
Sound and Decidable Type Inference for
Functional Dependencies

Gregory J. Duck1, Simon Peyton-Jones2, Peter J. Stuckey1, and
Martin Sulzmann3

1 Department of Computer Science and Software Engineering
The University of Melbourne, Vic. 3010, Australia

{gjd,pjs}@cs.mu.oz.au
2 Microsoft Research Ltd

7 JJ Thomson Avenue, Cambridge CB3 0FB, England
simonpj@microsoft.com

3 School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543

sulzmann@comp.nus.edu.sg

Abstract. Functional dependencies are a popular and useful exten-
sion to Haskell style type classes. In this paper, we give a reformula-
tion of functional dependencies in terms of Constraint Handling Rules
(CHRs). In previous work, CHRs have been employed for describing
user-programmable type extensions in the context of Haskell style type
classes. Here, we make use of CHRs to provide for the first time a con-
cise result that under some sufficient conditions, functional dependencies
allow for sound and decidable type inference. The sufficient conditions
imposed on functional dependencies can be very limiting. We show how
to safely relax these conditions.

1 Introduction

Functional dependencies, introduced by Mark Jones [Jon00], have proved to
be a very attractive extension to multi-parameter type classes in Haskell. For
example, consider a class intended to describe a collection of type c containing
values of type e:

class Coll c e | c -> e where
empty :: c
insert :: c -> e -> c
member :: c -> e -> Bool

The part “| c->e” is a functional dependency, and indicates that fixing the
collection type c should fix the element type e. These functional dependencies
have proved very useful, because they allow the programmer to control the type
inference process more precisely. We elaborate in Section 2.

The purpose of this paper is to explore and consolidate the design space of
functional dependencies (FDs). The main tool we use in this exploration is the
reformulation of FDs in terms of Constraint Handling Rules (CHRs) [Frü95,
SS02], an idea that we review in Section 3. This reformulation allows us to make
several new contributions:

D.A. Schmidt (Ed.): ESOP 2004, LNCS 2986, pp. 49–63, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



50 G.J. Duck et al.

– Despite their popularity, functional dependencies have never been formalised,
so far as we know. CHRs give us a language in which to explain more precisely
what functional dependencies are. In particular, we are able to make the so-
called “improvement rules” implied by FDs explicit in terms of CHRs.

– Based on this understanding, we provide the first concise proof that the re-
strictions imposed by Jones on functional dependencies [Jon00] ensure sound
and decidable type inference (Section 3).

– Jones’s restrictions can be very limiting. We propose several useful extensions
(Section 4) such as more liberal FDs (Section 4.1). We establish some concise
conditions under which liberal FDs are sound.

Throughout, we provide various examples to support the usefulness of our im-
provement strategies. Related work is discussed in Section 5. We conclude in
Section 6.

We refer the interested reader to [DPJSS03] for proofs and additional mate-
rial.

2 Background: Functional Dependencies in Haskell

We begin by reviewing functional dependencies, as introduced by Jones [Jon00],
assuming some basic familiarity with Haskell-style type classes.

Example 1. Recall the collection class

class Coll c e | c -> e where
empty :: c
insert :: c -> e -> c
member :: c -> e -> Bool

plus the following

instance Eq a => Coll [a] a where ...
ins2 xs a b = insert (insert xs a) b

Consider the function ins2. In the absence of functional dependencies, type
inference would give

ins2 :: (Coll c e1, Coll c e2) => c -> e1 -> e2 -> c

which is of course not what we want: we expect a and b to have the same type.
The functional dependency c->e expresses the idea that the collection type c
fixes the element type e, and hence that e1 and e2 must be the same type. In
such a situation, we commonly say that types are “improved” [Jon95].

Functional dependencies are useful in many different contexts. Here are some
representative examples.

