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École des Mines de Nantes

La Chantrerie
4, rue Alfred Kastler, B.P. 20722

FR-44307 NANTES Cedex 3, France
Nicolas.Beldiceanu@emn.fr

Abstract. We introduce an approach to designing filtering algorithms by deriva-
tion from finite automata operating on constraint signatures. We illustrate this ap-
proach in two case studies of constraints on vectors of variables. This has enabled
us to derive an incremental filtering algorithm that runs in O(n) plus amortized
O(1) time per propagation event for the lexicographic ordering constraint over
two vectors of size n, and an O(nmd) time filtering algorithm for a chain of m−1
such constraints, where d is the cost of certain domain operations. Both algorithms
maintain hyperarc consistency. Our approach can be seen as a first step towards a
methodology for semi-automatic development of filtering algorithms.

1 Introduction

The design of filtering algorithms for global constraints is one of the most creative
endeavors in the construction of a finite domain constraint programming system. It is very
much a craft and requires a good command of e.g. matching theory [1], flow theory [2]
scheduling theory [3], or combinatorics [4], in order to successfully bring to bear results
from these areas on specific constraints. As a first step towards a methodology for semi-
automatic development of filtering algorithms, we introduce an approach to designing
filtering algorithms by derivation from finite automata operating on constraint signatures,
an approach that to our knowledge has not been used before. We illustrate this approach
in two case studies of constraints on vectors of variables, for which we have developed
one filtering algorithm for �x ≤lex �y, the lexicographic ordering constraint over two
vectors �x and �y, and one filtering algorithm for lex chain, a chain of ≤lex constraints.

The rest of the article is organized as follows: We first define some necessary notions
and notation. We proceed with the two case studies: Sect. 3 treats ≤lex, and Sect. 4 applies
the approach to lex chain, or more specifically to the constraint �a ≤lex �x ≤lex �b, where
�a and �b are vectors of integers. This latter constraint is the central building-block of
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lex chain. Filtering algorithms for these constraints are derived. After quoting related
work, we conclude with a discussion.

For reasons of space, lemmas and propositions are given with proofs omitted. Full
proofs and pseudocode algorithms can be found in [5] and [6]. The algorithms have been
implemented and are part of the CLP(FD) library of SICStus Prolog [7].

2 Preliminaries

We shall use the following notation: [i, j] stands for the interval {v | i ≤ v ≤ j}; [i, j)
is a shorthand for [i, j − 1]; (i, j) is a shorthand for [i + 1, j − 1]; the subvector of �x
with start index i and last index j is denoted by �x[i,j].

A constraint store (X, D) is a set of variables, and for each variable x ∈ X a domain
D(x), which is a finite set of integers. In the context of a current constraint store:xdenotes
min(D(x)); x denotes max(D(x)); next value(x, a) denotes min{i ∈ D(x) | i > a},
if it exists, and +∞ otherwise; and prev value(x, a) denotes max{i ∈ D(x) | i < a}, if
it exists, and −∞ otherwise. The former two operations run in constant time whereas the
latter two have cost d1. If for Γ = (X, D) and Γ ′ = (X, D′), ∀x ∈ X : D′(x) ⊆ D(x),
we say that Γ ′ � Γ , Γ ′ is tighter than Γ .

The constraint store is pruned by applying the following operations to a vari-
able x: fix interval(x, a, b) removes from D(x) any value that is not in [a, b], and
prune interval(x, a, b) removes from D(x) any value that is in [a, b]. Each operation
has cost d and succeeds iff D(x) remains non-empty afterwards.

For a constraint C, a variable x mentioned by C, and a value v, the assignment
x = v has support iff v ∈ D(x) and C has a solution such that x = v. A constraint
C is hyperarc consistent iff, for each such variable x and value v ∈ D(x), x = v has
support. A filtering algorithm maintains hyperarc consistency of C iff it removes any
value v ∈ D(x) such that x = v does not have support. By convention, a filtering
algorithm returns one of: fail , if it discovers that there are no solutions; succeed , if it
discovers that C will hold no matter what values are taken by any variables that are still
nonground; and delay otherwise.

