
Declarative Composition of Stack Frames

Christian Lindig1 and Norman Ramsey2

1 Universität des Saarlandes, 66 123 Saarbrücken, Germany
lindig@cs.uni-sb.de

2 Division of Engineering and Applied Sciences
Harvard University, Cambridge, MA 02138, USA

nr@eecs.harvard.edu

Abstract. When a compiler translates a procedure, it must lay out the
procedure’s stack frame in a way that respects the calling convention.
Many compilers respect the convention either by restricting the order in
which slots can be allocated or by using different abstractions ad hoc for
allocating in different regions of a frame. Such techniques cause the imple-
mentation of the layout to be spread over much of the compiler, making
it difficult to maintain and verify. We have concentrated the implemen-
tation of layout into a single, unifying abstraction: the block. The block
abstraction decouples layout from slot allocation. Stack-frame layout is
specified in one central place, and even complex layouts are achieved by
composing blocks using only two simple operators. Our implementation
is used in the Quick C-- compiler to support multiple calling conventions
on multiple architectures.

1 Introduction

In a compiled language, most of the information specific to one procedure is
stored in that procedure’s stack frame. The stack frame may hold such informa-
tion as local variables, spilled temporaries, saved registers, and so on. The stack
frame can even hold a source-language record or object, provided the object does
not outlive the activation of its procedure. The advantage of allocating so much
information into the stack frame is that everything can be addressed using only
one pointer: the frame pointer. Each object or private datum is addressed by
adding a different offset to the frame pointer.

Allocating memory on a stack performs so well that it is used in almost all
compilers,1 but it is nevertheless tricky:

– The offsets of some objects depend on the sizes of other objects, but the
compiler must generate code before the size of every object is known. For
example, the compiler might have to generate a reference to a record allo-
cated on the stack before knowing how much stack space will be needed to
hold callee-saves registers.

1 For a notable exception see Appel (1992).

E. Duesterwald (Ed.): CC 2004, LNCS 2985, pp. 298–312, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Declarative Composition of Stack Frames 299

Fig. 1. Frame layout for the Tru64 Unix platform, from the online documentation of
the Assembly Language Programmer’s Guide (Compaq, 2000, Chapter 6).

– The compiler is not completely free to decide on the layout of a stack frame.
To interoperate with other compilers or with debuggers, garbage collectors,
and other tools that may walk the stack, the compiler must lay out the
stack frame in a way that respects an architecture-specific calling convention
(Compaq, 2000; Intel, 2003). Such a convention typically divides a frame into
regions, each of which holds one kind of data: arguments or saved registers,
for example.

– The compiler is not given the contents of all regions at once; instead, it must
allocate stack space incrementally, one slot at a time. If the time at which a
slot is allocated determines its position in the stack frame, the requirement
to respect the calling convention places a heavy constraint on the order in
which different parts of the compiler may execute.

The ideal compiler should be prepared to allocate any slot in any region at any
time from any part of the compiler, all while making sure that the emerging
frame layout respects the calling convention.

Today’s compilers manage this problem, but at a cost in complexity. Compil-
ers use different abstractions for different kinds of slots, and these abstractions
are spread over the compiler. For example, the gcc compiler uses temp_slot val-
ues for temporaries and arg_data values for arguments, and these abstractions
are defined in different modules (FSF, 2003). Similarly, the Objective Caml com-
piler ocamlopt uses different abstractions for slots for temporaries, incoming
arguments, and outgoing arguments (Leroy et al., 2002).

The difficulty is understanding how these various abstractions interact as
they form the frame. Frame layout is almost always specified by a diagram like
that in Fig. 1, but in practice it is almost impossible to find the implementa-
tion of this diagram, because the implementation is spread over the compiler.
Even given both the diagram and the compiler’s source code, it can be quite
difficult to verify that frame layout is correct—let alone change it. And such



300 C. Lindig and N. Ramsey

changes can be useful; for example, by adding a “canary” in front of a saved
return address, one can protect against buffer overruns (Cowan et al., 1998).
Other tasks that are unnecessarily difficult include arguing that the frame is as
small as possible or experimenting with alternative layouts for improved perfor-
mance (Davidson and Whalley, 1991). These difficulties are multiplied when a
compiler supports multiple back ends or multiple calling conventions.