Example 2. Consider the following class for representing state monads and two
instances



Sound and Decidable Type Inference for Functional Dependencies 51

class SM m r | m->r, r->m where
new :: a -> m (r a)
read :: r a -> m a
write :: r a -> a -> m ()

instance SM IO IORef where
new = newIORef
read = readIORef
write = writeIORef

instance SM (ST s) (STRef s) where
new = newSTRef
read = readSTRef
write = writeSTRef

The part “| m->r, r->m” gives two functional dependencies, and indicates that
fixing the monad type m should fix the reference type r as well, and vice versa.
Now consider the code

f x = do { r <- new x; print "Hello"; return r }

The call to print, whose type is String -> IO (), makes it clear that f is
in the IO monad, and hence, by the functional dependency, that r must be an
IORef. So we infer the type

f :: a -> IO (IORef a)

From this example we can see the main purpose of functional dependencies: they
allow the programmer to place stronger conditions on the set of constraints gen-
erated during type inference, and thus allow more accurate types to be inferred.
In their absence, we would infer the type

f :: (SM IO r) => IO (r a)

which is needlessly general. In other situations, ambiguity would be reported.
For example:

g :: a -> IO a
g x = do { r <- new x ; read r }

Without functional dependencies, the type system cannot work out which refer-
ence type to use, and so reports an ambiguous use of new and read.

Example 3. Consider the following application allowing for (overloaded) multi-
plication among base types such as Int and Float and user-definable types such
as vectors. For simplicity, we omit the obvious function bodies.

class Mul a b c | a b -> c where
(*)::a->b->c

instance Mul Int Int Int where ...
instance Mul Int Float Float where ...
type Vec b = [b]
instance Mul a b c => Mul a (Vec b) (Vec c) where ...



52 G.J. Duck et al.

The point here is that the argument types of (*) determine its result type. In
the absence of this knowledge an expression such as (a*b)*c cannot be typed,
because the type of the intermediate result, (a*b), is not determined. The type
checker would report type ambiguity, just as it does when faced with the classic
example of ambiguity, (read (show x)).

Example 4. Here is an another useful application of FDs to encode a family of
zip functions.

zip2 :: [a]->[b]->[(a,b)]
zip2 (a:as) (b:bs) = (a,b) : (zip2 as bs)
zip2 _ _ = []

class Zip a b c | a c -> b, b c -> a where
zip :: [a] -> [b] -> c

instance Zip a b [(a,b)] where
zip = zip2

instance Zip (a,b) c e => Zip a b ([c]->e) where
zip as bs cs = zip (zip2 as bs) cs

These definitions make zip into an n-ary function. For example, we may write

e1 :: (Bool,Char)
e1 = head (zip [True,False] [’a’,’b’,’c’])
e2 :: ((Bool,Char),Int)
e2 = head (zip [True,False] [’a’,’b’,’c’] [1::Int,2])

2.1 Functional Dependencies Are Tricky

As we have seen, functional dependencies allow the programmer to exert control
over the type inference process. However, used uncritically, this additional control
can have unexpected consequences. Specifically: they may lead to inconsistency,
whereby the type inference engine deduces nonsense such as Int = Bool; and
they may lead to non-termination, whereby the type inference engine goes into
an infinite loop. We illustrate each of these difficulties with an example.

Example 5. Suppose we add instance Mul Int Float Int to Example 3. That
is, we have the following declarations:

class Mul a b c | a b -> c
instance Mul Int Float Float -- (I1)
instance Mul Int Float Int -- (I2)

Note that the first two parameters are meant to uniquely determine the third
parameter. In case type inference encounters Mul Int Float a we can either
argue that a=Int because of instance declaration (I2). However, declaration
(I1) would imply a=Float. These two answers are inconsistent, so allowing
both (I1) and (I2) makes the whole program inconsistent, which endangers
soundness of type inference.



Sound and Decidable Type Inference for Functional Dependencies 53

Example 6. Assume we add the following function to the classes and instances
in Example 3.

f b x y = if b then (*) x [y] else y

The program text gives rise to the constraint Mul a (Vec b) b. The improve-
ment rules connected to instance Mul a b c => Mul a (Vec b) (Vec c) im-
ply that b=Vec c for some c; applying this substitution gives the constraint Mul
a (Vec (Vec c)) (Vec c). But this constraint can be simplified using the in-
stance declaration, giving rise to the simpler constraint Mul a (Vec c) c. Un-
fortunately, now the entire chain of reasoning simply repeats! We find that type
inference becomes suddenly non-terminating. Note that the instances (without
the functional dependency) are terminating.

The bottom line is this. We want type inference to be sound and decidable.
Functional dependencies threaten this happy situation. The obvious solution
is to place restrictions on how functional dependencies are used, so that type
inference remains well-behaved, and that is what we discuss next.