A constraint satisfaction problem (CSP) consists of a set of variables and a set of
constraints connecting these variables. The solution to a CSP is an assignment of values
to the variables that satisfies all constraints. In solving a CSP, the constraint solver
repeatedly calls the filtering algorithms associated with the constraints. The removal by
a filtering algorithm of a value from a domain is called a propagation event, and usually
leads to the resumption of some other filtering algorithms. The constraint kernel ensures
that all propagation events are eventually served by the relevant filtering algorithms.

A string S over some alphabet A is a finite sequence 〈S0, S1, . . . 〉 of letters chosen
from A. A regular expression E denotes a regular language L(E), i.e. a subset of all
the possible strings over A, recursively defined as usual: a single letter a denotes the
language with the single string 〈a〉; EE ′ denotes L(E)L(E ′) (concatenation); E | E′

denotes L(E)∪L(E′) (union); and E� denotes L(E)� (closure). Parentheses are used
for grouping.

1 E.g. if a domain is represented by a bit array, d is linear in the size of the domain.
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Let A be an alphabet, C a constraint over vectors of length n, and Γ a constraint
store. We will associate to C a string σ(C, Γ,A) over A of length n + 1 called the
signature of C.

3 Case Study: ≤lex

Given two vectors,�x and �y of n variables, 〈x0, . . . , xn−1〉 and 〈y0, . . . , yn−1〉, let�x ≤lex
�y denote the lexicographic ordering constraint on �x and �y. The constraint holds iff n = 0
or x0 < y0 or x0 = y0 and 〈x1, . . . , xn−1〉 ≤lex 〈y1, . . . , yn−1〉. Similarly, the con-
straint �x <lex �y holds iff x0 < y0 or x0 = y0 and 〈x1, . . . , xn−1〉 <lex 〈y1, . . . , yn−1〉.
We now present an alphabet and a finite automaton for this constraint, and an incremental
filtering algorithm.

3.1 Signatures

Let A be the alphabet { < , = , > , ≤ , ≥ , ? , $ }. It is worth noting that each

symbol except $ corresponds to a subset of the fundamental arithmetic relations. The
signature S = σ(C, Γ,A) of a constraint C ≡ �x ≤lex �y wrt. a constraint store Γ is

defined by Sn = $ , to mark the end of the string, and for 0 ≤ i < n:

Si =






< , if Γ |= xi < yi

= , if Γ |= xi = yi

> , if Γ |= xi > yi

≤ , if Γ |= xi ≤ yi ∧ Γ 
|= xi < yi ∧ Γ 
|= xi = yi

≥ , if Γ |= xi ≥ yi ∧ Γ 
|= xi > yi ∧ Γ 
|= xi = yi

? , if Γ does not entail any relation on xi, yi

From a complexity point of view, it is important to note that the tests Γ |= xi ◦ yi

where ◦ ∈ {<,≤, =,≥, >} can be implemented by domain bound inspection, and are
all O(1) in any reasonable domain representation; see left part of Fig. 1.

Si Condition
< xi < yi

= xi = xi = yi = yi

> xi > yi

≤ xi = yi ∧ xi < yi

≥ yi = xi ∧ yi < xi

? otherwise

?

≤

��������
≥

��������

< =

��������

��������
>

D(x) D(y) Signature letter

{0, 1} {0, 1} ?
{0} {0, 1} ≤
{0} {1} <

Fig. 1. Computing the signature letter at position i
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The letters of A (except $ ) form the partially ordered set (A,�) of Fig. 1. For all
≤lex constraints C and all i (0 ≤ i < n), we have that:

Γ ′ � Γ ⇒ σ(C, Γ ′,A)i � σ(C, Γ,A)i

The right part of Fig. 1 also illustrates how a signature letter becomes more ground
(smaller wrt. �) as the constraint store gets tighter.

