
ML-Like Inference for Classifiers

Cristiano Calcagno1, Eugenio Moggi2�, and Walid Taha3��

1 Imperial College, London, UK ccris@doc.ic.ac.uk
2 DISI, Univ. of Genova, Italy moggi@disi.unige.it

3 Rice University, TX, USA taha@cs.rice.edu

Abstract. Environment classifiers were proposed as a new approach to
typing multi-stage languages. Safety was established in the simply-typed
and let-polymorphic settings. While the motivation for classifiers was the
feasibility of inference, this was in fact not established. This paper starts
with the observation that inference for the full classifier-based system
fails. We then identify a subset of the original system for which inference
is possible. This subset, which uses implicit classifiers, retains significant
expressivity (e.g. it can embed the calculi of Davies and Pfenning) and
eliminates the need for classifier names in terms. Implicit classifiers were
implemented in MetaOCaml, and no changes were needed to make an
existing test suite acceptable by the new type checker.

1 Introduction

Introducing explicit staging constructs into programming languages is the goal of
research projects including ‘C [9], Popcorn [25], MetaML [30,20], MetaOCaml [4,
19], and Template Haskell [23]. Staging is an essential ingredient of macros [10],
partial evaluation [15], program generation [16], and run-time code generation
[12]. In the untyped setting, the behavior of staging constructs resembles the
quasi-quotation mechanisms of LISP and Scheme [2]. But in the statically-typed
setting, such quotation mechanisms may prohibit static type-checking of the
quoted expression. Some language designs, such as that of ‘C, consider this
acceptable. In Template Haskell, this is considered a feature; namely, a form of
staged type inference [24]. But in the design of MetaML and MetaOCaml, it is
seen as a departure from the commitment of ML and OCaml to static prevention
of runtime errors.1

Multi-stage Basics. The use of staging constructs can be illustrated in a multi-
stage language such as MetaOCaml [19] with a classic example2:
� Supported by MIUR project NAPOLI, EU project DART IST-2001-33477 and the-

matic network APPSEM II IST-2001-38957
�� Supported by NSF ITR-0113569 and NSF CCR-0205542.
1 Dynamic typing can be introduced as orthogonal and non-pervasive feature [1].
2 Dots are used around brackets and escapes to disambiguate the syntax in the im-

plementation, but they are dropped when we consider the underlying calculus.

D.A. Schmidt (Ed.): ESOP 2004, LNCS 2986, pp. 79–93, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

80 C. Calcagno, E. Moggi, and W. Taha

let rec power n x = (* : int -> int code -> int code *)
if n=0 then .<1>. else .<.˜x * .˜(power (n-1) x)>.

let power72 : int -> int = .! .<fun x -> .˜(power 72 .<x>.)>.

Ignoring the type constructor t code and the three staging annotations brackets
.<e>., escapes .˜e, and run .!, the above code is a standard definition of a
function that computes xn, which is then used to define the specialized function
x72. Without staging, however, the last step just produces a closure that invokes
the power function every time it gets a value for x. To understand the effect of
the staging annotations, it is best to start from the end of the example. Whereas
a term fun x -> e x is a value, an annotated term .<fun x -> .˜(e .<x>.)>.
is not. Brackets indicate that we are constructing a future stage computation,
and an escape indicates that we must perform an immediate computation while
building the enclosing bracketed computation. The application e .<x>. has to
be performed first, even though x is still an uninstantiated symbol. In the power
example, power 72 .<x>. is performed immediately, once and for all, and not
repeated every time we have a new value for x. In the body of the definition
of the power function, the recursive application of power is escaped to make
sure that it is performed immediately. The run construct (.!) on the last line
invokes the compiler on the generated code fragment, and incorporates the result
of compilation into the runtime system.

Background. Starting with the earliest statically typed languages supporting
staging (including those of Gomard and Jones [11] and Nielson and Nielson [22]),
most proposals to date fall under two distinct approaches: one treating code as
always open, the other treating code as always closed. The two approaches are
best exemplified by two type systems corresponding to well-known logics:

λ© Motivated by the next modality © of linear time temporal logic, this system
provides a sound framework for typing constructs that have the same oper-
ational semantics as bracket and escape [6]. As illustrated above, brackets
and escapes can be used to annotate λ-abstractions so as to force evalua-
tion under lambda. This type system supports code generation but does not
provide a construct for code execution.

λ� Motivated by the necessity modality � of S4 modal logic, this system pro-
vides constructs for generating and executing closed code [7]. The exact cor-
respondence between the constructs of λ� and LISP-style quotation mecha-
nism is less immediate than for λ©.

Combining the two approaches to realize a language that allows evaluation under
lambda and a run construct is challenging [26]. In particular, evaluation under
lambda gives rise to code fragments that contain free variables that are not yet
“linked” to any fixed value. Running such open code fragments can produce
a runtime error. Several type systems [3,29,21] have been proposed for safely
combining the key features of λ© (the ability to manipulate open code) and
λ� (the ability to execute closed code). But a practical solution to the problem
requires meeting a number of demanding criteria simultaneously:

ML-Like Inference for Classifiers 81

– Safety: the extension should retain static safety;
– Conservativity: the extension should not affect programs that do not use

multi-stage facilities;
– Inference: the extension should support type inference;
– Light annotations: the extension should minimize the amount of program-

mer annotations required to make type inference possible.