2.2 Jones’s Functional Dependency Restrictions

We assume that fv(t) takes a syntactic term t and returns the set of free variables
in t. A substitution θ = [t1/a1, . . . , tn/an] simultaneously replaces each ai by its
corresponding ti.

In Jones’s original paper [Jon00], the following restrictions are imposed on
functional dependencies.

Definition 1 (Haskell-FD Restrictions). Consider a class declaration

class C => TC a1 ... an | fd1, ..., fdm

where the ai are type variables and C is the class context consisting of a (possibly
empty) set of type class constraints. Each fdi is a functional dependency of the
form1 ai1 , ..., aik

-> ai0 where {i0, i1, ..., ik} ⊆ {1...n}. We commonly refer to
ai1 , ..., aik

as the domain and ai0 as the range.
The following conditions must hold for functional dependency fdi:

Consistency. Consider every pair of instance declarations

instance ... => TC t1 ... tn
instance ... => TC s1 ... sn

for a particular type class TC. Then, for any substitution φ such that

φ(ti1 , ..., tik
) = φ(si1 , ..., sik

)

we must have that φ(ti0) = φ(si0).
1 Haskell systems that allow functional dependencies usually allow dependencies of

the form a -> b c, with multiple type variables to the right of the arrow. But this
is equivalent to the form a -> b, a -> c, so in the rest of the paper we only deal
with the case where there is a single type variable to the right of the arrow.



54 G.J. Duck et al.

Termination. For each instance ... => TC t1 ... tn we must have that

fv(ti0) ⊆ fv(ti1 , . . . , tik
)

The first of these conditions rules out inconsistent instance declarations (see
Example 5); and it turns out that the second ensures termination, although the
informal argument in Jones’s original paper does not mention termination as
an issue. In particular, the second restriction makes illegal the recursive Vec
instance in Example 3 (since fv(c) �⊆ fv(a, b)), and hence prevents the divergence
of Example 6.

To the best of our knowledge, no one has proved that the restrictions given
above ensure sound and decidable type inference. We do so, for the first time,
in Section 3.

While these two restrictions make the system well-behaved, it is natural to
ask whether either condition could be weakened. The consistency condition seems
entirely reasonable, but we have seen many examples in which the termination
restriction excludes entirely reasonable and useful programs. Besides Examples 3
(which appears in Jones’s original paper) and 4, there are a number of other
examples in the literature which break the termination condition [Kar03,WW03,
CK03]. In Section 4.1, we propose a more liberal form of FDs which allows for
breaking the termination condition under some additional conditions.

3 Functional Dependencies Expressed Using CHRs

In this section we explain how to translate functional dependencies into a lower-
level notation, called Constraint Handling Rules (CHRs) [Frü98]. This transla-
tion has two benefits: it allows us to give a more precise account of exactly what
functional dependencies mean; and it allows us to formally verify that Jones’s
conditions are sufficient to ensure sound and decidable type inference.

Example 7. Let us return to the collection example:

class Coll c e | c -> e where
empty :: c
insert :: c -> e -> c
member :: c -> e -> Bool

class Eq a => Ord a where
(>=) :: a -> a -> Bool

instance Ord a => Coll [a] a where ...

From the functional dependency c->e we generate the two improvement rules
which we shall express using the following CHRs:

rule Coll c e1, Coll c e2 ==> e1=e2
rule Coll [a] b ==> a=b

Informally, the first rule says that if the two constraints (Coll c e1) and
(Coll c e2) both hold, then it must be that e1 and e2 are the same type. This



Sound and Decidable Type Inference for Functional Dependencies 55

rule is generated from the class declaration alone, and expresses the idea that c
uniquely determines e. The second rule is generated from the instance declara-
tion, together with the functional dependency, and states that if (Coll [a] b)
holds, then it follows that a = b. During type inference, the inference engine is
required to solve sets of constraints, and it can apply these improvement rules
to narrow its choices.

These CHRs have one or more type-class constraints on the left hand side,
and one or more equality constraints on the right. The logical interpretation
of ==> is implication. Its operational interpretation — that is, its effect on the
type inference process — is this: when the type inference engine sees constraints
matching the left hand side, it adds the constraints found on the right-hand side.

Superclass relations also generate CHR rules. The superclass relationship
class Eq a => Ord a where... generates the CHR

rule Ord a ==> Eq a

Informally, the rule states that if the constraint Ord a holds then also the con-
straint Eq a holds. During typing this rule is used to check that all superclass
constraints are also satisfied.