3.2 Finite Automaton

Fig. 2 shows a deterministic finite automaton LFA for signature strings, from which
we shall derive the filtering algorithm, and the automaton at work on a small example.
State 1 is the initial state. There are seven terminal states, F, T1–T3 and D1–D3, each
corresponding to a separate case. Case F is the failure case; cases T1–T3 are cases
where the algorithm detects that either C must hold or C can be replaced by a < or a
≤ constraint; cases D1–D3 are cases where ground instances of C can be either true or
false, and so the algorithm must suspend.

Fig. 2. Case analysis of ≤lex as finite automaton LFA and an example, where the automaton stops
in state T3, detecting entailment.
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3.3 Case Analysis

We now discuss seven regular expressions covering all possible cases of signatures of C.
Where relevant, we also derive pruning rules for maintaining hyperarc consistency. Each
regular expression corresponds to one of the terminal states of LFA. Note that, without

loss of generality, each regular expression has a common prefix P = ( = | ≥ )
�

. For

C to hold, clearly for each position i ∈ P where Si = ≥ , we must enforce xi = yi.
We assume that the filtering algorithm does so in each case. In the regular expressions, q
denotes the position of the transition out of state 1, r denotes the position of the transition
out of state 2, and s denotes the position of the transition out of state 3 or 4. We now
discuss the cases one by one.

Case F.

( = | ≥ )
�

> A� (F)

Clearly, if the signature of C is accepted by F, the signature of any ground instance will
contain a > before the first < , if any, so C has no solution.

Case T1.

( = | ≥ )
�

︸ ︷︷ ︸
P

( < | $ )
︸ ︷︷ ︸

q

A� (T1)

C will hold; we are done.

Case T2.

( = | ≥ )
�

︸ ︷︷ ︸
P

( ≤ | ? )
︸ ︷︷ ︸

q

( = | ≥ )
�

> A� (T2)

For C to hold, we must enforce xq < yq, in order for there to be at least one < preceding
the first > in any ground instance.

Case T3.

( = | ≥ )
�

︸ ︷︷ ︸
P

( ≤ | ? )
︸ ︷︷ ︸

q

( = | ≤ )
�

( < | $ ) A� (T3)

For C to hold, all we have to do is to enforce xq ≤ yq.

Case D1.

( = | ≥ )
�

︸ ︷︷ ︸
P

( ≤ | ? )
︸ ︷︷ ︸

q

= � ?
︸︷︷︸

r

A� (D1)

Consider the possible ground instances. Suppose that xq > yq. Then C is false. Suppose
instead that xq < yq. Then C holds no matter what values are taken at r. Suppose instead
that xq = yq. Then C is false iff xr > yr. Thus, the only relation at q and r that doesn’t
have support is xq > yq, so we enforce xq ≤ yq.
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Case D2.

( = | ≥ )
�

︸ ︷︷ ︸
P

( ≤ | ? )
︸ ︷︷ ︸

q

= � ≥
︸︷︷︸

r

( = | ≥ )
�

( < | ≤ | ? | $ )
︸ ︷︷ ︸

s

A� (D2)

Consider the possible ground instances. Suppose that xq > yq. Then C is false. Suppose
instead that xq < yq. Then C holds no matter what values are taken in [r, s]. Suppose
instead that xq = yq. Then C is false iff xr > yr∨· · ·∨xs−1 > ys−1∨(s < n∧xs > ys).
Thus, the only relation in [q, s] that doesn’t have support is xq > yq, so we enforce
xq ≤ yq.

Case D3.

( = | ≥ )
�

︸ ︷︷ ︸
P

( ≤ | ? )
︸ ︷︷ ︸

q

= � ≤
︸︷︷︸

r

( = | ≤ )
�

( > | ≥ | ? )
︸ ︷︷ ︸

s

A� (D3)

Consider the possible ground instances. Suppose that xq > yq. Then C is false. Suppose
instead that xq < yq. Then C holds no matter what values are taken in [r, s]. Suppose
instead that xq = yq. Then C is false iff xr = yr ∧ · · · ∧ xs−1 = ys−1 ∧ xs > ys. Thus,
the only relation in [q, s] that doesn’t have support is xq > yq, so we enforce xq ≤ yq.

