, · · · , A17);
rotate registers(C0, · · · , C15);

}
B1 = B0;

}

(b) Partial data reuse

Fig. 3. Final output of our approach to scalar replacement.

Further, the constant dependence vector dimensions in the outer loops before
dimension j require ε(d, j-1)+1 sets Ri∅ registers in a similar way as computing
Rc. For example, consider a dependence vector 〈1, ∗, 2〉 between two references
A[i][k] and A[i-1][k-2] within a 3-deep loop nest. To exploit self-temporal reuse
in the second dimension, Ik registers are required to keep the array elements
accessed in the innermost loop. Further, since the dependence distance in the first
dimension is 1, the total number of registers required for this reuse chain ends up
multiplying 2 by Ik. Intuitively, this corresponds to Ik registers to exploit self-
temporal reuse in the second dimension, and an additional Ik registers to exploit
group-temporal reuse in the first dimension. Thus, G=64, A=63, M ic=65, and

Ric=2 for reuse chain {� B[i]
〈1,∗〉→ B[i-1]�}.

Fig. 3(a) shows the result of our scalar replacement applied to the code in
Fig. 1(a). The code in Fig. 3(a) does not access any array element more than
once, fully exploiting data reuse opportunities at the cost of more registers used
than Carr’s approach. In the next subsection, we present how we control the
register pressure, not losing many opportunities of data reuse.

3.3 Generalizing the Algorithm

In architectures where there are not enough registers to exploit all possible data
reuse opportunities, we have to reduce the required number of registers to avoid
register spills. Further, a non-constant loop bound hinders the reuse analysis
from computing the reuse distance ε(d, n) in Equation 1. Fortunately, we can
use the same technique to deal with these issues.

Partial data reuse trades off data reuse opportunities for lower register pres-
sure. We exploit partial data reuse using a code transformation called tiling,
which divides computation and data into blocks, and makes the data reuse closer
in time. Partial data reuse exploits data reuse only within a tile and introduces

Increasing the Applicability of Scalar Replacement 195

memory accesses across tiles. Fig. 2(c) shows the difference in memory access
behaviors between full and partial data reuse. The loop to be tiled and the tiling
factors are decided based on the dependence information. Tiling each loop i by
Ti will reduce the reuse distance by

n−1∑

j=1









n∏

k=j+1

Ik



× dj




−
n−1∑

j=1









n∏

k=j+1

Tk



× dj




 .

¿From this tiled reuse distance, we can compute the number of registers and the
number of memory accesses required for the tiled code. Fig. 3(b) shows the code
after tiling the inner loop j, which requires 36 registers for partial data reuse
and incurs 4,416 memory accesses.

Using tiling, we can also derive inner loop nests with constant loop bounds,
when some bounds are not constant. If the iteration count is not divisible by
the tiling factor, we can use Index set splitting, which divides the index set of a
loop into multiple portions, replicating the body of the loop as appropriate [6].
We use index set splitting to isolate the residual (Ik mod Tk) iterations from the
main tiled loop lk. As a result, each tile of iterations contains a fixed constant
Tk iteration count.

Tiling is not always a legal transformation1. An alternative way to control
register pressure is selective data reuse which selectively exploits data reuse for
some reuse chains depending on their register requirements and reuse benefits.
Thus, we could alternatively compute the register efficiency for each reuse chain
c as follows:

Efficiencyc = M c/Rc,

where M c refers to the number of memory accesses eliminated by scalar re-
placement and Rc the number of registers necessary for reuse chain c. A hybrid
approach could apply selective data reuse to filter out extremely low efficiency
reuse chains, and apply partial data reuse for the rest.