The instance declaration above also generates the following CHR rule, which
allows us to simplify sets of constraints to remove class constraints which are
known to hold.

rule Coll [a] a <==> Ord a

Informally, the rule states that the constraint Coll [a] a holds if and only if
Ord a holds. The logical interpretation of the <==> is bi-implication, while the
operational interpretation is to replace the constraints on the left hand side by
those on the right hand side.

Although not relevant to the content of this paper, the rule generated from
the instance is also intimately connected to the evidence translation for the
program above, we refer readers to [SS02] for more details.

3.1 Translation to CHRs

Formalising the translation given above, class and instance declarations are
translated into CHRs as follows:

Definition 2 (CHR Translation). Consider a class declaration

class C => TC a1 ... an | fd1, ..., fdm

where the ai are type variables and each functional dependency fdi is of the form
ai1 , ..., aik

-> ai0 , where {i0, i1, ..., ik} ⊆ {1...n}. From the class declaration we
generate the following CHRs:

Class CHR: rule TC a1 . . . an ==> C
Functional dependency CHR: for each functional dependency fdi in the
class declaration, we generate

rule TC a1 . . . an, TC θ(b1) . . . θ(bn) ==> ai0 = bi0
where θ(bij ) = aij , j > 0 and θ(bl) = bl if ¬∃j.l = ij.



56 G.J. Duck et al.

In addition, for each instance declaration of the form

instance C => TC t1 . . . tn

we generate the following CHRs:

Instance CHR: rule TC t1 . . . tn <==> C. In case the context C is empty,
we introduce the always-satisfiable constraint True on the right-hand side of
generated CHRs.
Instance improvement CHR: for each functional dependency fdi in the
class declaration,

rule TC θ(b1) . . . θ(bn) ==> ti0 = bi0
where θ(bij

) = tij
, j > 0 and θ(bl) = bl if ¬∃j.l = ij.

If p is a set of class and instance declarations, we define Simp(p) to be the
set of all instance CHRs generated from p; and Prop(p) to be the set of all class,
functional-dependency and instance-improvement CHRs generated from p2. We
define Propclass(p) to be the set of all class CHRs in Prop(p), and similarly
Propinst(p) to be the set of all instance improvement CHRs in Prop(p),

The class and instance CHRs, Propclass(p) ∪ Simp(p), are standard Haskell,
while the functional-dependency and instance-improvement CHRs arise from
the functional-dependency extension to Haskell.

For convenience, in the case where the functional dependency
ai1 , ..., aik

-> ai0 imposed on TC is full, that is, when k = n − 1, we are
able to combine the instance improvement and instance rule into one rule.
In such a situation, for each instance C => TC t1 . . . tn and full func-
tional dependency ai1 , ..., aik

-> ai0 we generate the following CHR: rule TC
θ(b1) . . . θ(bn) <==> ti0 = bi0, C where θ(bij ) = tij , j > 0 and θ(bl) = bl if
¬∃j.l = ij .

By having a uniform description of (super) class and instance relations and
FDs in terms of CHRs, we can establish some important criteria (in terms of
CHRs) under which type inference is sound and decidable.

3.2 Main Result

The translation to CHRs allows us to phrase the entire type inference process as
CHR solving. We know from earlier work that if a set of CHRs is (a) confluent,
(b) terminating, and (c) range-restricted (all terms that we explain shortly) we
achieve type inference that is sound (all answers are correct), complete (if there
is an answer then type inference will provide us with an answer), and decidable
(the type inference engine always terminates) [SS02].

Then our main result is as follows:

Theorem 1 (Soundness and Decidability). Let p be a set of Haskell class
and instance declarations which satisfies the Haskell-FD restrictions (see Defi-
nition 1). Let Simp(p) and Prop(p) be the sets of CHRs defined by Definition 2.
If the set Propclass(p) ∪ Simp(p) of CHRs is confluent, terminating and range-
restricted then Simp(p)∪Prop(p) is confluent, terminating and range-restricted.
2 “Simp” is short for “simplification rule” and “Prop” for “propagation rule”, termi-

nology that comes from the CHR literature.