3.4 Non-incremental Filtering Algorithm

By augmenting LFA with the pruning actions mentioned in Sect. 3.3, we arrive at a
filtering algorithm for ≤lex, FiltLex. When a constraint is posted, the algorithm will
succeed, fail or delay, depending on where LFA stops. In the delay case, the algorithm
will restart from scratch whenever a propagation event (a bounds adjustment) arrives,
until it eventually succeeds or fails. We summarize the properties of FiltLex in the
following proposition.

Proposition 1.

1. FiltLex covers all cases of ≤lex.
2. FiltLex doesn’t remove any solutions.
3. FiltLex doesn’t admit any non-solutions.
4. FiltLex never suspends when it could in fact decide, from inspecting domain

bounds, that the constraint is necessarily true or false.
5. FiltLex maintains hyperarc consistency.
6. FiltLex runs in O(n) time.

3.5 Incremental Filtering Algorithm

In a tree search setting, it is reasonable to assume that each variable is fixed one by
one after posting the constraint. In this scenario, the total running time of FiltLex for
reaching a leaf of the search tree would be O(n2). We can do better than that. In this
section, we shall develop incremental handling of propagation events so that the total
running time is O(n+m) for handling m propagation events after posting the constraint.
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Assume that a C ≡ �x ≤lex �y constraint has been posted, FiltLex has run initially,
has reached one of its suspension cases, possibly after some pruning, and has suspended,
recording: the state u ∈ {2, 3, 4} that preceded the suspension, and the positions q, r, s.
Later on, a propagation event arrives on a variable xi or yi, i.e. one or more of xi, xi, yi

and yi have changed.
We assume that updates of the constraint store and of the variables u, q, r, s are

trailed [8], so that their old values can be restored on backtracking. Thus whenever the
algorithm resumes, the constraint store will be tighter than last time (modulo backtrack-
ing). We shall now discuss the various cases for handling the event.

Naive Event Handling. Our first idea is to simply restart the automaton at position i,
in state u. The reasoning is that either everything up to position i is unchanged, or there
is a pending propagation event at position j < i, which will be dealt with later:

– i ∈ P is impossible, for after enforcing xi = yi for all i ∈ P , all those variables are
ground. This follows from the fact that:

xi = xi = yi = yi, if Γ |= xi = yi

xi = yi, if Γ |= xi ≥ yi
(1)

for any constraint store Γ .
– If i = q, we resume in state 1 at position i.
– If i = r, we resume in state 2 at position i.
– If u > 2 ∧ i = s, we resume in state u at position i.
– If u > 2 ∧ r < i < s:

• If the signature letter at position i is unchanged or is changed to = , we do
nothing.

• Otherwise, we resume in state u at position i, immediately reaching a terminal
state.

– Otherwise, we just suspend, as LFA would perform the same transitions as last time.

Better Event Handling. The problem with the above event handling scheme is that if
i = q, we may have to re-examine any number of signature letters in states 2, 3 and 4
before reaching a terminal state. Similarly, if i = r, we may have to re-examine any
number of positions in states 3 and 4. Thus, the worst-case total running time remains
O(n2). We can remedy this problem with a simple device: when the finite automaton
resumes, it simply ignores the following positions:

– In state 2, any letter before position r is ignored. This is safe, for the ignored letters
will all be = .

– In states 3 and 4, any letter before position s is ignored. Suppose that there is a
pending propagation event with position j, r < j < s and that Sj has changed to
< (in state 3) or > (in state 4), which should take the automaton to a terminal

state. The pending event will lead to just that, when it is processed.
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Incremental Filtering Algorithm. Let FiltLexI be the FiltLex algorithm aug-
mented with the event handling described above. As before, we assume that each time
the algorithm resumes, the constraint store will be tighter than last time. We summarize
the properties of FiltLexI in Proposition 2.

Proposition 2.

1. FiltLex and FiltLexI are equivalent.
2. The total running time of FiltLexI for posting a ≤lex constraint followed by m

propagation events is O(n + m).