All the above proposals were primarily concerned with the safety criterion, and
were rarely able to address the others. Because previous proposals seemed no-
tationally heavy, implementations of multi-stage languages (such MetaML and
MetaOCaml) often chose to sacrifice safety. For example, in MetaOCaml .! e
raises an exception, when the evaluation of e produces open code.

The type system for environment classifiers λα of [29] appears to be the most
promising starting point towards fulfilling all criteria. The key feature of λα is
providing a code type 〈τ〉α decorated with a classifier α that constrains the
unresolved variables that may occur free in code. Intuitively, in the type system
of λα, variables are declared at levels annotated by classifiers, and code of type
〈τ〉α may contain only unresolved variables declared at a level annotated with α.
Classifiers are also used explicitly in terms. Type safety for λα was established
[29], but type inference was only conjectured.

Contributions and Organization of this Paper. The starting point for this work
is the observation that inference for full λα fails. To address this problem, a
subset of the original system is identified for which inference is not only possible
but is in fact easy. This subset uses implicit classifiers, thus eliminates the need
for classifier names in terms, and retains significant expressivity (e.g. it embeds
the paradigmatic calculi λ© and λ�). Implicit classifiers have been implemented
in MetaOCaml, and no changes were needed to make an existing test suite
acceptable by the type checker. The paper proceeds as follows:

– Section 2 extends a core subset of ML with environment classifiers. The new
calculus, called λi

let, corresponds to a proper subset of λα but eliminates clas-
sifier names in terms. This is an improvement on λα in making annotations
lighter, and the proof of type safety for λα adapts easily to λi

let.
– Section 3 gives two inference algorithms:

1. a principal typing algorithm for λi, the simply-typed subset of λi
let (i.e. no

type schema and let-binding), which extends Hindley’s principal typing
algorithm for the λ-calculus.

2. a principal type algorithm for λi
let, which extends Damas and Milner’s

algorithm W .
Therefore classifiers are a natural extension to well-established type systems.

– Section 4 relates λi to λα and exhibits some terms typable in λα that fail to
have a principal type (thus, λα fails to meet the inference criterion). It also
shows that λi retains significant expressivity, namely there are typability-
preserving embeddings of λ© and a variant of λ� into λi (similar to the
embeddings into λα given in [29]). However, if one restricts λi

let further, by
considering a runClosed construct similar to Haskell’s runST [17], then the
embedding of λ� is lost (but term annotations disappear completely).

82 C. Calcagno, E. Moggi, and W. Taha

Variables x ∈ X
Classifiers α ∈ A
Named Levels A ∈ A∗

Terms e, v ∈ E ::= x | λx.e | e e | 〈e〉 | ˜e |
run e | %e | open e | close e | let x = e1 in e2

Type Variables β ∈ B
Types τ ∈ T ::= β | τ1 → τ2 | 〈τ〉α | 〈τ〉
Type Schema σ ∈ S ::= τ | ∀α.σ | ∀β.σ or equivalently

∀κ.τ with κ sequence of distinct α and β

Assignments Γ ∈ X
fin→ (T × A∗) of types and named levels

Assignments ∆ ∈ X
fin→ (S × A∗) of type schema and named levels

Fig. 1. Syntax of λi
let

Notation. Throughout the paper we use the following notation and conventions:

– We write m to range over the set N of natural numbers. Furthermore, m ∈ N
is identified with the set of its predecessors {i ∈ N|i < m}.

– We write a to range over the set A∗ of finite sequences (ai|i ∈ m) with ai ∈ A,
and |a| denotes its length m. We write ∅ for the empty sequence and a1, a2
for the concatenation of a1 and a2.

– We write f : A
fin→ B to say that f is a partial function from A to B with a

finite domain, written dom(f). We write A → B to denote the set of total
functions from A to B. We use the following operations on partial functions:

• {ai : bi|i ∈ m} is the partial function mapping ai to bi (where the ai are
distinct, i.e. ai = aj implies i = j); in particular, ∅ is the everywhere
undefined partial function;

• f\a denotes the partial function g s.t. g(a′) = b iff f(a′) = b when a′ �= a,
and undefined otherwise;

• f{a : b} denotes the (possibly) partial function g s.t. g(a) = b and
g(a′) = f(a′) when a′ �= a;

• f, g denotes the union of two partial functions with disjoint domains.
• f = g mod X means that ∀x ∈ X.f(x) = g(x).

– We write X#X ′ to mean that X and X ′ are disjoint sets, and X 	 X ′ for
their disjoint union.

2 λi
let: A Calculus with Implicit Classifiers

This section defines λi
let, an extension of the functional subset of ML with en-

vironment classifiers. In comparison to λα [29], classifier names do not appear
in terms. In particular, the constructs of λα for explicit abstraction (α)e and
instantiation e[α] of classifiers are replaced by the constructs close e and open e,
but with more restrictive typing rules. As we show in this paper, this makes it
possible to support ML-style inference of types and classifiers in a straightfor-
ward manner.

ML-Like Inference for Classifiers 83

Figure 1 gives the syntax of λi
let. Intuitively, classifiers allow us to name

parts of the environment in which a term is typed. Classifiers are described as
implicit in λi

let because they do not appear in terms. Named levels are sequences
of environment classifiers. They are used to keep track of the environments used
as we build nested code. Named levels are thus an enrichment of the traditional
notion of levels in multi-stage languages [6,30,28], the latter being a natural
number which keeps track only of the depth of nesting of brackets. Terms include:

– the standard λ-terms, i.e. variables, λ-abstraction and application;
– the staging constructs of MetaML [30], i.e. Brackets 〈e〉, escape ˜e, and run

run e, and a construct %e for cross-stage persistence (CSP) [3,29];
– the constructs close e and open e are the implicit versions of the λα constructs

for classifiers abstraction (α)e and instantiation e[α] respectively;
– the standard let-binding for supporting Hindley-Milner polymorphism.