Sound and Decidable Type Inference for Functional Dependencies 57

The design of Haskell 98 ensures that the CHRs Propclass(p) ∪ Simp(p), which
represent the Haskell type system with no FD extension, are indeed confluent,
terminating and range-restricted. Hence, our theorem says that provide the FDs
satisfy the Jones restrictions, then type inference is sound and decidable.

To explain this result we need to say what we mean for a set of CHRs to be
confluent, terminating, and range restricted.

Confluence. Recall Example 5 whose translation to CHRs is as follows (note
that the functional dependency is fully imposed).

rule Mul a b c, Mul a b d ==> c=d -- (M1)
rule Mul Int Float c <==> c=Float -- (M2)
rule Mul Int Float c <==> c=Int -- (M3)

We find two contradicting CHR derivations. We write C �R D to denote the
CHR derivation which applies rule (R) to constraint store C yielding store D.
E.g. consider Mul Int F loat c �M2 c = Float and Mul Int F loat c �M3 c =
Int. The problem with the code of Example 5 manifests itself in the CHR rules
as non-confluence. That is there are two possible sequences of applying rules,
that lead to different results. Just considering the rules as logical statements,
the entire system is unsatisfiable; that is, there are no models which satisfy the
above set of rules.

Non-confluence also arises in case of “overlapping” instances. Assume we add
the following declaration to the code of Example 7.

instance Eq a ==> Coll [a] a where

In case type inference encounters Coll [t] t we can either reduce this con-
straint to Ord t (by making use of the original instance) or Eq t (by making
use of the above instance). However, both derivations are non-joinable. In fact,
a common assumption is that instances must be non-overlapping, in which case
non-confluence only occurs due to “invalid” FDs.

We note that the consistency condition alone is not sufficient to guarantee
confluence (assuming that instances and super classes are already confluent of
course).
Example 8. The following code fragment forms part of a type-directed evaluator.
data Nil = Nil
data Cons a b = Cons a b
data ExpAbs x a = ExpAbs x a
-- env represents environment, exp expression
-- and t is the type of the resulting value
class Eval env exp t | env exp -> t where

eval :: env->exp->t
instance Eval (Cons (x,v1) env) exp v2

=> Eval env (ExpAbs x exp) (v1->v2) where
eval env (ExpAbs x exp) = \v -> eval (Cons (x,v) env) exp

The translation to CHRs yields

rule Eval env exp t1, Eval env exp t2 ==> t1=t2 -- (E1)
rule Eval env (ExpAbs x exp) v <==>

v=(v1->v2), Eval (Cons (x,v1) env) exp v2 -- (E2)



58 G.J. Duck et al.

Note that the termination condition is violated but the consistency condition is
trivially fulfilled (there is only one instance). However, we find that CHRs are
terminating but non-confluent. E.g. we find that (applying (E2) twice)

Eval env (ExpAbs x exp) t1, Eval env (ExpAbs x exp) t2
�∗ t1 = v1 → v2, Eval (Cons (x, v1) env) exp v2,

t2 = v3 → v4, Eval (Cons (x, v3) env) exp v4

Note that rule (E1) cannot be applied on constraints in the final store. But there
is also another non-joinable derivation (applying rule (E1) then (E2))

Eval env (ExpAbs x exp) t1, Eval env (ExpAbs x exp) t2
�∗ t1 = t2, t1 = v5 → v6, Eval (Cons (x, v5) env) exp v6

So the “termination condition” is perhaps mis-named; in this example, its vio-
lation leads to non-confluence rather than non-termination.

Termination. Recall Example 3. The translation to CHRs yields (among oth-
ers) the following.

rule Mul a (Vec b) d <==> d=Vec c, Mul a b c -- (M4)

The program text in Example 6 gives rise to Mul a (Vec b) b. We find that

Mul a (V ec b) b
�M4 Mul a (V ec c) c, c = V ec b
�M4 Mul a (V ec d) d, d = V ec c, c = V ec b
. . .

That is, the CHR derivation, and hence type inference, is non-terminating. The
important point here is that non-termination was introduced through the FD.

For the purpose of this paper, we generally assume that instance CHRs are
terminating. There exists some sufficient criteria to ensure that instance CHRs
are terminating, e.g. consider [Pey99]. Clearly, we can possibly identify further
classes of terminating instance CHRs which we plan to pursue in future work.
Note that, when a set of CHRs are terminating, we can easily test for confluence
by checking that all “critical pairs” are joinable [Abd97].