4 Case Study: lex chain

In this section, we consider a chain of ≤lex constraints, lex chain(�x0, . . . , �xm−1) ≡
�x0 ≤lex · · · ≤lex �xm−1. As mentioned in [9], chains of lexicographic ordering con-
straints are commonly used for breaking symmetries arising in problems modelled with
matrices of decision variables. The authors conclude that finding an hyperarc consis-
tency algorithm for lex chain “may be quite challenging”. This section addresses this
open question. Our contribution is a filtering algorithm for lex chain, which maintains
hyperarc consistency and runs in O(nmd) time per invocation, where d is the cost of
certain domain operations (see Sect. 1).

The key idea of the filtering algorithm is to compute feasible lower and upper bounds
for each vector �xi, and to prune the domains of the individual variables wrt. these bounds.
Thus at the heart of the algorithm is the ancillary constraint between(�a, �x,�b), which is a
special case of a conjunction of two ≤lex constraints. The point is that we have to consider
globally both the lower and upper bound, lest we miss some pruning, as illustrated by
Fig. 3.

We devote most of this section to the between constraint, applying the finite automa-
ton approach to it. We then give some additional building blocks required for a filtering
algorithm for lex chain, and show how to combine it all.

x ∈ 1..3
y ∈ 1..3
between(〈1, 3〉, 〈x, y〉, 〈2, 1〉)

Fig. 3. The between constraint. 〈1, 3〉 ≤lex 〈x, y〉 ≤lex 〈2, 1〉 has no solution for y = 2, but the
conjunction of the two ≤lex constraints doesn’t discover that.
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4.1 Definition and Declarative Semantics of between

Given two vectors, �a and �b of n integers, and a vector �x of n variables, let C ≡
between(�a, �x,�b) denote the constraint �a ≤lex �x ≤lex �b.

For technical reasons, we will need to work with tight, i.e. lexicographically largest
and smallest, as well as feasible wrt. �x2, versions �a′ and �b′ of �a and�b, i.e.:

∀i ∈ [0, n) : a′
i ∈ D(xi) ∧ b′

i ∈ D(xi) (2)

This is not a problem, for under these conditions, the between(�a, �x,�b) and
between(�a′, �x, �b′) constraints have the same set of solutions. Algorithms for computing
�a′ and �b′ from �a,�b and �x are developed in Sect. 4.6.

It is straightforward to see that the declarative semantics is:

C ≡
∨






n = 0 (3.1)
a′
0 = x0 = b′

0 ∧ �a′
[1,n) ≤lex �x[1,n) ≤lex �b′

[1,n) (3.2)
a′
0 = x0 < b′

0 ∧ �a′
[1,n) ≤lex �x[1,n) (3.3)

a′
0 < x0 = b′

0 ∧ �x[1,n) ≤lex �b′
[1,n) (3.4)

a′
0 < x0 < b′

0 (3.5)

(3)

and hence, for all i ∈ [0, n):

C ∧ (a′
0 = b′

0) ∧ · · · ∧ (a′
i−1 = b′

i−1) ⇒ a′
i ≤ xi ≤ b′

i (4)

4.2 Signatures of between

Let B be the alphabet { < , <̂ , = , =̂ , > , >̂ , $ }. The signature S = σ(C, Γ,B)

of C wrt. a constraint store Γ is defined by Sn = $ , to mark the end of the string, and
for 0 ≤ i < n:

Si =






< , if a′
i < b′

i ∧ Γ |= (xi ≤ a′
i ∨ xi ≥ b′

i)
<̂ , if a′

i < b′
i ∧ Γ 
|= (xi ≤ a′

i ∨ xi ≥ b′
i)

= , if a′
i = b′

i ∧ Γ |= a′
i = xi = b′

i

=̂ , if a′
i = b′

i ∧ Γ 
|= a′
i = xi = b′

i

> , if a′
i > b′

i ∧ Γ |= b′
i ≤ xi ≤ a′

i

>̂ , if a′
i > b′

i ∧ Γ 
|= b′
i ≤ xi ≤ a′

i

From a complexity point of view, we note that the tests Γ |= a′
i = xi = b′

i and
Γ |= b′

i ≤ xi ≤ a′
i can be implemented with domain bound inspection and run in

constant time, whereas the test Γ |= (xi ≤ a′
i ∨ xi ≥ b′

i) requires the use of next value
or prev value, and has cost d; see Table 1.