To address these concerns, we have developed a unifying abstraction that
supports incremental allocation of stack slots in any order. The abstraction is
based on declarative, hierarchical composition of memory blocks. It is unifying
in that a slot, a region, and even the frame itself can each be represented as a
block. The layout of the stack frame is specified using two block-composition op-
erators: overlapping and concatenation. With this abstraction we have achieved
the following results:

– Frame layout is specified using an algebraic description that corresponds
directly to the sorts of diagrams found in architecture manuals (e.g., Fig. 1).
The specification appears in one central place in the compiler.

– As a bonus, the layout can even be specified at compile time, instead of the
more typical compile-compile time. Such flexibility facilitates experiments
with frame layouts.

– Block creation, addressing, and composition are decoupled. Blocks can be
created and composed in any order and any part of the compiler, thus en-
abling the compiler writer to run the parts of the compiler in any order,
independent of the frame layout.

Our block-composition abstraction is implemented in the Quick C--
compiler, a new compiler for the portable assembly language C--
(Ramsey and Peyton Jones, 2000). The compiler produces code for Alpha,
IA-32, IA-64, MIPS, and Power PC architectures. Its back end is controlled by the
embedded scripting language Lua (Ierusalimschy et al., 1996; Ramsey, 2004),
which allows a user to define frame layout as part of a calling convention.

2 Background

The layout of a stack frame must meet the requirements of the procedure calling
convention. This convention is actually a contract among four parties: a calling
procedure (the caller), a called procedure (the callee), a run-time system, and
an operating system. All four parties must agree on how space will be allocated
from the stack and how that space will be used: A procedure needs stack space
for saved registers and private data, an operating system needs stack space to
hold machine state (“signal context”) when an interrupt occurs, and a run-time
system needs to walk a stack to inspect and modify the state of a suspended
computation. In addition to sharing the stack with the other parties, a caller and
callee must agree on how to pass arguments and results. This paper focuses on
the layout of a stack frame; a companion paper (Olinsky et al., 2004) addresses



Declarative Composition of Stack Frames 301

incoming
k = 0

spills completed region

a
newly allocated slot in
region under constructionk = −12 (cursor)

not yet
allocated

Fig. 2. Contiguous allocation of a stack frame using a cursor

the other big part of a calling convention: how procedures use registers to pass
arguments and results.

For our purposes, then, the key fact about a calling convention is that it
divides a stack frame into regions. A single region contains one kind of data,
such as saved registers, arguments passed on the stack, source-language objects,
and so on. A region is a sequence of slots, where each slot holds a single datum.
The slot is the unit of allocation; for example, when the compiler discovers it
needs to pass an argument on the stack, it allocates a slot to hold that argument.

At run time, a slot is read and written using an address of the form p + k,
where p is typically either the stack pointer or the frame pointer, and k is a
constant offset. A key question is when k is known. The answer is determined
by the allocation strategy.

– One strategy is to allocate slots consecutively from the top of the frame to
the bottom, as shown in Fig. 2. The compiler maintains a cursor, which
keeps track of the amount of space allocated. To allocate a slot, the compiler
advances the cursor by the size of the slot. Should the slot require some
alignment, the compiler aligns the cursor beforehand.
When slots are allocated using a cursor, k is known as soon as a slot is allo-
cated. Knowing k immediately makes it easy to emit instructions that refer to
the slot, but this allocation technique couples frame layout to the execution
of the compiler: Allocations must be executed in an order consistent with
the calling convention. This restriction can lead to contortions; for example,
the lcc compiler requires the same compiler phases to execute in different
orders depending on the target architecture (Fraser and Hanson, 1995).

– The other strategy is to allocate slots from different regions independently.
In this strategy, k cannot be known until the sizes of earlier regions are
known, i.e., not until allocation is complete. Not knowing k means that in
an instruction that refers to the slot, k must be represented by a symbolic
address, which must be replaced later. But this allocation technique makes
frame layout independent of the execution of the compiler: Slots can be
allocated in any order.