Range restriction. Range-restrictedness is the third condition we impose on
CHRs. We say a CHR is range-restricted iff grounding all variables on the left-
hand side of a CHR, grounds all variables on the right-hand side.

Example 9. Consider

class C a b c
class D a b
instance C a b c => D [a] [b]

Our translation to CHRs yields

rule D [a] [b] <==> C a b c -- (D1)



Sound and Decidable Type Inference for Functional Dependencies 59

Note that rule (D1) is not range-restricted. After grounding the left-hand side,
we still find non-ground variable c on the right-hand side. Range-restrictedness
ensures that no unconstrained variables are introduced during a derivation and
is a necessary condition for complete type inference. We refer readers to [SS02]
for more details.

4 Extensions

In turn we discuss several extensions and variations of functional dependencies.

4.1 More Liberal Functional Dependencies

Earlier in the paper we argued that, while Jones’s consistency condition is rea-
sonable, the termination condition is more onerous than necessary, because it
excludes reasonable and useful programs (Section 2.2). In this section we sug-
gest replacing the termination restriction with the following weaker one, with
the goal of making these useful programs legal.

Definition 3 (Liberal-FD). Consider a class declaration

class C => TC a1 ... an | fd1, ..., fdm

where the ai are type variables and C is the class context consisting of a (possibly
empty) set of type class constraints. Each fdi is a functional dependency of the
form ai1 , ..., aik

-> ai0 where {i0, i1, ..., ik} ⊆ {1...n}.
In addition to the consistency condition (see Definition 1), the following con-

dition must hold for more liberal functional dependency fdi:

Context Consistency. For each instance C => TC t1 ... tn we must have that
fv(ti0) ⊆ closure(C, fv(ti1, . . . , tik)) where

closure(C, vs) =
⋃
TC t1 . . . tn ∈ C
TC a1 . . . an | ai1 , ..., aik

-> ai0

{fv(ti0) | fv(ti1 , . . . , tik
) ⊆ vs}

The basic idea of the context consistency condition is that the variables in the
range are captured by some FDs imposed on type classes present in the context.
Note that although the context consistency condition resembles a more “lib-
eral” version of the termination condition, context consistency does not prevent
non-termination. Example 3 satisfies both of the above conditions, however, re-
sulting CHRs are non-terminating. More precisely, adding the improvement rules
Prop(p) to a terminating set Simp(p) of instance CHRs yields a non-terminating
set Simp(p)∪Prop(p). Hence, for the following result to hold we need to assume
that CHRs are terminating.

Theorem 2 (More Liberal FDs Soundness). Let p be a set of Haskell
class and instance declarations which satisfies the Liberal-FD restrictions. Let
Simp(p) and Prop(p) be defined by Definition 2. If the set Simp(p)∪Prop(p)class

is confluent and range-restricted and Simp(p) ∪ Prop(p) is terminating, then
Simp(p) ∪ Prop(p) is confluent and range-restricted.



60 G.J. Duck et al.

Note that Example 4 also satisfies the more liberal FD conditions. According
to Definition 2 we generate the following improvement rules. Note that the func-
tional dependency imposed is full. For simplicity, we only focus on improvement
rules.

rule Zip a b c, Zip a d c ==> b=d -- (Z1)
rule Zip a b c, Zip d b c ==> a=d -- (Z2)
rule Zip a d [(a,b)] ==> d=b -- (Z3)
rule Zip d b [(a,b)] ==> d=a -- (Z4)
rule Zip a d ([c]->e) ==> d=b -- (Z5)
rule Zip d b ([c]->e) ==> d=a -- (Z6)

Rules (Z5) and (Z6) are generated from the second instance. Note that both
rules introduce some new variables since we violate the termination condition.
However, both rules are harmless. Effectively, we can replace them by

rule Zip a d ([c]->e) ==> True -- (Z5’)
rule Zip d b ([c]->e) ==> True -- (Z6’)

which makes them trivial. Hence, we can omit them altogether. We observe that
we can “safely” violate the termination condition (without breaking termination)
in case the improvement rules generated are trivial, i.e. the right-hand side of
CHRs can be replaced by the always true constraint. This is always the case if
the range component of an instance is a variable.

