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Abstract. Periodicity constraints are present in many logical for-
malisms, in fragments of Presburger LTL, in calendar logics, and in log-
ics for access control, to quote a few examples. We introduce the logic
PLTLmod, an extension of Linear-Time Temporal Logic LTL with past-
time operators whose atomic formulae are defined from a first-order con-
straint language dealing with periodicity. The underlying constraint lan-
guage is a fragment of Presburger arithmetic shown to admit a pspace-
complete satisfiability problem and we establish that PLTLmod model-
checking and satisfiability problems are in pspace as plain LTL. The logic
PLTLmod is a quite rich and concise language to express periodicity con-
straints. We show that adding logical quantification to PLTLmod provides
expspace-hard problems. As another application, we establish that the
equivalence problem for extended single-string automata, known to ex-
press the equality of time granularities, is pspace-complete. The paper
concludes by presenting a bunch of open problems related to fragments
of Presburger LTL.

1 Introduction

Presburger Constraints. Presburger constraints are present in many logical for-
malisms including extensions of Linear-Time Logic LTL, see e.g. [AH94,Čer94]
(and also [BEH95,CC00,BC02,DD02]). Formalisms with such constraints are also
known to be well-suited for the specification and verification of infinite-state sys-
tems, see e.g. [BH99,WB00,FL02].

In the paper, we are interested in models of Presburger LTL that are ω-
sequences of valuations for a given set VAR of integer variables taking their
values in Z and the atomic formulae are Presburger arithmetic constraints with
free variables in VAR. For instance, φ = �(Xx = x) states that the value of the
variable x is constant over the time line where Xx denotes the value of x at the
next state. A model of φ is simply an ω-sequence in (Z)ω. The counterpart of the
high expressive power of Presburger LTL rests on its undecidability, shown by
a standard encoding of the halting problem for two-counter machines. However,
to regain decidability one can either restrict the underlying constraint language,
see e.g. [AH94, Sect. 3] and [DD02], or restrict the logical language, see e.g. a
decidable flat fragment of Presburger LTL in [CC00]. Herein, we shall consider
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versions of LTL with Presburger constraints with the full logical language (mainly
LTL with past-time operators sometimes augmented with first-order quantifiers)
but with strict fragments of Presburger arithmetic.

Our motivation. Integer periodicity constraints, a special class of Presburger
constraints, have found applications in many logical formalisms such as DAT-
ALOG with integer periodicity constraints [TC98], logical formalisms dealing
with calendars, see e.g. [Ohl94,Wij00,CFP02], temporal reasoning in database
access control [BBFS96,BBFS98], and reasoning about periodic time in general-
ized databases, see e.g. [NS92]. In view of the ubiquity of such constraints, the
main motivation of the current work is to design a variant of LTL over a language
for integer periodicity constraints that satisfies the following nice properties.
– The logical language contains at least LTL (no flatness restriction).
– The constraint language is expressive enough to capture most integer peri-

odicity constraints used in calendar logics and in database access control.
For instance, in [CFP02], the authors advocate the need to design an ex-
tension of LTL that expresses quantitative temporal requirements, such as
periodicity constraints. We provide in the paper such an extension.

– Model-checking and satisfiability remain in pspace and possibly to adapt
the technique with Büchi automata [VW94] to this new extension of LTL.

Last but not least, as a long-term project, we wish to understand what are
the decidable fragments of Presburger LTL by restricting the constraint language
but with the full logical language.

Our contribution. We introduce a decidable fragment of Presburger LTL that
satisfies the above-mentioned requirements. Let us be a bit more precise.
1. We introduce a first-order theory of integer periodicity constraints IPC++

and we show its pspace-completeness (Sects. 2 and 3). This is a fragment
of Presburger arithmetic that extends the one from [TC98].

2. We show the pspace-completeness of PLTL (LTL with past-time operators)
over IPC++ (logic denoted by PLTLmod in the paper) by using Büchi au-
tomata (Sect. 4) in the line of [VW94].

3. We prove that adding the existential operator ∃ at the logical level (∃ is
already present at the constraint level) may lead to an exponential blow-
up of the complexity (Sect. 5). We show that PLTL(IPC+), a fragment of
PLTLmod, augmented with ∃ has a satisfiability problem in expspace and
PLTLmod augmented with ∃ is expspace-hard.