302 C. Lindig and N. Ramsey

We use the second strategy, which maximizes the compiler writer’s freedom. To
make it easy to compute k, we introduce a new abstraction: the block.

3 Blocks and Block Composition

A block can represent a single slot, a region of the stack frame, a group of
regions, or even the entire frame. Whatever it represents, a block is completely
characterized by four properties:

– A size s, in bytes
– An alignment a, also in bytes
– A base address b, which is a symbolic expression
– A set of constraints c, where each constraint is a linear equation over base

addresses

Size, alignment, and base address describe a region of memory. The base address
is constrained by the alignment: b mod a = 0. After frame layout is determined,
each base address will be equivalent to an addressing expression of the form
p+ k, e.g., b = p+ kb. The constraints express relationships, as described below,
among base addresses of blocks that are in the same frame.

To form stack frames, blocks are composed in conventional ways, but ulti-
mately convention is based on interference. Two blocks interfere if they are live
at the same time, in which case they cannot share space. Interfering blocks are
therefore concatenated. For example, source-language variables and spilled tem-
poraries might be concatenated. If two blocks do not interfere, they are never
live at the same time, in which case they can share space. Non-interfering blocks
are therefore overlapped. For example, arguments passed on the stack at two
different call sites might be overlapped. Both the concatenation and overlap-
ping operations are designed so that a composed block contains its constituents,
and correct alignment of the composed block implies correct alignment of the
constituents. A composed block is as large as necessary, but no larger.

The ideas of concatenation and overlapping are simple, but some details are
tricky. We therefore present both operations in detail, with formal semantics.
In these presentations, we use two forms of notation. In short form, we write a
block with size s, alignment a, and base address b as saa@b, pronounced “s bytes
aligned a at b.” For example, 12a4@data means a 16-byte block aligned on a
4-byte boundary at address data. We write constraints, if any, on the side. In
long form, we use functions size, base, align, and constr to refer to the four prop-
erties of a block. The two forms are related by the equations size(saa@b) = s,
align(saa@b) = a, and base(saa@b) = b.

As examples, we use blocks named after regions of a stack frame: block in
holds incoming arguments, block out holds outgoing arguments, block spills
holds spilled temporaries, block conts holds “continuations” (used to implement
exceptions in C--), and block data holds user-allocated data.



Declarative Composition of Stack Frames 303

4a4@conts

12a4@data

16a4@data

(a)

12a8@spills

4 bytes
4a4@conts

20a8@conts

(b)

12a8@spills

4a4@conts

12a4@data

28a8@data

(c)

12a8@spills

4 bytes
4a4@conts

4 bytes

12a4@data

36a8@data

(d)

Fig. 3. Concatenation of memory blocks that form the private part of a frame. Notation
12a4@data means a block of size 12, aligned on a 4-byte boundary, at address data;
constraints are not shown. Padding (shaded) is required to preserve alignment. Padding
is sensitive to order; for example, composition (d) contains the same blocks as compo-
sition (c), yet is much larger.

3.1 Concatenation

We write concatenation using the infix operator ⊕; for example, we write the
concatenation of 12a4@data and 4a4@conts as 12a4@data ⊕ 4a4@conts, and
the second block begins where the first block ends (Fig. 3a). The address of the
concatenation is the address of the first block, so 12a4@data ⊕ 4a4@conts is
equivalent to 16a4@data with the constraint conts = data + 12. Because the
size of 12a4@data is 12, a multiple of 4, base address conts is guaranteed to be
4-byte aligned provided address data is 4-byte aligned.

When concatenating blocks, we may need padding to guarantee the align-
ment of the right-hand block. For example, 4a4@conts ⊕ 12a8@spills =
20a4@conts with constraint conts + 8 = spills, where 4 bytes of padding
are required (Fig. 3b). The padding makes spills − conts a multiple of 8.