Types include type variables, functional types, and code types 〈τ〉α annotated
with a classifier (exactly as in λα of [29], thus refining open code types). The
last type 〈τ〉 is for executable code (it is used for typing run e) and basically
corresponds to the type (α)〈τ〉α of λα (as explained in more detail in Section 4.1).

As in other Hindley-Milner type systems, type schema restrict quantification
at the outermost level of types. Since the types of λi

let may contain not only type
variables but also classifiers, type schema allow quantification of both.

Notation. The remainder of the paper makes use of the following definitions:

– We write {xi : τAi
i |i ∈ m} and {xi : σAi

i |i ∈ m} to describe type and schema
assignments, and in this context τA denotes the pair (τ, A).

– FV() denotes the set of variables free in . In λi
let, there are three kinds of

variables: term variables x, classifiers α, and type variables β. The definition
of FV() for terms, types, and type schema is standard, and it extends in the
obvious way to A, Γ , and ∆, e.g. FV(∆) = ∪{FV(σ)∪FV(A) | ∆(x) = σA}.

– We write ≡ for equivalence up to α-conversion on terms, types, and type
schema. [x : e] denotes substitution of x with e in modulo ≡, i.e. the
bound variables in are automatically renamed to avoid clashes with FV(e).
Similarly we write [α : α′] and [β : τ] for classifiers and type variables.

– We write ρ ∈ Sub for the set of substitutions, i.e. functions (with domain
A ∪ B) mapping classifiers α to classifiers and type variables β to types
τ , and having a finite support defined as {α|ρ(α) �= α} ∪ {β|ρ(β) �= β}.
Then [ρ] denotes parallel substitution, where each free occurrence in of a
classifier α and type variable β is replaced by its ρ-image. With some abuse
of notation, we write e[ρ] also when ρ is a partial function with finite domain,
by extending it as the identity outside dom(ρ).

– σ � τ means that type τ is an instance of σ, i.e. ∀κ.τ � τ ′ def⇐⇒ τ [ρ] = τ ′ for
some ρ ∈ Sub with support κ (the order in κ is irrelevant).
� extends to a relation on type schemas and type schema assignments:

84 C. Calcagno, E. Moggi, and W. Taha

var
σ 	 τ

∆
A

 x : τ

∆(x) = σA lam
∆{x : τA

1 }
A

 e : τ2

∆
A

 λx.e : τ1 → τ2

app

∆
A

 e1 : τ1 → τ2

∆
A

 e2 : τ1

∆
A

 e1e2 : τ2

brck
∆

A,α

 e : τ

∆
A

 〈e〉 : 〈τ〉α

esc
∆

A

 e : 〈τ〉α

∆
A,α

 ˜e : τ

run
∆

A

 e : 〈τ〉

∆
A

 run e : τ

csp
∆

A

 e : τ

∆
A,α

 %e : τ

open
∆

A

 e : 〈τ〉

∆
A

 open e : 〈τ〉α

close
∆

A

 e : 〈τ〉α

∆
A

 close e : 〈τ〉
α �∈ FV(∆, A, τ)

let
∆

A

 e1 : τ1 ∆{x : (∀κ.τ1)A}
A

 e2 : τ2

∆
A

 let x = e1 in e2 : τ2

FV(∆, A)#κ

Fig. 2. Type System for λi
let

• ∀κ.τ � ∀κ′.τ ′ def⇐⇒ ∀κ.τ � τ ′, where we assume κ′#FV(∀κ.τ) by α-
conversion

• ∆1 � ∆2
def⇐⇒ dom(∆1) = dom(∆2) and, for all x, whenever ∆1(x) =

σA1
1 and ∆2(x) = σA2

2 then it is also the case that σ1 � σ2 and A1 = A2.

2.1 Type System

Figure 2 gives the type system for λi
let. The first three rules are mostly standard.

As in ML, a polymorphic variable x whose type schema is σ can be assigned
any type which is an instance of σ. In these constructs the named level A is
propagated without alteration to the sub-terms. In the variable rule, the named
level associated with the variable being typed-checked is required to be the same
as the current level. In the lambda abstraction rule, the named level of the
abstraction is recorded in the environment.

The rule for brackets is almost the same as in previous type systems. First,
for every code type a classifier must be assigned. Second, while typing the body
of the code fragment inside brackets, the named level of the typing judgment
is extended by the name of the “current” classifier. This information is used
in both the variable and the escape rules to make sure that only variables and
code fragments with the same classification are ever incorporated into this code
fragment. The escape rule at named level A, α only allows the incorporation of
code fragments of type 〈τ〉α. The rule for CSP itself is standard: It allows us to
incorporate a term e at a “higher” level. The rule for run allows to execute a
code fragment that has type 〈τ〉.

The close and open rules are introduction and elimination for the runnable
code type 〈τ〉 respectively. One rule says that close e is runnable code when e
can be classified with any α, conversely the other rule says that code open e can
be classified by any α provided e is runnable code. The rule for let is standard
and allows the introduction of variables of polymorphic type.

The following proposition summarizes the key properties of the type system
relevant for type safety as well as type inference.