2 The adjective feasible refers to the requirement that �a′ and �b′ be instances of �x.
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Table 1. Computing the signature letter at position i. Note that if a < b then next value(x, a) ≥ b
holds iff D(x) has no value in (a, b).

Si Condition
< a′

i < b′
i ∧ next value(xi, a

′
i) ≥ b′

i

<̂ a′
i < b′

i ∧ next value(xi, a
′
i) < b′

i

= xi = xi = a′
i = b′

i

=̂ xi �= a′
i = b′

i ∨ xi �= a′
i = b′

i

> a′
i > b′

i ∧ b′
i ≤ xi ≤ xi ≤ a′

i

>̂ a′
i > b′

i ∧ (xi < b′
i ∨ a′

i < xi)

4.3 Finite Automaton for between

Fig. 4 shows a deterministic finite automaton BFA for signature strings, from which we
shall derive the filtering algorithm. State 1 is the initial state. There are three terminal
states, F, T1 and T2, each corresponding to a separate case. State F is the failure case,
whereas states T1–T2 are success cases.

Fig. 4. Case analysis of between(�a, �x,�b) as finite automaton BFA, and an example, where BFA
stops in state T2.

4.4 Case Analysis of between

We now discuss three regular expressions covering all possible cases of signatures of C.
Where relevant, we also derive pruning rules for maintaining hyperarc consistency. Each
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regular expression corresponds to one of the terminal states of BFA. Note that, without

loss of generality, each regular expression has a common prefix P = ( = | =̂ )
�

.
For C to hold, clearly for each position i in the corresponding prefix of �x, by (3.2) the
filtering algorithm must enforce a′

i = xi = b′
i. In the regular expressions, q and r denote

the position of the transition out of state 1 and 2 respectively. We now discuss the cases
one by one.

Case F.

( = | =̂ )
�

︸ ︷︷ ︸
P

( > | >̂ )
︸ ︷︷ ︸

q

B� (F)

We have that a′
0 = b′

0 ∧ · · · ∧ a′
q−1 = b′

q−1 ∧ a′
q > b′

q, and so by (4), C must be false.

Case T1.

( = | =̂ )
�

︸ ︷︷ ︸
P

( <̂ | $ )
︸ ︷︷ ︸

q

B� (T1)

We have that a′
0 = b′

0 ∧ · · · ∧ a′
q−1 = b′

q−1 ∧ (q = n ∨ a′
q < b′

q). If q = n, we are done
by (3.1) and (3.2). If q < n, we also have that (a′

q, b
′
q) ∩ D(xq) 
= ∅. Thus by (3.5), all

we have to do after P for C to hold is to enforce a′
q ≤ xq ≤ b′

q.

Case T2.

( = | =̂ )
�

︸ ︷︷ ︸
P

<
︸︷︷︸

q

( > | = )
�

( < | <̂ | =̂ | >̂ | $ )
︸ ︷︷ ︸

r

B� (T2)

We have that:

∧






a′
0 = b′

0 ∧ · · · ∧ a′
q−1 = b′

q−1
a′

q < b′
q

(a′
q, b

′
q) ∩ D(xq) = ∅

a′
q+1 ≥ b′

q+1 ∧ · · · ∧ a′
r−1 ≥ b′

r−1
∀i ∈ (q, r) : b′

i ≤ xi ≤ xi ≤ a′
i

Consider position q, where a′
q < b′

q and (a′
q, b

′
q) ∩ D(xq) = ∅ hold. Since by (4)

a′
q ≤ xq ≤ b′

q should also hold, xq must be either a′
q or b′

q, and we know from (2) that
both xq = a′

q and xq = b′
q have support.