4 Code Transformation

Once the number of registers is computed, a series of scalar variables, S0, S1, · · ·,
SR−1, are introduced, where R is the number of registers to be used to replace
array references in a reuse chain. An array reference is replaced with an appro-
priate scalar variable depending on the reuse distance between its generator and
the array reference within the same reuse chain. Each reuse generator that is a
read reference needs a register initialization “Si=A[]” before the register is used,
and the finalizer reference in a reuse chain requires a memory store “A[]=Si”.
Intuitively, the insertion position of these initialization/finalization statements
is the innermost loop in which the array reference is not invariant, thereby ac-
complishing loop-invariant code motion. A discussion of control flow is beyond
the scope of this paper, but modifications to support control flow are described
in [7].
1 Its legality test is equivalent to unroll-and-jam.

196 B. So and M. Hall

4.1 Register Shift / Rotation

A reference receives data from its generator after the number of iterations cor-
responding to its reuse distance. Let r represent the reuse distance between the
generator and the last array reference in a reuse chain. Then, to achieve reuse,
a shift registers operation, equivalent to a series of register copy statements
{(Si+1 = Si) | r−1 ≥ i ≥ 0}, is inserted at the appropriate position as in Fig. 3.
The insertion position of register shifts for each reuse chain can be decided by
the same method as is used to determine the initialization/finalization point of
registers.

In the case of reuse chain categories Ci∅ and Cic, data reuse occurs repeatedly
in loops where the array reference is invariant. The rotate registers operation
shifts the data in a series of registers and rotates the last one into the first
position.

4.2 Loop Peeling and Code Motion

Loop peeling removes the first (or last) several iterations of the loop body and
makes them as separate code before (or after) loop execution. The scalar re-
placement optimization uses loop peeling in combination with loop-invariant
code motion for register initialization and finalization purposes.

We see in Fig. 3(a) that values for register A33 are initialized on the first
iteration of loop j and on the first iteration of loop i. For clarity it is not shown
here, but the code generated by our compiler actually peels the first iteration of
loop j and loop i instead of including these conditional loads so that the main
body of both loops have the same number of memory accesses. Further, we can
avoid the overhead of condition checks in every loop iteration. In addition, array
reference B[i] is invariant with respect to loop j, so the initialization of register
B0 and B1 are moved outside the inner loop j. Within the main unrolled loop
body, only a read reference to array D and a write reference to array A remain.

Our approach performs loop peeling on multiple loops in a nest. To initialize
the scalar variables at the beginning of the loop iteration, each loop li needs to
be peeled by the maximum dependence distance among all true and input de-
pendence vectors. To finalize the array elements at the end of the loop iteration,
each loop li needs to be peeled by the maximum dependence distance among all
output dependence vectors. However, since we peel each loop by the maximal de-
pendence distance among all dependence vectors, some array references whose
dependence distance is less than the peel factor do not need to be initialized
because they are lexically identical array references in some peeled iterations.

5 Experiment

This section presents experimental results that characterize the impact of the
scalar replacement algorithm for a set of application kernels written in C: a
digital FIR filter (FIR), matrix multiply (MM), pattern matching (PAT), Jacobi
4-point stencil (JAC), and Sobel edge detection (SOBEL). MM is implemented
by a 3-deep loop nest, and the others are 2-deep loop nests.

Increasing the Applicability of Scalar Replacement 197

Table 2. Problem size (iteration count).

FIR MM PAT JAC SOBEL

Problem size 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Outer loop 64 64 640 64 64 640 64 64 640 32 32 320 64 64 640

Middle loop 5 6 6

Inner loop 30 32 60 5 6 16 31 32 62 15 16 30 14 16 28

5.1 Methodology

The algorithm described in this paper has been fully implemented in the DE-
FACTO system, a design environment for mapping C applications to application-
specific FPGA hardware implementations [5]. As compared to a conventional ar-
chitecture, FPGAs have no instruction or data cache, and the microarchitecture
is configured specifically for the application. DEFACTO is built on top of the
Stanford SUIF compiler, in which we have implemented the scalar replacement
transformation. After the compiler applies its transformations, DEFACTO au-
tomatically generates a VHDL hardware description of the algorithm, which is
then synthesized to hardware by commercially available FPGA synthesis tools;
the measurements provided in this section were obtained from Mentor Monet [8],
a behavioral synthesis tool. While the output of Monet is not identical to the re-
sults obtained from executing the application in hardware, the number of cycles
is the same and can be compared directly; other metrics have been shown to be
consistent between Monet and the final implementation [9]. The target FPGA
device is a Xilinx Virtex XCV 1000 [10].