ML-Like Inference for Classifiers 85

Proposition 1 (Basic Properties). The following rules are admissible:

– ατ -subst
∆

A

� e : τ

(∆
A

� e : τ)[ρ]
ρ ∈ Sub ∆-sub

∆2
A

� e : τ

∆1
A

� e : τ

∆1 � ∆2

– strength
∆

A

� e : τ

∆\x
A

� e : τ

x �∈ FV(e) weaken
∆

A

� e : τ

∆, x : σA1
1

A

� e : τ

x �∈ dom(∆)

– e-subst
∆

A1� e1 : τ1 ∆, x : (∀κ.τ1)A1
A2� e2 : τ2

∆
A2� e2[x : e1] : τ2

κ#FV(∆, A1)

3 Inference Algorithms

This section describes two inference algorithms. The first algorithm extends
Hindley’s principal typing algorithm [13] for the simply typed λ-calculus with
type variables to λi (the simply-typed subset of λi

let, i.e. without type schema
and let-binding). Existence of principal typings is very desirable but hard to get
(see [14,31]). Thus it is reassuring that it is retained after the addition of classi-
fiers. The second algorithm extends Damas and Milner’s algorithm W [5] to λi

let

and proves that it is sound and complete for deriving principal types. Damas
and Milner’s algorithm is at the core of type inference for languages such as ML,
OCaml, and Haskell. That this extension is possible (and easy) is of paramount
importance to the practical use of the proposed type system.

Both algorithms make essential use of a function mgu(T) computing a most
general unifier ρ ∈ Sub for a finite set T of equations between types or between
classifiers. For convenience, we also introduce the following derived notation for
sets of equations (used in side-conditions to the rules describing the algorithms):

– (A1, A2) denotes {(α1,j , α2,j) | j ∈ n} when n = |A1| = |A2| and αi,j is the
j-th element of Ai, and is undefined when |A1| �= |A2|

– (Γ1, Γ2) denotes ∪{(τ1,x, τ2,x), (A1,x, A2,x)|x ∈ dom(Γ1) ∩ dom(Γ2)} where
Γi(x) = τ

Ai,x

i,x .

3.1 Principal Typing

We extend Hindley’s principal typing algorithm for the simply typed λ-calculus
with type variables to λi. Wells [31] gives a general definition of principal typing
and related notions, but we need to adapt his definition of Hindley’s principal
typing to our setting, mainly to take into account levels.

Definition 1 (Typing). A triple (Γ, τ, A) is a typing of (e, n)
def⇐⇒ Γ

A

� e : τ is
derivable and n = |A|. A Hindley principal typing of (e, n) is a typing (Γ, τ, A)
of (e, n) s.t. for every other typing (Γ ′, τ ′, A′) of (e, n)

– Γ [ρ] ⊆ Γ ′ and τ ′ = τ [ρ] and A′ = A[ρ] for some ρ ∈ Sub.

86 C. Calcagno, E. Moggi, and W. Taha

Remark 1. Usually one assigns typings to terms. We have chosen to assign
typings to a pair (e, n), because the operational semantics of a term is level-
dependent. However, one can easily assign typings to terms (and retain the
existence of principal typings). First, we introduce an infinite set of variables
φ ∈ Φ ranging over annotated levels. Then, we modify the BNF for annotated
levels to become A ::= φ | A, α. Unification will also have to deal with equations
for annotated levels, e.g. φ1 = φ2, α. A posteriori, one can show that a principal
typing will contain exactly one variable φ.

Figure 3 defines the algorithm by giving a set of rules (directed by the structure
of e) for deriving judgments of the form K, (e, n) ⇒ K′, (Γ, τ, A). K ⊆fin A 	 B
is an auxiliary parameter (instrumental to the algorithm), which is threaded in
recursive calls for recording the classifiers and type variables used so far. The
algorithm computes a typing (and updates K) or fails, and it enjoys the following
properties (which imply that every (e, n) with a typing has a principal typing).

Theorem 1 (Soundness). If K, (e, n) ⇒ K′, (Γ ′, τ ′, A′), then Γ ′ A′

� e : τ ′ and
n = |A′|, moreover dom(Γ ′) = FV(e), K ⊆ K′ and FV(Γ ′, τ ′, A′) ⊆ K′ \ K.

Theorem 2 (Completeness). If Γ ′ A′

� e : τ ′, then K, (e, n) ⇒ K′, (Γ, τ, A)
is derivable (for any choice of K) and exists ρ′ ∈ Sub s.t. Γ [ρ′] ⊆ Γ ′, τ ′ = τ [ρ′]
and A′ = A[ρ′].

Moreover, from general properties of the most general unifier and the similarity
of our principal typing algorithm with that for the λ-calculus, one can also show

Theorem 3 (Conservative Extension). If e ::= x | λx.e | e e is a λ-term,
then (Γ, τ) is a principal typing of e in λ ⇐⇒ (Γ, τ, ∅) is a principal typing of
(e, 0) in λi, where we identify x : τ with x : τ∅.

3.2 Principal Type Inference

In this section, we extend Damas and Milner’s [5] principal type algorithm to
λi

let and prove that it is sound and complete. Also in this case we have to adapt
to our setting the definition of Damas-Milner principal type in [31].