4. As an application, we show the pspace-completeness of the equivalence prob-
lem for the extended single-string automata improving the complexity bound
from [LM01, Sect. 5] (Sect. 6). Extended single-string automata are Büchi
automata that recognize exactly one ω-word and guards involving period-
icity constraints are present on the transitions. This formalism has been
introduced as a concise means to define time granularities and the equiv-
alence problem for such automata is central to check the equality of time
granularities, see also [Wij00].

Because of lack of space, the proofs are omitted and can be found in [Dem03].
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2 PLTL over Periodicity Constraints

2.1 Constraint Languages

Let VAR = {x0, x1, . . .} be a countably infinite set of variables. The constraint
language IPC is defined by the grammar p ::= x ≡k y+c | x ≡k c | p∧p | ¬p,
where k, c ∈ N. A simple periodicity constraint is a conjunction of constraints
of the form either x ≡k y + c or x ≡k c. Given X ⊆ {∃, [], <,=}, we define an
extension of IPC, namely IPCX , by adding clauses to the definition of IPC:

– if ∃ ∈ X, then the clause ∃ x p is added (existential quantification);
– if [] ∈ X, then the clause x ≡k y + [c1, c2] with c1, c2 ∈ N is added;
– if =∈ X, then the clause x = y with x, y ∈ VAR is added;
– if <∈ X, then the clauses x < c | x > c | x = c with x ∈ VAR and c ∈ Z

are added.

In the sequel, IPC+ denotes IPC{∃,[],<} and IPC++ denotes IPC{∃,[],<,=}, which
is the richer constraint language considered in the paper. IPC++ is the extension
of the language of the first-order theory of integer periodicity constraints intro-
duced in [TC98] but with the inclusion of negation as in [BBFS96]. A semi-simple
periodicity constraint is a conjunction between a simple periodicity constraint
and a conjunction of atomic constraints of the form x ∼ c with ∼∈ {<,>,=}.
The interpretation of the constraints is standard (v is a map v : VAR→ Z):

– v |= x ∼ c def⇔ v(x) ∼ c with ∼∈ {<,>,=}; v |= x = y
def⇔ v(x) = v(y);

– v |= x ≡k c
def⇔ v(x) is equal to c modulo k;

– v |= x ≡k y + c
def⇔ v(x)− v(y) is equal to c modulo k;

– v |= x ≡k y + [c1, c2]
def⇔ v(x) − v(y) is equal to c modulo k for some

c1 ≤ c ≤ c2;
– v |= p ∧ p′ def⇔ v |= p and v |= p′; v |= ¬p def⇔ not v |= p;
– v |= ∃ x p def⇔ there is c ∈ Z s.t. v[x← c] |= p where v[x← c](x′) = v(x′) if
x′ �= x, and v[x← c](x) = c.

Given p in IPC++ with free variables x1, . . . , xk (in the order of enumeration
of the variables), sol(p) denotes the set of k-tuples 〈n1, . . . , nk〉 ∈ Z

k such that
[x1 ← n1, . . . , xk ← nk] |= p. Given a constraint language L, the L-satisfiability
problem is to decide given a constraint p ∈ L whether sol(p) is non-empty.
Without any loss of generality, we assume that p contains at least one free
variable (otherwise consider (x1 ≡1 0) ∧ p and x1 does not occur in p) and in p
a variable cannot occur both free and bounded.

The expressive power of a constraint language L is measured by the set
{sol(p) : p ∈ L}. For instance, IPC{∃,<} is as expressive as IPC+ since x ≡k

y+[c1, c2] is equivalent to
∨

c1≤c≤c2
x ≡k y+ c. However, because all the natural

numbers are encoded in binary, IPC+ may be more concise than IPC{∃,<}. The
introduction of the concise atomic constraints of the form x ≡k y + [c1, c2] is
motivated by the existence of such constraints in the calendar logic from [Ohl94].
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2.2 Definition of PLTLmod

The atomic formulae of PLTLmod are expressions of the form p[x1 ← Xi1xj1 , . . . ,
xk ← Xikxjk

] where p is a constraint of IPC++ with free variables x1, . . . , xk (in
the order of enumeration of the variables) and p[x1 ← Xi1xj1 , . . . , xk ← Xikxjk

]
is obtained from p by replacing every occurrence of xu by xju preceded by iu
next symbols for 1 ≤ u ≤ k. For instance, the formula x ≡2 0 ∧�(Xx ≡2 x+ 1)
states that the value of x is even on states of even indices. Otherwise stated,
the atomic formulae of PLTLmod are the constraints of IPC++ except that the
variables are of the form Xjxi. The formulae of PLTLmod are defined by the
grammar φ ::= p[x1 ← Xi1xj1 , . . . , xk ← Xikxjk