4.2 Stronger Improvement

There are situations where FDs do not enforce sufficient improvement. Note that
the inferred types of e1 and e2 in Example 4 are

e1 :: Zip Bool Char [a] => a
e2 :: Zip (Bool,Char) Int [a] => a

rather than

e1 :: (Bool,Char)
e2 :: ((Bool,Char),Int)

For example rule (Z3) states that only if we see Zip a d [(a,b)] we can improve
d by b. However, in case of e1 we see Zip Bool Char [a], and we would like to
improve a to (Bool,Char). Indeed, in this context it is “safe” to replace rules
(Z3) and (Z4) by

rule Zip a b [c] ==> c=(a,b) -- (Z34)

which imposes stronger improvement to achieve the desired typing of e1 and
e2. Note that rule (Z34) respects the consistency and termination conditions
(assuming we enforce these conditions for user-provided improvement rules).
Hence, we retain confluence and termination of CHRs.

Of course, if a user-provided improvement violates any of the sufficient con-
ditions, it is the user’s responsibility to ensure that resulting CHRs are confluent
and terminating.



Sound and Decidable Type Inference for Functional Dependencies 61

4.3 Instance Improvement Only

Instead of stronger improvement it might sometimes be desirable to omit certain
improvement rules. For example, in case the context consistency condition is
violated, we can recover confluence by dropping the functional dependency rule.

Theorem 3 (Instance Improvement Soundness). Let p be a set of Haskell
class and instance declarations which satisfies the Haskell-FD consistency re-
striction. If the set Simp(p)∪Propclass(p) is confluent and range-restricted and
Simp∪Propclass(p)∪Propinst(p) is terminating, then Simp(p)∪Propclass(p)∪
Propinst(p) is confluent and range-restricted.

Here is a (confluent) variation of Example 8 where we only impose the in-
stance improvement rule.

data Nil = Nil
data Cons a b = Cons a b
data ExpAbs x a = ExpAbs x a
-- env represents environment, exp expression
-- and t is the type of the resulting value
class Eval env exp t where eval :: env->exp->t
-- we only impose the instance improvement rule but NOT
-- the class FD
rule Eval env (ExpAbs x exp) v ==> v=v1->v2
instance Eval (Cons (x,v1) env) exp v2

=> Eval env (ExpAbs x exp) (v1->v2) where
eval env (ExpAbs x exp) = \v -> eval (Cons (x,v) env) exp

5 Related Work

The idea of improving types in the context of Haskell type classes is not new. For
example, Chen, Hudak and Odersky [CHO92] introduce type classes which can
be parameterized by a specific parameter. For example, the declaration class
SM m r | m->r from Example 2 can be expressed as the parametric declaration
class m::SM r. Interestingly, they impose conditions similar to Jones’s consis-
tency and termination condition to achieve sound and decidable type inference.
However, their approach is more limited than ours. Functional dependencies
must be always of the form a->b where b is not allow to appear in the domain
of any other functional dependency. Furthermore, they do not consider any ex-
tensions such as more liberal FDs.

In [Jon95], Jones introduces a general theory of simplifying and improving
types as a refinement of his theory of qualified types [Jon92]. However, he does
not provide any formal results which improvement strategies lead to sound and
decidable type inference.

Subsequently, Jones extends multi-parameter type classes with functional
dependencies [Jon00]. He states some conditions (consistency and termination)
which in this paper we finally verify as sufficient to ensure sound and decid-
able type inference. Surprisingly, he introduces Example 3 (which breaks the
termination condition) as a motivation for functional dependencies.



62 G.J. Duck et al.

Duggan and Ophel [DO02] describe an improvement strategy, domain-driven
unifying overload resolution, which is very similar to functional dependencies.
Indeed, they were the first to point out the potential problem of non-termination
of type inference. However, they do not discuss any extensions such as more
liberal FDs nor do they consider how to cope with the termination problem.

Stuckey and Sulzmann [SS02] introduce a general CHR-based formulation
for type classes. They establish some general conditions, e.g. termination and
confluence, in terms of CHRs under which type inference is sound and decid-
able. Here, we rephrase functional dependencies as a particular instance of their
framework.

6 Conclusion

We have given a new perspective on functional dependencies by expressing the
improvement rules implied by FDs in terms of CHRs. We have verified, for the
first time, that the conditions (termination and consistency, see Definition 1)
stated by Jones are sufficient to guarantee sound and decidable type inference
(see Theorem 1).