Definition 2 (Principal Type). A Damas-Milner principal type of (∆, A, e)

is a type τ s.t. ∆
A

� e : τ and for every ∆
A

� e : τ ′

– τ ′ = τ [ρ] for some ρ ∈ Sub with support FV(τ) − FV(∆, A)

We define a principal type algorithm W (∆, A, e,K), where K ⊆fin A 	 B is an
auxiliary parameter that is threaded in recursive calls for recording the classifiers
and type variables used so far. The algorithm either computes a type and a
substitution for ∆ and A (and updates K) or fails. Figure 4 derives judgments of
the form K, (∆, e, A) ⇒ K′, (ρ, τ). When the judgment is derivable, it means
that W (∆, A, e,K) = (ρ, τ,K′). The rules use the following notation:

ML-Like Inference for Classifiers 87

– close(τ, ∆, A)
def≡ ∀κ.τ , where κ = FV(τ) − FV(∆, A)

– ρ′ρ denotes composition of substitutions, i.e. e[ρ′ρ] = (e[ρ])[ρ′]

The algorithm enjoys the following soundness and completeness properties.
Theorem 4 (Soundness). If W (∆, A, e,K) = (ρ, τ,K′) and FV(∆, A) ⊆ K
then ∆[ρ]

A[ρ]
� e : τ , moreover K ⊆ K′ and FV(τ, ∆[ρ], A[ρ]) ⊆ K′.

Theorem 5 (Completeness). If ∆[ρ′]
A[ρ′]
� e : τ ′ and FV(∆, A) ⊆ K and

K ⊆fin A ∪ B then W (∆, A, e,K) = (ρ, τ,K′) is defined and exists ρ′′ ∈ Sub s.t.
τ ′ = τ [ρ′′] and ∆[ρ′] ≡ ∆[ρ′′ρ] and A[ρ′] = A[ρ′′ρ].

Remark 2. In practice, one is interested in typing a complete program e, i.e. in
computing W (∅, ∅, e, ∅). If the algorithm returns (ρ, τ,K′), then τ is the principal
type and ρ and K′ can be ignored. Even when the program uses a library, one
can ignore the substitution ρ, since FV(∆) = ∅.

β and A = (αi|i ∈ n) distinct and /∈ K
K, (x, n) ⇒ K � {β, A}, (x : βA, β, A)

K, (e1, n) ⇒ K′, (Γ1, τ1, A1)
K′, (e2, n) ⇒ K′′, (Γ2, τ2, A2)
ρ = mgu((τ1, τ2 → β), (Γ1, Γ2), (A1, A2))

K, (e1 e2, n) ⇒ K′′ � {β}, (Γ1 ∪ Γ2, β, A1)[ρ]

K, (e, n) ⇒ K′, (Γ, τ, A)
x �∈ FV(e) and β /∈ K′

K, (λx.e, n) ⇒ K′ � {β}, (Γ, β → τ, A)

K, (e, n) ⇒ K′, (Γ, τ2, A2)
x ∈ FV(e) , Γ (x) = τ

A1
1 and ρ = mgu(A1, A2)

K, (λx.e, n) ⇒ K′, (Γ \ x, τ1 → τ2, A2)[ρ]

K, (e, n+) ⇒ K′, (Γ, τ, (A, α))
K, (〈e〉, n) ⇒ K′, (Γ, 〈τ〉α, A)

K, (e, n) ⇒ K′, (Γ, τ, A)
ρ = mgu(τ, 〈β〉α) and β, α /∈ K′

K, (˜e, n+) ⇒ K′ � {β, α}, (Γ, β, (A, α))[ρ]

K, (e, n) ⇒ K′, (Γ, τ, A)
α �∈ K′

K, (%e, n+) ⇒ K′ � {α}, (Γ, τ, (A, α))

K, (e, n) ⇒ K′, (Γ, τ, A)
ρ = mgu(τ, 〈β〉) and β /∈ K′

K, (run e, n) ⇒ K′ � {β}, (Γ, β, A)[ρ]

K, (e, n) ⇒ K′, (Γ, τ, A)
ρ = mgu(τ, 〈β〉α) and β, α /∈ K′

K, (open e, n) ⇒ K′ � {β, α}, (Γ, 〈β〉α, A)[ρ]

K, (e, n) ⇒ K′, (Γ, τ, A)
ρ = mgu(τ, 〈β〉α) , β, α �∈ K′ and α[ρ] �∈ FV((Γ, β, A)[ρ])

K, (close e, n) ⇒ K′′ � {β, α}, (Γ, 〈β〉, A)[ρ]

Fig. 3. Principal Typing Algorithm

4 Relation to Other Calculi

This section studies the expressivity of the type system for λi, the simply-typed
subset of λi

let (i.e. no let-binding and no quantification in type schema). The

typing judgment for λi takes the form Γ
A

� e : τ , since type schema collapse into
types, and the typing rules are restricted accordingly. In summary, we have the
following results:

88 C. Calcagno, E. Moggi, and W. Taha

– λi is a proper subset of λα, but the additional expressivity of λα comes at a
price: the type system has no principal types.

– λi retains significant expressivity, namely, the embeddings given in [29] for
two paradigmatic calculi λ© and λS4 (a variant of λ�) factor through λi.

– λi can be simplified further, by replacing run e with a construct runClosed e
similar to Haskell’s runST, and then removing 〈τ〉, close e and open e, but
doing so implies that the embedding of λS4 no longer holds.