] | ¬φ | φ ∧ φ | Xφ | φUφ |
X−1φ | φSφ, where p belongs to IPC++. As usual, X is the next-time operator,
X−1 is the previous past-time operator, U is the until operator, and S is the
since past-time operator. We write PLTL(L) to denote the variant of PLTLmod

where the atomic formulae are built from the constraint language L: PLTLmod is
simply PLTL(IPC++). We write LTL(L) to denote the restriction of PLTL(L) to
the future-time operators X and U. We include past-time operators in the logic
in order to capture the conciseness of LTL with past considered in [CFP02].
However, the addition of a finite amount of MSO-definable temporal operators
still guarantees the (forthcoming) pspace upper bound thanks to [GK03].

A model σ for PLTLmod is an ω-sequence of valuations of the form σ :
N×VAR→ Z. The satisfiability relation |= is inductively defined below:

– σ, i |= p[x1 ← Xi1xj1 , . . . , xk ← Xikxjk
] iff [x1 ← σ(i + i1, xj1), . . . , xk ←

σ(i+ ik, xjk
)] |= p (for IPC++);

– σ, i |= φ ∧ φ′ iff σ, i |= φ and σ, i |= φ′; σ, i |= ¬φ iff not σ, i |= φ;
– σ, i |= Xφ iff σ, i+ 1 |= φ; σ, i |= X−1φ iff i > 0 and σ, i− 1 |= φ;
– σ, i |= φUφ′ iff there is j ≥ i s.t. σ, j |= φ′ and for every i ≤ k < j, σ, k |= φ;
– σ, i |= φSφ′ iff there is 0 ≤ j ≤ i s.t. σ, j |= φ′ and for every j < k ≤ i,
σ, k |= φ.

A very important aspect of PLTLmod rests on the fact that the values of variables
at different states can be compared. We use the standard abbreviations �φ, . . .
The satisfiability problem for PLTLmod is to decide given a formula φ whether
there is σ such that σ, 0 |= φ. A few other remarks are in order. No propositional
variables are part of PLTLmod but they can be easily simulated. Furthermore,
we can simulate the access to past values of variables. For instance, X−2x = x
can be translated into X−1X−1� ∧ X−1X−1(x = X2x) assuming that if X−2x is
undefined, then the atomic constraint is interpreted by false. When complexity
issues are considered, all the integers are encoded in binary representation.

PLTLmod is a quite rich and concise language to express periodicity con-
straints. Formulae of PLTLmod encode calendars and slices from [NS92], and for-
mulae of the form [τ ]φ from [Ohl94] where [τ ]φ is interpreted by “for every point
of the interval τ , the formula φ holds” can be encoded by �(τ ′ ⇒ φ). Here τ ′ is a
constraint in IPC++ encoding τ . Unlike what is done in [Ohl94], no exponential-
time reduction to propositional calculus (PC) is performed. PLTLmod allows
more efficient reasoning than an expensive translation into PC (see details in
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Sect. 4). Furthermore, we provide a quantitative version of LTL that meet the
requirements from [CFP02] in order to deal with periodicity constraints.

2.3 Model-Checking

The languages of the form PLTL(L) are of course well-designed to perform
model-checking of counter automata, similarly to what is done in [Čer94,DD03].
Given a constraint language L, a PLTL(L)-automaton is a Büchi automaton

A over the alphabet of PLTL(L) formulas: transitions are of the form q
φ−→ q′.

To each ω-word w = φ0φ1 · · · accepted by A, we associate a model σ which
satisfies σ, i |= φi for i ≥ 0. Let l(A) denote the set l(A) = {σ : N × VAR →
Z | ∃w accepted by A such that σ, i |= w(i) for each i}. The model-checking
problem for PLTL(L) is defined as follows: given a PLTL(L)-automaton A and
a PLTL(L) formula φ, is there a σ ∈ l(A) such that σ |= φ?

Theorem 1. The model-checking and satisfiability problems for PLTLmod are
inter-reducible with respect to logspace transformations.

The proof is similar to the proof of [DD03, Theorem 8.3]. That is why in the
sequel, only satisfiability problems are explicitly treated.