As these examples show, proper alignment of a concatenation lo ⊕ hi guar-
antees proper alignment of lo and hi . The guarantee comes from two decisions:
the alignment of the concatenation is the least common multiple of the align-
ments of lo and hi , and the distance between the base of lo and the base of hi is
a multiple of the alignment of hi . The concatenation is therefore defined by the
following equations:

base(lo ⊕ hi) = base(lo)
size(lo ⊕ hi) = round up(size(lo), align(hi)) + size(hi)

align(lo ⊕ hi) = lcm(align(lo), align(hi))
constr(lo ⊕ hi) = constr(lo) ∪ constr(hi) ∪

{base(hi) = base(lo) + round up(size(lo), align(hi))}
round up(x, n) = n × �(x + n − 1)/n�



304 C. Lindig and N. Ramsey

Concatenation has one awkward property: When three or more blocks are
concatenated, padding can depend on the order of composition. In other words,
concatenation is not associative. For example, columns c and d of Fig. 3 show two
different compositions of the blocks 12a4@data, 4a4@conts, and 12a8@spills.
The composition (12a4@data ⊕ 4a4@conts) ⊕ 12a8@spills = 28a8@data,
with constraints data + 12 = conts and data + 16 = spills, and the com-
position 12a4@data ⊕ (4a4@conts ⊕ 12a8@spills) = 36a8@data, with con-
straints conts+8 = spills and data+16 = conts. The first composition needs
no padding, but the second needs 8 bytes. The reason is that the second compo-
sition uses a concatenation on the right: The alignment of the right-hand block
determines the padding, and a composite block has an alignment constraint at
least as large as the constraints of its constituents.

Luckily, the nonassociativity of concatenation presents no problems in prac-
tice. In our compiler, we specify frame layout using an operation that concate-
nates a list of blocks. This operation applies the binary operator ⊕ in a left-
associative way, which minimizes padding. Associativity is not an issue in cursor-
based stack allocation because there is no choice of order; padding is added on
demand for each slot, and the results are equivalent to our implementation.

3.2 Overlapping

When two blocks are never live at the same time, they can overlap, sharing
memory. When two overlapping blocks are of different sizes, it may be possible
to place the smaller block anywhere within the larger block, but in practice, the
smaller block is placed at the bottom of the larger block, so that the two base
addresses are equal. We call this operation overlap low. For completeness, we
also discuss the overlap high operation, in which the smaller block is placed at
the top of the larger block.

The most common use of the overlap-low operation is to create an argument-
build area, which holds arguments that are to be passed to a callee on the stack.
The area must be large enough to hold the arguments for the most complicated
call in the procedure’s body. Such an area can be created by allocating each call
site’s arguments into a different block, then overlapping all such blocks.

For example, on the Tru64 Unix platform the first six arguments are passed
in registers and later arguments on the stack. Let us assume a procedure body
with two call sites, where the first passes one argument on the stack, and the
second passes two arguments on the stack. Each argument is 64 bits, i.e., 8 bytes.
According to the ABI (Compaq, 2000), a region holding arguments must be 16-
byte aligned. Therefore, the first call reserves a block 8a16@out1, and the second
a block 16a16@out2. When the compiler later assembles the frame, it overlaps
these blocks at their low end and arrives at a 16a16@out1 block and constraint
out1 = out2.

Overlapping two blocks at their low ends is easy. The result is large enough
to hold either block and is aligned for both. The constraint specifies that both
blocks have the same base address.



Declarative Composition of Stack Frames 305

8a16@out1 16a16@out2 28a8@data 8a16@in

overlap
low

⊕

⊕

16a16@out1

out1 = out2

40a16@data
in = data + 32

56a16@out1

data = out1 + 16
8a16@in

4 bytes

8 bytes

8a16@out1

16a16@out2

56a16@out1

28a8@data

block from Fig. 3c

Fig. 4. Composition of four blocks into a frame: incoming arguments, private data
(from Fig. 3c), and two blocks for outgoing arguments. The left side shows the tree-
shaped construction, the right side the resulting block layout. Concatenation is denoted
by ⊕, overlapping at the low end by overlap low . Blocks 16a16@out1 and 16a16@out2

overlap such that they align on their lower end (higher addresses are towards the top
of the diagram). To guarantee the alignment of in, padding was added.

base(overlap low(x, y)) = base(x)
size(overlap low(x, y)) = max (size(x), size(y))

align(overlap low(x, y)) = lcm(align(x), align(y))
constr(overlap low(x, y)) = constr(x) ∪ constr(y) ∪ {base(x) = base(y)}