In this experiment, we compare four data reuse schemes: (1) no data reuse, (2)
redundant write elimination only, (3) an approximation to Carr’s approach, and
(4) our approach. The approximation to Carr’s approach, selects the maximal
unroll factor for the outer loop of the 2-deep loop nests such that the number
of registers is not exceeded. Inner loops are not unrolled in Carr’s algorithm. In
the case of MM, we also unrolled the outermost loop since the results would be
equivalent for either of the two outer loops. While Carr’s algorithm might decide
not to unroll this much, these results can be thought of as an upper bound on
the benefits from Carr’s scalar replacement algorithm, since the measurements
for performance improvements on our FPGA system are not affected by code
size.

To characterize the benefits and cost of each data reuse scheme, we measured
four metrics: (1) the number of memory accesses remaining after each data reuse
scheme, and (2) the number of registers used to exploit data reuse, and (3) the
speedup over original programs, and (4) the FPGA space usage.

The first and second metrics heavily depend on the iteration counts of the
loops. For each program, thus, we compare three different problem sizes in terms
of iteration count of each loop in a nest as shown in Table 2. We assume there
are 32 registers available in the target architecture. The first problem size for
each program requires less than or equal to 32 registers to fully exploit data

198 B. So and M. Hall

FIR MM PAT JAC SOBEL0

3 k

6 k

9 k

N
um

be
r

of
 A

rr
ay

 R
ef

er
en

ce
s No Data Reuse

Output only
Carr’s Approach
Our Approach

~~19712~~

(a) Problem size 1

FIR MM PAT JAC SOBEL0

3 k

6 k

9 k

12 k

N
um

be
r

of
 A

rr
ay

 R
ef

er
en

ce
s No Data Reuse

Output Only
Carr’s Approach
Our Approach

~~22528~~

(b) Problem size 2

FIR MM PAT JAC SOBEL0

50 k

100 k

150 k

200 k

250 k

N
um

be
r

of
 A

rr
ay

 R
ef

er
en

ce
s No Data Reuse

Output Only
Carr’s Approach
Our Approach

~~394240~ ~

(c) Problem size 3

Fig. 4. Number of Memory Accesses.

reuse using our approach. The second size is slightly bigger than the first size,
and thus it requires slightly more registers. The third size requires much more
registers than 32 to exploit full data reuse. Thus, we perform partial data reuse
in the cases of the second and third problem sizes of each program. For Carr’s
approach, we maximize the unroll factor of the outer loop (and jam the copies of
the inner loop) such that it uses less than or equal to 32 registers. Our approach
is fully automated, but we derived results for output elimination only and Carr’s
approach with some manual direction of our compiler.

5.2 Experimental Results

In Fig. 4, we measured how effectively we eliminated the quantity of redundant
memory accesses, with each bar capturing results for one of the four previously
described schemes. In Fig. 4(a) and (b), the second bar eliminated about 50%
of memory accesses for FIR and MM, 33% for PAT. However, there was no
opportunity for redundant write elimination at all for JAC and SOBEL. In
Fig. 4(c), the second bar eliminated slightly more memory accesses (up to 1%),
since the problem size is bigger. For three different problem sizes, Carr’s approach
eliminated 72% of memory accesses for FIR, 52% for JAC, and 47% for SOBEL.
However, it eliminated the same amount of redundant memory accesses as the
second bar did for MM and PAT. On the other hand, our approach eliminated
slightly more redundant memory accesses (up to 5% more) than Carr’s approach
for FIR and JAC. However, it eliminated 90% of memory accesses for MM, 65%
for PAT, and 77% for SOBEL in Fig. 4(a), and up to 3% less in Fig. 4(b), and
up to 1% more in Fig. 4(c). If the problem size is bigger, the benefits of our
approach to scalar replacement would be greater.