∆(x) ≡ (∀κ.τ)A1 ρ = mgu(A, A1) κ#K
K, (∆, x, A) ⇒ K � {κ}, (ρ, τ [ρ])

K � {β}, (∆{x : βA}, e, A) ⇒ K′, (ρ, τ)
β /∈ K

K, (∆, λx.e, A) ⇒ K′, (ρ, β[ρ] → τ)

K, (∆, e1, A) ⇒ K′, (ρ1, τ1)
K′, (∆[ρ1], e2, A[ρ1]) ⇒ K′′, (ρ2, τ2)
ρ = mgu(τ1[ρ2], τ2 → β) β /∈ K′′

K, (∆, e1e2, A) ⇒ K′′ � {β}, (ρρ2ρ1, β[ρ])

K � {α}, (∆, e, (A, α)) ⇒ K′, (ρ, τ)
α /∈ K

K, (∆, 〈e〉, A) ⇒ K′, (ρ, 〈τ〉α[ρ])

K, (∆, e, A) ⇒ K′, (ρ, τ)
ρ′ = mgu(τ, 〈β〉α) β /∈ K′

K, (∆, ˜e, (A, α)) ⇒ K′ � {β}, (ρ′ρ, β[ρ′])

K, (∆, e, A) ⇒ K′, (ρ, τ)
K, (∆, %e, (A, α)) ⇒ K′, (ρ, τ)

K, (∆, e, A) ⇒ K′, (ρ, τ)
ρ′ = mgu(τ, 〈β〉) β /∈ K′

K, (∆, run e, A) ⇒ K′ � {β}, (ρ′ρ, β[ρ′])

K, (∆, e, A) ⇒ K′, (ρ, τ)
ρ′ = mgu(τ, 〈β〉) α, β /∈ K′

K, (∆, open e, A) ⇒ K′ � {α, β}, (ρ′ρ, 〈β[ρ′]〉α)

K, (∆, e, A) ⇒ K′, (ρ, τ)
ρ′ = mgu(τ, 〈β〉α) α, β /∈ K′ α[ρ′] �∈ FV(∆[ρ′ρ], A[ρ′ρ], β[ρ′])

K, (∆, close e, A) ⇒ K′ � {α, β}, (ρ′ρ, 〈β[ρ′]〉)
K, (∆, e1, A) ⇒ K′, (ρ1, τ1)
K′, (∆[ρ1]{x : close(τ1, ∆[ρ1], A[ρ1])A[ρ1]}, e2, A[ρ1]) ⇒ K′′, (ρ2, τ2)

K, (∆, let x = e1 in e2, A) ⇒ K′′, (ρ2ρ1, τ2)

Fig. 4. Principal Type Algorithm

4.1 Relation to λα

The key feature of λα is the inclusion of a special quantifier (α)τ in the language
of types, representing universal quantification over classifiers. Figure 5 recalls
the BNF for terms and types, and the most relevant typing rules [29]. In λi

the main difference is that the quantifier (α)τ of λα is replaced by the runnable
code type 〈τ〉. In fact, 〈τ〉 corresponds to a restricted form of quantification,
namely (α)〈τ〉α with α /∈ FV(τ). It is non-trivial to define formally a typability-
preserving embedding of λi into λα, since we need to recover classifier names
in terms. Therefore, we justify the correspondence at the level of terms only
informally:

– The terms close e and open e of λi correspond to (α)e and e[α] of λα. Since
λi has no classifier names in terms, these constructs record that a classi-

ML-Like Inference for Classifiers 89

Terms e ∈ E ::= x | λx.e | e e | 〈e〉α | ˜e | %e | run e | (α)e | e[α]
Types τ ∈ T ::= β | τ1 → τ2 | 〈τ〉α | (α)τ

brck
Γ

A,α

 e : τ

Γ
A

 〈e〉α : 〈τ〉α

esc
Γ

A

 e : 〈τ〉α

Γ
A,α

 ˜e : τ

csp
Γ

A

 e : τ

Γ
A,α

 %e : τ

all-run
Γ

A

 e : (α)〈τ〉α

Γ
A

 run e : (α)τ

all-close
Γ

A

 e : τ

Γ
A

 (α)e : (α)τ
α �∈ FV(Γ, A) all-open

Γ
A

 e : (α)τ

Γ
A

 e[α′] : τ [α : α′]

Fig. 5. Type System for λα (adapted from [29])

fier abstraction and instantiation has occurred without naming the classifier
involved. (Similarly, the term 〈e〉 in λi corresponds to 〈e〉α in λα.)

– The term %e has exactly the same syntax and meaning in the two calculi.
– The term run e of λi corresponds to (run e)[α′] of λα, where α′ can be

chosen arbitrarily without changing the result type. In fact, the type of run
in λα is ((α)〈τ〉α) → (α)τ , while in λi it is 〈τ〉 → τ , which corresponds to
((α)〈τ〉α) → τ with α /∈ FV(τ).

We conclude the comparison between λi and λα by showing that type inference
in λα is problematic.

Lack of principal types in λα. Consider the closed term e ≡ (λx.run x). We can
assign to e exactly the types of the form ((α)〈τ〉α) → (α)τ with an arbitrary type
τ , including ones with α ∈ FV(τ). However, e does not have a principal type, i.e.
one from which one can recover all other types (modulo α-conversion of bound
classifiers) by applying a substitution ρ ∈ Sub for classifiers and type variables. In
fact, the obvious candidate for the principal type, i.e. ((α)〈β〉α) → (α)β, allows
us to recover only the types of the form ((α)〈τ〉α) → (α)τ with α /∈ FV(τ), since
substitution should be capture avoiding.

Lack of principal types in previous polymorphic extensions of λα. A more ex-
pressive type system for λα was previously proposed [29], where type variables β
are replaced by variables βn ranging over types parameterized w.r.t. n classifiers.
Thus, the BNF for types becomes:

τ ∈ T ::= βn[A] | τ1 → τ2 | 〈τ〉α | (α)τ with |A| = n

In this way, there is a better candidate for the principal type of e, namely
((α)〈β1[α]〉α) → (α)β1[α].