Surprisingly, overlapping blocks at their high ends is possible only if the
difference between the blocks’ sizes is a multiple of the smaller block’s alignment.
Otherwise, the smaller block cannot be placed at the high end of the larger
block while simultaneously maintaining proper alignment of both base addresses.
Padding cannot help: Padding the smaller block at the top would move it away
from the high end of the larger block, and padding the larger block at its base
would destroy its base alignment. The overlap high operator is therefore defined
only when its precondition is satisfied.

overlap high(x, y) = ⊥ if (size(y) − size(x)) mod align(x) �= 0
base(overlap high(x, y)) = base(y) if size(x) ≤ size(y)
base(overlap high(x, y)) = base(x) if size(x) > size(y)
size(overlap high(x, y)) = max (size(x), size(y))

align(overlap high(x, y)) = lcm(align(x), align(y))
constr(overlap high(x, y)) = constr(x) ∪ constr(y) ∪

{base(x) + size(x) = base(y) + size(y)}

The precondition on overlap high depends on both blocks, and the only easy
way to ensure that overlap high is possible is to pick a basic alignment (such



306 C. Lindig and N. Ramsey

〈Lua compiler configuration〉≡
function Alpha.layout["C"](dummy, proc)

local blocks = Stack.blocks(proc)
blocks.in = Block.overlap_low(64, blocks.youngblocks)
blocks.out = Block.overlap_low(64, blocks.oldblocks)
local layout = -- <-- high memory

{ blocks.in -- incoming arguments
, blocks.vfp -- virtual frame pointer
, blocks.spills -- temporaries
, blocks.conts -- continuations (for exceptions)
, blocks.data -- user-allocated data
, blocks.sp -- stack pointer
, blocks.out -- argument build
} -- <-- low memory

local block = Block.cat(64, layout)
block = Block.adjust(block) -- round up size to multiple of 16
Stack.freeze(proc, block) -- resolve addresses
return 1

end

Fig. 5. Lua procedure, from Quick C--, that defines the frame layout for the Tru64
Unix platform. Compare with Fig. 1.

as word size) for all blocks and to make sure every block’s size is a multiple of
that alignment. This restriction may explain why overlap high is rarely used in
conventional frame layouts.

4 Specification of Frame Layout

The block-composition operators described above suffice to create a specification
of frame layout that not only can be executed in the compiler but also can be
compared with a diagram found in an architecture-specific ABI manual. In the
Quick C-- compiler, this specification takes the form of a function written in the
embedded scripting language Lua (Ierusalimschy et al., 1996; Ramsey, 2004),
which does for Quick C-- what ELisp does for Emacs. As an example, Fig. 5
shows Lua procedure Alpha.layout, which composes the frame for the C calling
convention on the Alpha Tru64 Unix platform. This procedure is executed each
time the compiler lays out a stack frame. It lays out the frame using the table
blocks, which contains all the blocks for the procedure proc under translation.
The procedure begins composing the frame by overlapping all the blocks that
can share space. For example, list blocks.youngblocks holds a block for each
call site; each block reserves space for outgoing arguments passed on the stack.
Alpha.layout overlaps them at their low end to form the argument-build area
blocks.out. Similarly, blocks.oldblocks holds blocks for incoming arguments
and any results that are returned on the stack; these blocks are overlapped to
form blocks.in. The procedure then forms the list layout, which contains the



Declarative Composition of Stack Frames 307

blocks that represent the regions of the stack frame, in the order in which they
should be laid out. Regions blocks.vfp and blocks.sp are empty blocks whose
base addresses correspond to the virtual frame pointer and the stack pointer,
respectively. The concatenation is done by Block.cat, which repeatedly applies
concatenation operator ⊕, associating to the left.

Comparing Fig. 5 with the official specification in Fig. 1 reveals that the cor-
respondence between our implementation and the manual is close but not exact.
Our blocks.in and blocks.out correspond exactly to the incoming arguments
and argument-build area of Fig. 1. Similarly, our blocks.vfp and blocks.fp
correspond exactly to the pointers in Fig. 1. But our treatment of locals, tem-
poraries, and saved registers is different. Because our compiler works with a
nonstandard run-time system, we do not need to distinguish saved registers
from spilled temporaries. And because of the way our compiler does alloca-
tion, we find it convenient to distinguish two kinds of locals: blocks.data and
blocks.conts. These kinds of detailed differences would be very difficult to ex-
tract from a conventional implementation of frame layout. It is the ability to
compare the implementation directly with a picture that is missing in other
compilers. As a bonus, blocks make it trivial to change frame layout.