It can be shown by induction that there are exactly two possible values for the
subvector �x[0,r): �a′

[0,r) and �b′
[0,r).

Thus for C to hold, after P we have to enforce xi ∈ {a′
i, b

′
i} for q ≤ i < r. From

(3.3) and (3.4), we now have that C holds iff

∨
{

�x[0,r) = �a′
[0,r) ∧ �a′

[r,n) ≤lex �x[r,n)

�x[0,r) = �b′
[0,r) ∧ �x[r,n) ≤lex �b′

[r,n)

i.e.
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∨






r = n ∧ �x[0,r) = �a′
[0,r) (5.1)

r = n ∧ �x[0,r) = �b′
[0,r) (5.2)

r < n ∧ �x[0,r) = �a′
[0,r) ∧ xr > a′

r (5.3)
r < n ∧ �x[0,r) = �a′

[0,r) ∧ xr = a′
r ∧ �a′

(r,n) ≤lex �x(r,n) (5.4)
r < n ∧ �x[0,r) = �b′

[0,r) ∧ xr < b′
r (5.5)

r < n ∧ �x[0,r) = �b′
[0,r) ∧ xr = b′

r ∧ �x(r,n) ≤lex �b′
(r,n) (5.6)

(5)

Finally, consider the possible cases for position r, which are:

– r = n, signature letter $ . We are done by (5.1) and (5.2).

– a′
r < b′

r, signature letters < and <̂ . Then from (2) we know that we have solutions
corresponding to both (5.3) and (5.5). Thus, all values for �x[r,n) have support, and
we are done.

– a′
r ≥ b′

r, signature letters >̂ and =̂ . Then from (2) and from the signature letter,
we know that we have solutions corresponding to both (5.4), (5.6), and one or both
of (5.3) and (5.5). Thus, all values v for xr such that v ≤ b′

r ∨v ≥ a′
r, and all values

for �x(r,n), have support. Hence, we must enforce xr 
∈ (b′
r, a

′
r).

4.5 Filtering Algorithm for between

By augmenting BFA with the pruning actions mentioned in Sect. 4.4, we arrive at a
filtering algorithm FiltBetween ([5, Alg. 1]) for between(�a, �x,�b) . When a constraint
is posted, the algorithm will delay or fail, depending on where BFA stops. The filtering
algorithm needs to recompute feasible upper and lower bounds each time it is resumed.
We summarize the properties of FiltBetween in the following proposition.

Proposition 3.

1. FiltBetween doesn’t remove any solutions.
2. FiltBetween removes all domain values that cannot be part of any solution.
3. FiltBetween runs in O(nd) time.

4.6 Feasible Upper and Lower Bounds

We now show how to compute the tight, i.e. lexicographically largest and smallest,
and feasible vectors �a′ and �b′ that were introduced in Sect. 4.1, given a constraint
between(�a, �x,�b).

Upper Bounds. The algorithm, ComputeUB(�x,�b, �b′), has two steps. The key idea is to
find the smallest i, if it exists, such that b′

i must be less than bi.

1. Compute α as the smallest i ≥ −1 such that one of the following holds:
a) i ≥ 0 ∧ bi 
∈ D(xi) ∧ bi > xi

b) �b(i,n) <lex �x(i,n)
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In both cases, a value b′
i < bi must be chosen from D(xi). If no such i exists,

let α = n. If α = −1, the algorithm fails, meaning that �x ≤lex �b can’t hold. For
example, α = 1 in the example shown in Fig. 4. See [5, Alg. 2].

2. b′
i is computed as follows for 0 ≤ i < n:

b′
i =






bi, if i < α
prev value(xi, bi), if i = α
xi, if i > α

We summarize the properties of ComputeUB in the following lemma.

Lemma 1. ComputeUB is correct and runs in O(n + d) time.

Lower Bounds. The feasible lower bound algorithm, ComputeLB, is totally analogous
to ComputeUB, and not discussed further.