In this extension, standard unification techniques are no longer applicable,
and some form of higher-order unification is needed. However, even in this sys-
tem, there are typable terms that do not have a principal type. For instance,
the term e = (x(x1[α]), f(x2[α])) (for simplicity, we assume that we have pairing
and product types) has no principal typing, in fact

90 C. Calcagno, E. Moggi, and W. Taha

Terms e ∈ E ::= x | λx.e | e e | box e | unboxn e
Types τ ∈ T ::= β | τ1 → τ2 | �τ

Assignments Γ ∈ X
fin→ T of types

Stacks Ψ ∈ (X
fin→ T)∗ of type assignments

Ψ ; Γ
 x : τ
Γ (x) = τ

Ψ ; Γ, x : τ1
 e : τ2

Ψ ; Γ
 λx.e : τ1 → τ2

Ψ ; Γ
 e1 : τ1 → τ2

Ψ ; Γ
 e2 : τ1

Ψ ; Γ
 e1e2 : τ2

Ψ ; Γ ; ()
 e : τ

Ψ ; Γ
 box e : �τ

Ψ ; Γ
 e : �τ

Ψ ; Γ ; Γ1; . . . ; Γn
 unboxn e : τ

Fig. 6. Type system for λS4 [8, Section 4.3]

– x must be a function, say of type τ → τ ′
– xi must be of type (αi)τi, among them the most general is (αi)β1

i [αi]
– τ and τi[αi : α] must be the same, but there is no most general unifier for

β1
1 [α] = β1

2 [α].

4.2 Embedding of λ©

The embedding of λ© [6] into λi is direct. We pick one arbitrary classifier α and
define the embedding as follows:

[[β]] ≡ β, [[©τ]] ≡ 〈[[τ]]〉α
, [[τ1 → τ2]] ≡ [[τ1]] → [[τ2]]

[[n]] ≡ αn, [[xi : τni
i]] ≡ xi : [[τi]][[ni]]

[[x]] ≡ x, [[λx.e]] ≡ λx.[[e]], [[e1 e2]] ≡ [[e1]] [[e2]]
[[next e]] ≡ 〈[[e]]〉 [[prev e]] ≡ ˜[[e]]

The translation preserves the typing, i.e.

Theorem 6. If Γ
n

� e : τ is derivable in λ©, then [[Γ]]
[[n]]
� [[e]] : [[τ]] is derivable

in λi.
The translation preserves also the big-step operational semantics.

4.3 Embedding of λS4

Figure 6 recalls the type system of λS4 [8, Section 4.3]. This calculus is equivalent
to λ� [7], but makes explicit use of levels in typing judgments. The operational
semantics of λS4 is given indirectly [8, Section 4.3] via the translation into λ�.
The embedding of this calculus into λi is as follows: the embedding maps types
to types:

[[�τ]] ≡ 〈[[τ]]〉 [[τ1 → τ2]] ≡ [[τ1]] → [[τ2]] [[β]] ≡ β

The embedding on terms is parameterized by a level m:

[[x]]m ≡ x [[λx.e]]m ≡ λx.[[e]]m [[e1e2]]m ≡ [[e1]]m[[e2]]m
[[box e]]m ≡ close 〈[[e]]m+1〉

[[unbox0 e]]m ≡ run [[e]]m [[unboxn+1 e]]m+n+1 ≡ %n(˜(open [[e]]m))
%0(e) ≡ e %n+1(e) ≡ %n(%e)

ML-Like Inference for Classifiers 91

The translation of unboxm depends on the subscript m. unbox0 corresponds to
running code. When m > 0 the term unboxm corresponds to ˜−, but if m > 1 it
also digs into the environment stack to get code from previous stages, and thus
the need for the sequence of %s. To define the translation of typing judgments,
we must fix a sequence of distinct classifiers α1, α2, . . . , and we write Ai for the
prefix of the first i classifiers, i.e. Ai = α1, . . . , αi:

[[Γ0; . . . ; Γn � e : τ]] ≡ [[Γ0]]A0 , . . . , [[Γn]]An
An� [[e]]n : [[τ]]

where [[x1 : τ1, . . . , xn : τn]]A ≡ x1 : [[τ1]]A, . . . , xn : [[τn]]A. The translation pre-
serves the typing, i.e.
Theorem 7. If Γ0; . . . ; Γn � e : τ is derivable in λS4, then [[Γ0; . . . ; Γn � e : τ]]
is derivable in λi.

4.4 Relation to Haskell’s runST

The typing rules for close and run can be combined into one rule analogous to
that for the Haskell’s runST [17,18], namely,

runClosed
∆

A

� e : 〈τ〉α

∆
A

� runClosed e : τ

α /∈ FV(∆, A, τ)

With this rule in place, there is no need to retain the type 〈τ〉 and the terms
close e and open e, thus resulting in a proper fragment of λi. There is a loss in
expressivity, because the embedding of λS4 does not factor through this frag-
ment. In fact, the term λx.runClosed x is not typable, while λx.run x is typable
in λi

let (but λx.close x is still not typable). This variant was implemented in the
MetaOCaml system (giving .! the typing of runClosed), and it was found that
it required no change to the existing code base of multi-stage programs.

References

1. M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a stati-
cally typed language. ACM Transactions on Programming Languages and Systems,
13(2):237–268, April 1991.