5 Implementation

An implementation can use blocks in many ways: one block per region, one
block per slot, or even one block per slot in some regions and one block per
region in other regions. Which arrangement is best depends on whether it is
necessary to control the order of slots in a region; for example, it might be
desirable to control the order in which callee-saves registers are stored. Different
arrangements require slight variations, but for concreteness we assume one block
per region, which is the arrangement used in our implementation.

Given one block per region, our compiler follows these steps:

1. For each region of the stack frame, a unique symbolic address is created.
2. Slots are allocated from various regions, in any order. Each region is given

a mutable data structure that remembers alignment and uses an internal
cursor to allocate from that region only. A slot’s address is a function of the
region’s cursor and symbolic address. The address is then used to generate
intermediate code.

3. When allocation is complete, each region (or each slot) is identified with
a fresh, unconstrained block. The block is given the symbolic address of its
region. The block’s size and alignment come from the region’s internal cursor
and remembered alignment, and the block has no constraints.

4. If a stack pointer or frame pointer points to a particular location in the
frame, an empty block is created to represent that location.

5. Using concatenation and overlapping operators, blocks are composed to form
a single block, which represents the frame. This step is shown in Fig. 5.

6. The frame’s constraints are solved, and the solution provides the value of
each symbolic address. If any block composition was illegal, the problem
shows up here as unsolvable constraints.



308 C. Lindig and N. Ramsey

7. The value of each symbolic address is substituted in the intermediate code.
This step and the previous step are performed in Fig. 5 by Stack.freeze.

Most of the implementation details are straightforward; for example, the imple-
mentation of blocks follows directly from the equations in Sect. 3, and it takes
less than 100 lines of code. But a few details are worth discussing here.

Our compiler bases stack addresses on a virtual frame pointer, written vfp,
so when we create a region, we know its address has the form vfp + k, but
we don’t know k. We therefore give a new block the symbolic address vfp + v,
where v is a fresh late compile-time constant. A late compile-time constant is
an integer whose value is not known until late in compilation. When created, it
is represented by a string, and when the frame layout is known, that string is
replaced by the integer for which it stands.

There is one exception to the rule that each block has a symbolic address of
the form vfp + v. The empty block that represents the location of the virtual
frame pointer has the symbolic address vfp. This block appears in Fig. 5 as
blocks.vfp.

When n blocks are composed to form the stack frame, it requires n−1 block-
composition operations. As shown in Sect. 3, each operation adds one equation
to the set of constraints on a block. And because one block has the symbolic
address vfp and each of the other n − 1 blocks has a symbolic address of the
form vfp+v, the vfps cancel and we wind up with a system of n−1 equations in
n− 1 unknowns. These equations are solved using an iterative algorithm similar
to those presented by Knuth (1986§585) and Ramsey (1996). Experiments show
that this algorithm is efficient in practice.

We have considered two extensions to the simple picture presented above.
In the first extension, a stack pointer is used as well as a frame pointer, and
some blocks addresses have the form sp+k while others have the form fp+k. If
the stack pointer moves, perhaps because the compiler supports alloca(), this
arrangement amounts to solving two independent systems of equations. But if
the stack pointer does not move, so the frame has a fixed size, this arrangement
requires an extra equation fp − sp = vframe , where vframe is a late compile-
time constant that stands for the frame size. When the equations are solved, the
solution for vframe gives the actual frame size.

The other extension we have considered is to minimize frame size by using
register-allocation techniques to manage slots. In this extension, each slot gets
its own block, and the compiler must compute an interference graph for these
blocks. It can then color the graph and overlap blocks that share the same color.