Table 3 shows the number of registers required to exploit data reuse for three
data reuse schemes. Carr’s approach uses 32 registers for FIR, MM, and PAT,
but 30 registers for JAC and SOBEL because increasing the unroll factor requires
more than 32 registers. Only one register is required to eliminate redundant write
accesses for FIR, MM, and PAT. There are no redundant array writes for JAC or
SOBEL. Our approach uses a comparable number of registers for problem sizes
1 and 3, but considerably less registers for problem size 2 because tiling reduces

Increasing the Applicability of Scalar Replacement 199

FIR MM PAT JAC SOBEL0

1

2

3

4

5

6

7

8

Sp
ee

du
p

Output Only
Carr’s Approach
Our Approach

(a) Problem size 1

FIR MM PAT JAC SOBEL0

1

2

3

4

5

6

7

8

Sp
ee

du
p

Output Only
Carr’s Approach
Our Approach

(b) Problem size 2

FIR MM PAT JAC SOBEL0

1

2

3

4

5

6

7

8

Sp
ee

du
p

Output Only
Carr’s Approach
Our Approach

(c) Problem size 3

Fig. 5. Speedups of scalar replacement.

the iteration count of the inner loop. However, as shown in Figure 4(b), partial
data reuse eliminated more redundant array accesses than in the (c) case, which
uses many more registers.

Fig. 5 presents the speedup results of overall performance on a single FPGA,
again corresponding to the four schemes above. The approximation to Carr’s
approach observes speedups from 1.21 to 3.21, and output elimination only ob-
serves speedups from 1.21 to 1.71. On the other hand, our approach observes
speedups from 2.34 to 7.31 for five programs. If we use full data reuse, which is
possible on the FPGA platform for the smaller problem sizes, the speedups of
our approach would be greater.

In summary, from our experiments, we observe several sources of benefits.
While most benefits come from exploiting reuse of input and true dependences,
redundant write elimination is valuable and reduces the number of memory ac-
cesses up to 51%. Exploiting data reuse across multiple loops does not necessarily
require a large number of registers relative to the footprint of the accessed data,
and results in the best performance. Partial data reuse within a limited num-
ber of registers eliminated up to 40% more redundant array accesses than our
approximation to Carr’s approach. As a final benefit of our approach over using
unroll-and-jam, the FPGA space required to implement the unrolled computa-
tion may be prohibitive. Larger designs have more routing complexity, and may
lead to lower achieved clock rates. For the example kernels using the maximal
unroll factors, the designs resulting from our algorithm were up to 80% smaller.

Table 3. Number of registers.

FIR MM PAT JAC SOBEL

Problem size 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Carr’s appr. 32 32 32 32 32 32 32 32 32 30 30 30 30 30 30

Output only 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Our appr. 31 17 31 30 19 29 32 17 32 31 17 31 32 20 32

200 B. So and M. Hall

6 Related Work

The most closely related work [2] is explained in detail in this paper. While
there have been numerous other works on data locality optimizations, we cite
only those most closely related to our transformations here. Fink et al. [11]
introduces a scalar replacement algorithm that can handle both array and pointer
objects. In their model, they treat both pointer and array references as accesses
to elements of hypothetical heap arrays and they can avoid an expensive point-
to analysis. McKinley et al. [12] showed a compound data locality optimization
algorithm to improve cache performance that place the loop that carries the most
data reuse at the innermost position for each statement in a loop nest. Kolson
et al. [13] uses an internal data forwarding technique to eliminate redundant
memory traffic in a pipelining scheduler. Kodukula et al. [14] introduces data
shackling, a data-centric approach to locality enhancement for L2 cache. It fixes
a block of data and then determines which computations should be executed on
it. Deitz et al. [15] introduces array subexpression elimination that eliminates
redundant computation and accompanying memory accesses.