There are many examples which demand dropping the termination condition.
For this purpose, we have introduced more liberal FDs in Section 4.1. We have
identified an additional condition (context consistency) which guarantees conflu-
ence (see Theorem 2). We have also discussed further useful extensions such as
stronger improvement rules (Section 4.2) and instance improvement rules only
(Section 4.3).

For such extensions it becomes much harder to guarantee decidability (unless
the generated improvement rules are trivial). For example, the more liberal FD
conditions only ensure soundness but not decidability. We are already working
on identifying further decidable classes of CHRs. We expect to report results on
this topic in the near future.

In another line of future work we plan to investigate how to safely drop the
consistency condition. Consider

class Insert ce e | ce -> e where insert :: e->ce->ce
instance Ord a => Insert [a] a
instance Insert [Float] Int

Our intention is to insert elements into a collection. The class declaration states
that the collection type uniquely determines the element type. The first instance
states that we can insert elements into a list if the list elements enjoy an ordering
relation. The second instance states that we have a special treatment in case we
insert Ints into a list of Floats (for example, we assume that Ints are internally
represented by Floats). This sounds reasonable, however, the above program is
rejected because the consistency condition is violated. To establish confluence
we seem to require a more complicated set of improvement rules. We plan to
pursue this topic in future work.

Acknowledgements. We thank Jeremy Wazny and the reviewers for their
comments.



Sound and Decidable Type Inference for Functional Dependencies 63

References

[Abd97] S. Abdennadher. Operational semantics and confluence of constraint prop-
agation rules. In Proc. of CP’97, volume 1330 of LNCS, pages 252–266.
Springer-Verlag, 1997.

[CHO92] K. Chen, P. Hudak, and M. Odersky. Parametric type classes. In Proc. of
ACM Conference on Lisp and Functional Programming, pages 170–191.
ACM Press, June 1992.

[CK03] M. Chakravarty and S. Keller. Classy type analysis, 2003.
[DO02] D. Duggan and J. Ophel. Type-checking multi-parameter type classes.

Journal of Functional Programming, 12(2):133–158, 2002.
[DPJSS03] G. J. Duck, S. Peyton-Jones, P. J. Stuckey, and M. Sulzmann. Sound and

decidable type inference for functional dependencies. Technical report,
National University of Singapore, 2003.
http://www.comp.nus.edu.sg/˜sulzmann/chr/download/fd-chr.ps.gz.

[Frü95] T. Frühwirth. Constraint handling rules. In Constraint Programming:
Basics and Trends, volume 910 of LNCS. Springer-Verlag, 1995.

[Frü98] T. Frühwirth. Theory and practice of constraint handling rules. Journal
of Logic Programming, 37(1–3):95–138, 1998.

[Jon92] M. P. Jones. Qualified Types: Theory and Practice. PhD thesis, Oxford
University, September 1992.

[Jon95] M. P. Jones. Simplifying and improving qualified types. In FPCA ’95:
Conference on Functional Programming Languages and Computer Archi-
tecture. ACM Press, 1995.

[Jon00] M. P. Jones. Type classes with functional dependencies. In Proc. of the
9th European Symposium on Programming Languages and Systems, ESOP
2000, volume 1782 of LNCS. Springer-Verlag, March 2000.

[Kar03] J. Karczmarczuk. Structure and interpretation of quantum mechanics –
a functional framework. In Proc. of Haskell Workshop’03, pages 50–61.
ACM Press, 2003.

[Pey99] S. Peyton Jones et al. Report on the programming language Haskell 98,
February 1999. http://haskell.org.

[SS02] P. J. Stuckey and M. Sulzmann. A theory of overloading. In Proc. of
ICFP’02, pages 167–178. ACM Press, 2002.

[WW03] G. Washburn and S. Weirich. Boxes go bananas: encoding higher-order
abstract syntax with parametric polymorphism. In Proc. of ICFP’03,
pages 249 – 262. ACM Press, 2003.


	Introduction 
	Background: Functional Dependencies in Haskell 
	Functional Dependencies Are Tricky 
	Jones's Functional Dependency Restrictions 

	Functional Dependencies Expressed Using CHRs 
	Translation to CHRs 
	Main Result 

	Extensions 
	More Liberal Functional Dependencies 
	Stronger Improvement 
	Instance Improvement Only 

	Related Work 
	Conclusion 