6 When Things Go Wrong

Not every block composition yields a useful frame layout. Potential errors include

1. Concatenating a block with itself, directly or indirectly, which may produce
an unsolvable constraint on the address of that block



Declarative Composition of Stack Frames 309

2. Providing no block with a known address, so there are more unknowns than
equations

3. Providing two blocks with known, inconsistent addresses, so there are more
equations than unknowns

4. Using a single late compile-time constant in multiple blocks, so there are
more equations than unknowns

Each of these errors manifests as failure in the equation solver, and it can be hard
to track such an error to its source. Because solvability is a global property of
the whole composition, it is hard to detect violations early. Our most important
debugging aid is a routine that prints blocks and their equations. Such printouts
have helped us debug frame layouts quickly. It also helps to choose good names
for late compile-time constants.

Errors are detected at compile time, when the compiler actually lays out a
frame for a procedure. Frame layout is therefore not guaranteed to be successful.
But if the compiler lays out one frame successfully, it is extremely likely to lay
out all frames successfully. The reason is that if a composition is unsolvable
in general, it is unsolvable for almost all block sizes. (The “almost” is because
certain incorrect compositions, such as concatenating a block with itself, may be
solvable for one block size, such as zero.) To effectively eliminate the possibility
of a compile-time error in frame layout, then, one could test layout with random
block sizes. In practice, such testing appears to be unnecessary.

7 Related Work

Other compilers lay out stack frames using either a cursor or a mix of
heterogenous abstractions. For example, the lcc C compiler uses a cursor
(Fraser and Hanson, 1995). It allocates memory linearly, so the offset of each
slot is known when the slot is allocated. When lcc leaves a local scope or a call
site, it rolls back the cursor so the relevant slots can be reused. Therefore, when
lcc compiles a function with multiple call sites, the slots used to pass arguments
share stack space: The “argument-build area” is large enough to hold arguments
passed at any call site. lcc tracks the size by using a “high-water mark” to
hold the maximum value of the cursor. lcc’s correctness depends on executing
allocations and rollbacks in exactly the right order. By contrast, blocks make
correct layout independent of the order of allocation.

The GNU C compiler (gcc) defines virtual hardware registers that address
arguments and private data in the frame; these registers are replaced late in com-
pilation by a constant offset from either the frame pointer or the stack pointer,
depending on the target (FSF, 2003). When a virtual register points to private
data, that space is represented by a type temp_slot defined in function.c.
Values of type temp_slot can be allocated and freed; adjacent freed slots are
combined to avoid fragmentation. When a virtual register points to arguments,
that space is allocated using a cursor implemented in calls.c. Module calls.c
also maintains a bitmap for allocated memory and high/low marks to implement
overlapping similar to lcc.



310 C. Lindig and N. Ramsey

gcc’s virtual hardware registers and their substitution achieve the same ef-
fect as late compile-time constants: They free the compiler from order constraints
imposed by the frame layout. Joining adjacent temp_slot values resembles con-
catenation in our representation. But it is only defined for a part of the frame
that holds temporaries; other parts are maintained by a different module with
different mechanisms. By using a single, uniform representation (blocks), we
make it possible to define and change frame layout in one central place (Fig. 5).

8 Conclusions

A compiler should not be required to allocate stack slots in the linear order
demanded by a frame layout. For laying out an entire stack frame, therefore,
using a cursor is inferior to using blocks, which enable a compiler to allocate
stack slots in any order. But when order of slots within a region does not matter,
it is very convenient to use a cursor in each region.

Defining the layout of a block by composing blocks with cat and overlap is
declarative—it requires the user only to define the size and alignment of simple
blocks. The layout of any intermediate block is automatically deduced. The block
abstraction is conceptually close to layout specifications and diagrams as they
used in architecture manuals (Compaq, 2000, Chapter 6; Intel, 2003, Chapter 6),
and block layouts can be centralized and lifted from the compiler’s innards to
its surface, as shown in Fig. 5. Giving a user control over the layout of frames
makes it easier to do experiments such as specializing calling conventions for
optimized performance (Davidson and Whalley, 1991) or changing stack layout
to combat buffer overruns that overwrite return addresses (Cowan et al., 1998).