7 Conclusion

In this paper, we have described an algorithm for scalar replacement, used to
eliminate redundant memory accesses by replacing array references with scalar
temporaries. Our approach extends scalar replacement (1) to increase the appli-
cability by eliminating the necessity for unroll-and-jam, and (2) to increase the
candidates for reuse both by exploiting reuse across multiple loops in a nest (not
just the innermost loop) and by removing redundant write memory accesses (in
addition to redundant reads), and (3) to provide a flexible strategy to trade off
between exploiting reuse opportunities and reducing the register requirements
of scalar replacement. Using less than or equal to 32 registers for this technique,
we observe a 58 to 90 percent of reduction in memory accesses and speedup of
2.34 to 7.31 over the original programs.

References

1. Callahan, D., Carr, S., Kennedy, K.: Improving register allocation for subscripted
variables. In: Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation, New York, ACM press (1990)

2. Carr, S., Kennedy, K.: Improving the ratio of memory operations to floating-point
operations in loops. ACM Transactions on Programming Languages and Systems
16 (1994) 1768–1810

3. Ng, J., Kulkarni, D., Li, W., Cox, R., Bobholz, S.: Inter-procedural loop fusion,
array contraction and rotation. In: The 12th International Conference on Parallel
Architectures and Compilation Techniques, New Orleans, LA (2003) 114–124

4. Rixner, S., Dally, W.J., Kapasi, U.J., Khailany, B., Lopez-Lagunas, A., Mattson,
P.R., Owens, J.D.: A bandwidth-efficient architecture for media processing. In:
International Symposium on Microarchitecture. (1998) 3–13

Increasing the Applicability of Scalar Replacement 201

5. So, B., Hall, M.W., Diniz, P.C.: A compiler approach to fast hardware design space
exploration in fpga-based systems. In: Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation (PLDI’02),
New York, ACM press (2002) 165–176

6. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, San Francisco (2002)

7. So, B.: An Efficient Design Space Exploration for Balance between Computation
and Memory. Ph.d. dissertation, University of Southern California, Los Angeles,
CA (2003)

8. Mentor Graphics Inc.: MonetTM . R44 edn. (1999)
9. So, B., Diniz, P., Hall, M.: Using estimates from behavioral synthesis tools in

compiler-directed design space exploration. In: The 40th Design Automation Con-
ference, Anaheim, CA (2003)

10. XILINX: Virtex-II 1.5V FPGA Complete Data Sheet. DS031(v1.7), 2100 Logic
Drive, San Jose, Calif. (2001)

11. Fink, S.J., Knobe, K., Sarkar, V.: Unified analysis of array and object references in
strongly typed languages. In: Proceedings of the 2000 Static Analysis Symposium.
(2000) 155–174

12. Mckinley, K.S., Carr, S., wen Tseng, C.: Improving data locality with loop transfor-
mations. ACM Transactions on Programming Languages and Systems 18 (1996)
424–453

13. Kolson, D., Nicolau, A., Dutt, N.: Elimination of redundant memory traffic in
high-level synthesis. IEEE Trans. on Computer-aided Design 15 (1996) 1354–1363

14. Kodukula, I., Pingali, K., Cox, R., Maydan, D.E.: An experimental evaluation of
tiling and shackling for memory hierarchy management. In: Proceedings of the
ACM International Conference on Supercomputing. (1999) 482–491

15. Deitz, S.J., Chamberlain, B.L., Snyder, L.: Eliminating redundancies in sum-of-
product array computations. In: Proceedings of the ACM International Conference
on Supercomputing. (2001) 65–77

	Introduction
	Background and Motivation
	Extending Scalar Replacement
	Definitions
	Computing emph {R} and emph {M} for Each Reuse Chain
	Generalizing the Algorithm

	Code Transformation
	Register Shift / Rotation
	Loop Peeling and Code Motion

	Experiment
	Methodology
	Experimental Results

	Related Work
	Conclusion