2. Alan Bawden. Quasiquotation in LISP. In O. Danvy, editor, Proceedings of
the Workshop on Partial Evaluation and Semantics-Based Program Manipulation,
pages 88–99, San Antonio, 1999. University of Aarhus, Dept. of Computer Science.
Invited talk.

3. Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types for a safe
imperative MetaML. Journal of Functional Programming, 2003. To appear.

4. Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implementing
multi-stage languages using asts, gensym, and reflection. In Krzysztof Czarnecki,
Frank Pfenning, and Yannis Smaragdakis, editors, Generative Programming and
Component Engineering (GPCE), Lecture Notes in Computer Science. Springer-
Verlag, 2003.

92 C. Calcagno, E. Moggi, and W. Taha

5. Lúıs Damas and Robin Milner. Principal type schemes for functional languages.
In 9th ACM Symposium on Principles of Programming Languages. ACM, August
1982.

6. Rowan Davies. A temporal-logic approach to binding-time analysis. In the Sympo-
sium on Logic in Computer Science (LICS ’96), pages 184–195, New Brunswick,
1996. IEEE Computer Society Press.

7. Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In the
Symposium on Principles of Programming Languages (POPL ’96), pages 258–270,
St. Petersburg Beach, 1996.

8. Rowan Davies and Frank Pfenning. A modal analysis of staged computation.
Journal of the ACM, 48(3):555–604, 2001.

9. Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: A language
for high-level, efficient, and machine-independent dynaic code generation. In In
proceedings of the ACM Symposium on Principles of Programming Languages
(POPL), pages 131–144, St. Petersburg Beach, 1996.

10. Steven Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage computations:
Type-safe, generative, binding macros in MacroML. In the International Con-
ference on Functional Programming (ICFP ’01), Florence, Italy, September 2001.
ACM.

11. Carsten K. Gomard and Neil D. Jones. A partial evaluator for untyped lambda
calculus. Journal of Functional Programming, 1(1):21–69, 1991.

12. Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J.
Eggers. An evaluation of staged run-time optimizations in DyC. In Proceedings
of the Conference on Programming Language Design and Implementation, pages
293–304, 1999.

13. J. Roger Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, 1997.

14. Trevor Jim. What are principal typings and what are they good for? In Conf. Rec.
POPL ’96: 23rd ACM Symp. Princ. of Prog. Langs., 1996.

15. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, 1993.

16. Sam Kamin, Miranda Callahan, and Lars Clausen. Lightweight and generative
components II: Binary-level components. In [27], pages 28–50, 2000.

17. John Launchbury and Simon L. Peyton Jones. State in haskell. LISP and Symbolic
Computation, 8(4):293–342, 1995.

18. John Launchbury and Amr Sabry. Monadic state: Axiomatization and type safety.
In Proceedings of the International Conference on Functional Programming, Ams-
terdam, 1997.

19. MetaOCaml: A compiled, type-safe multi-stage programming language. Available
online from http://www.cs.rice.edu/ taha/MetaOCaml/, 2001.

20. The MetaML Home Page, 2000. Provides source code and documentation online
at http://www.cse.ogi.edu/PacSoft/projects/metaml/index.html.

21. A. Nanevski and F. Pfenning. Meta-programming with names and necessity. sub-
mitted, 2003.

22. Flemming Nielson and Hanne Riis Nielson. Two-level semantics and code genera-
tion. Theoretical Computer Science, 56(1):59–133, 1988.

23. Tim Sheard and Simon Peyton-Jones. Template meta-programming for haskell. In
Proc. of the workshop on Haskell, pages 1–16. ACM, 2002.

24. Mark Shields, Tim Sheard, and Simon L. Peyton Jones. Dynamic typing through
staged type inference. In In proceedings of the ACM Symposium on Principles of
Programming Languages (POPL), pages 289–302, 1998.

ML-Like Inference for Classifiers 93

25. Frederick Smith, Dan Grossman, Greg Morrisett, Luke Hornof, and Trevor Jim.
Compiling for run-time code generation. Journal of Functional Programming, 2003.

26. Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology, 1999.

27. Walid Taha, editor. Semantics, Applications, and Implementation of Program
Generation, volume 1924 of Lecture Notes in Computer Science, Montréal, 2000.
Springer-Verlag.

28. Walid Taha. A sound reduction semantics for untyped CBN multi-stage computa-
tion. Or, the theory of MetaML is non-trivial. In Proceedings of the Workshop on
Partial Evaluation and Semantics-Based Program Maniplation (PEPM), Boston,
2000. ACM Press.

29. Walid Taha and Michael Florentin Nielsen. Environment classifiers. In The Sym-
posium on Principles of Programming Languages (POPL ’03), New Orleans, 2003.

30. Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations.
In Proceedings of the Symposium on Partial Evaluation and Semantic-Based Pro-
gram Manipulation (PEPM), pages 203–217, Amsterdam, 1997. ACM Press.

31. Joe Wells. The essence of principal typings. In Proc. 29th Int’l Coll. Automata,
Languages, and Programming, volume 2380 of Lecture Notes in Computer Science,
pages 913–925. Springer-Verlag, 2002.

	Introduction
	$lambda ^i_{let}$: A Calculus with Implicit Classifiers
	Type System

	Inference Algorithms
	Principal Typing
	Principal Type Inference

	Relation to Other Calculi
	Relation to $lambda ^alpha $
	Embedding of $ensuremath {lambda ^{bigcirc }}$
	Embedding of $lambda ^{S4}$
	Relation to Haskell's ${sf runST}$