Overlapping blocks at their high end is a dubious concept. It appears to be
a natural dual to overlapping at the low end, but it is not possible in general.
Small wonder that typical C calling conventions, such as IA-32, IA-64, MIPS,
PowerPC, and Tru64 Unix, use overlap-low exclusively. Overlap-low is a natural
fit for conventions in which the stack grows downward and later arguments are
passed at higher addresses.

Blocks perform as well as other approaches. Stack layouts are, if not the
same, equivalent in cost to layouts produced by other approaches. Compile-time
costs are negligible. Constraint solving may sound scary, but the constraints
are simply linear equations; indeed, a compiler that optimizes array access may
already contain a suitable solver.

The only potential drawback of blocks is in debugging: It can be awkward
to debug a bad system of equations instead of debugging frame layout directly.
But the awkwardness fades after a little experience, and with the aid of the tools
described in Sect. 6 we have had little difficulty debugging frame layouts. And
we have no reason to believe that distributed allocation, with layout dependent
on order, is any easier to debug.

In a retargetable compiler, which requires slight variations in layout for dif-
ferent platforms, blocks have made it easy for us to visualize, understand, and
implement these variations. Because layout is centralized, it is easy to implement



Declarative Composition of Stack Frames 311

a new layout using the traditional method of copying and modifying an existing
one. Overall, using blocks has made it significantly easier to deal with calling
conventions.

Acknowledgements. This work has been supported by NSF grants CCR-
0096069 and ITR-0325460 and by a gift from Microsoft Research. Lex Stein,
Stephan Neuhaus, Wolfram Amme, Andreas Rossberg, Andreas Zeller, and the
319 writing group provided helpful comments on drafts of the manuscript.

References

Andrew W. Appel. Compiling with Continuations. Cambridge University Press, Cam-
bridge, 1992.

Compaq. Tru64 Unix – Assembly Language Programmer’s Guide. Compaq Computer
Corporation, 2000.

Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. StackGuard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In Proceedings of the
7th USENIX Security Symposium (SECURITY-98), pages 63–78, Berkeley, 1998.
Usenix Association.

Jack W. Davidson and David B. Whalley. Methods for saving and restoring register
values across function calls. Software — Practice and Experience, 21(2):149–165,
1991.

Chris W. Fraser and David R. Hanson. A Retargetable C Compiler: Design and Im-
plementation. Benjamin/Cummings Pub. Co., Redwood City, CA, USA, 1995.

FSF. GCC Internals Manual. Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA, 2003. Corresponds to GCC 3.4.

Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes Filho. Lua
— an extensible extension language. Software — Practice and Experience, 26(6):
635–652, 1996.

Intel. IA-32 Intel Architecture Software Developers’s Manual, Vol. 1. Intel Corpora-
tion., P.O. Box 7641, Mt. Prospect, IL 60056, 2003.

Donald Ervin Knuth. METAFONT: The program, volume D of Computers & Typeset-
ting. Addison-Wesley, Reading, MA, USA, 1986.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The Objective Caml System 3.06: Documentation and User’s Manual. INRIA, 2002.
Available from http://caml.inria.fr.

Reuben Olinsky, Christian Lindig, and Norman Ramsey. Staged allocation: Engineering
the specification and implementation of procedure calling conventions. Technical
Report TR-02-04, Division of Engineering and Applied Sciences, Harvard University,
2004.

Norman Ramsey. A simple solver for linear equations containing nonlinear operators.
Software — Practice and Experience, 26(4):467–487, 1996.

Norman Ramsey. Embedding an interpreted language using higher-order functions and
types. Journal of Functional Programming, 2004. To appear. Preliminary version ap-
peared on pages 6–14 of Proceedings of the ACM Workshop on Interpreters, Virtual
Machines, and Emulators, June 2003.

http://caml.inria.fr


312 C. Lindig and N. Ramsey

Norman Ramsey and Simon L. Peyton Jones. A single intermediate language that
supports multiple implementations of exceptions. Proceedings of the ACM SIG-
PLAN ’00 Conference on Programming Language Design and Implementation, in
SIGPLAN Notices, 35(5):285–298, 2000.


	Introduction
	Background
	Blocks and Block Composition
	Concatenation
	Overlapping

	Specification of Frame Layout
	Implementation
	When Things Go Wrong
	Related Work
	Conclusions