4.7 Filtering Algorithm

We now have the necessary building blocks for constructing a filtering algorithm for
lex chain; see [5, Alg. 3]. The idea is as follows. For each vector in the chain, we first
compute a tight and feasible upper bound by starting from �xm−1. We then compute a tight
and feasible lower bound for each vector by starting from �x0. Finally for each vector,
we restrict the domains of its variables according to the bounds that were computed in
the previous steps. Any value removal is a relevant propagation event. We summarize
the properties of FiltLexChain in the following proposition.

Proposition 4.

1. FiltLexChain maintains hyperarc consistency.
2. If there is no variable aliasing, FiltLexChain reaches a fixpoint after one run.
3. If there is no variable aliasing, FiltLexChain runs in O(nmd) time.

5 Related Work

Within the area of logic, automata have been used by associating with each formula
defining a constraint an automaton recognizing the solutions of the constraint [10].

An O(n) filtering algorithm maintaining hyperarc consistency of the ≤lex constraint
was described in [9]. That algorithm is based on the idea of using two pointers α and
β. The α pointer gives the position of the most significant pair of variables that are not
ground and equal, and corresponds to our q position. The β pointer, if defined, gives the
most significant pair of variables from which ≤lex cannot hold. It has no counterpart in
our algorithm. As the constraint store gets tighter, α and β get closer and closer, and
the algorithm detects entailment when α + 1 = β ∨ xα < yα. The algorithm is only
triggered on propagation events on variables in [α, β). It does not detect entailment as
eagerly as ours, as demonstrated by the example in Fig. 2. FiltLex detects entailment
on this example, whereas Frisch’s algorithm does not. Frisch’s algorithm is shown to
run in O(n) on posting a constraint as well as for handling a propagation event.
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6 Discussion

The main result of this work is an approach to designing filtering algorithms by derivation
from finite automata operating on constraint signatures. We illustrated this approach in
two case studies, arriving at:

– A filtering algorithm for ≤lex, which maintains hyperarc consistency, detects en-
tailment or rewrites itself to a simpler constraint whenever possible, and runs in
O(n) time for posting the constraint plus amortized O(1) time for handling each
propagation event.

– A filtering algorithm for lex chain, which maintains hyperarc consistency and runs
in O(nmd) time per invocation, where d is the cost of certain domain operations.

In both case studies, the development of the algorithms was mainly manual and
required several inspired steps. In retrospect, the main benefit of the approach was to
provide a rigorous case analysis for the logic of the algorithms being designed. Some
work remains to turn the finite atomaton approach into a methodology for semi-automatic
development of filtering algorithms. Relevant, unsolved research issues include:

1. What class of constraints is amenable to the approach? It is worth noting that
≤lex and between can both be defined inductively, so it is tempting to conclude that
any inductively defined constraint is amenable. Constraints over sequences [11,12]
would be an interesting candidate for future work.

2. Where does the alphabet come from? In retrospect, this was the most difficult
choice in the two case studies. In the ≤lex case, the basic relations used in the
definition of the constraint are {<,=, >}, each symbols of A denoting a set of such
relations. In the between case, the choice of alphabet was far from obvious and
was influenced by an emerging understanding of the necessary pruning rules. As a
general rule, the cost of computing each signature letter has a strong impact on the
overall complexity, and should be kept as low as possible.

3. Where does the finite automaton come from? Coming up with a regular language
and corresponding finite automaton for ground instances is straightforward, but there
is a giant leap from there to the nonground case. In our case studies, it was mainly
done as a rational reconstruction of an emerging understanding of the necessary
case analysis.

4. Where do the pruning rules come from? This was the most straightforward part in
our case studies. At each non-failure terminal state, we analyzed the corresponding
regular language, and added pruning rules that prevented there from being failed
ground instances, i.e. rules that removed domain values with no support.

5. How do we make the algorithms incremental? The key to incrementality for ≤lex
was the observation that the finite automaton could be safely restarted at an internal
state. This is likely to be a general rule for achieving some, if not all, incrementality.
We could have done this for between(�a, �x,�b), except in the context of lex chain,
between is not guaranteed to be resumed with �a and �b unchanged, and the cost of
checking this would probably outweigh the savings of an incremental algorithm.
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