3 First-Order Theory of Integer Periodicity Constraints

Given p in IPC++ with free variables x1, . . . , xk, we shall construct a finite
partition of Z

k such that (1) every region can be represented by a semi-simple
periodicity constraint, and (2) for all k-tuples z and z′ in a given region of the
partition, z ∈ sol(p) iff z′ ∈ sol(p). In this way, we are able to finitely represent
the set of solutions sol(p) and such a representation is easy to manipulate since
it can be viewed as a disjunction of semi-simple periodicity constraints. This is
actually a standard requirement when an infinite set of tuples has to be finitely
abstracted, see e.g. the clock regions for timed automata in [AD94].

3.1 Quantifier Elimination

Quantifier elimination (QE) is a known method to show decidability of logical
theories, see e.g. [Pre29,KK67]. In this section, we establish such a property to
prove the pspace upper bound of the IPC++-satisfiability problem. Let p be a
constraint in IPC++ such that

– c1 < . . . < cn are the constants in p occurring in constraints of the form
x ∼ c with ∼∈ {<,>,=}; we also fix c0 = −∞ and cn+1 = +∞;

– k1, . . . , ku are the natural numbers occurring in constraints of the form x ≡k

y+[d1, d2]; we fixK to be the least common multiple of 1, k1, . . . , ku, denoted
by lcm(1, k1, . . . , ku). K is in 2O(|p|) where |p| is the size of p for some
reasonably succinct encoding.
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Given p, we define an equivalence relation ∼p⊆ Z × Z as follows: z ∼p z′
def⇔ (1) for all i ≤ j ∈ {0, . . . , n + 1}, ci ≤ z ≤ cj iff ci ≤ z′ ≤ cj , and (2) for
every l ∈ {0, . . . ,K − 1}, z ≡K l iff z′ ≡K l. Hence, the number of equivalence
classes of ∼p is bounded by (n + 1) × K, that is in 2O(|p|). The idea behind
the definition of ∼p is simply that z ∼p z

′ iff z and z′ cannot be distinguished
by constraints of IPC+ that use only c1, . . . , cn and k1, . . . , ku. For instance, it
is easy to check that for every j ∈ {1, . . . , n}, {cj} is an equivalence class of
∼p. The relation ∼p extended to tuples will not be a simple component-wise
extension because of the presence equality in IPC++. For k ≥ 1, we say that
〈z1, . . . , zk〉 = z ∼k

p z
′ = 〈z′

1, . . . , z
′
k〉 iff for every i ∈ {1, . . . , k}, zi ∼p z

′
i, and

for all i, j ∈ {1, . . . , k}, zi = zj iff z′
i = z′

j . If x1, . . . , xk are the free variables in
p, we write z ∼p z′ instead of z ∼k

p z
′. The number of equivalence classes of ∼p

(on k-tuples) is bounded by (n+ 1)×K × 2k2
.

Lemma 1. Let p be a constraint in IPC++ with k free variables and z, z′ ∈ Z
k.

z ∈ sol(p) and z ∼p z′ imply z′ ∈ sol(p).

The proof can be found in [Dem03]. Each equivalence class of ∼p on Z can be
represented by a triple 〈i, j, l〉 with i, j ∈ {0, . . . , n+ 1} and l ∈ {0, . . . ,K − 1}
such that (1) i ≤ j ≤ i + 1, (2) if i = j and ci ≡K l then 〈i, j, l〉 represents
the equivalence class {ci}, and (3) if j = i + 1, then 〈i, j, l〉 represents the
equivalence class {z ∈ Z : ci < z < ci+1, and z ≡K l} if this set is non empty.
We introduce the map [·] : Z→ {0, . . . , n+1}2×{0, . . . ,K−1} such that [z] is the
equivalence class of ∼p containing z. For instance, if ci ≡K 0, then [ci] = 〈i, i, 0〉.
By extension, given Y a non-empty finite subset of N of cardinality k representing
a set of variable indices, we introduce the map [·]Y : Z

k → ({0, . . . , n + 1}2 ×
{0, . . . ,K−1})k×P(Y 2) such that [〈z1, . . . , zk〉]Y = 〈〈[z1], . . . , [zk]〉, {〈Ji, Jj〉 ∈
Y 2 : zi = zj}〉, where Y = {J1, . . . , Jk} and J1 < . . . < Jk. If p has free variables
x1, . . . , xk, the finite set ({0, . . . , n + 1}2 × {0, . . . ,K − 1})k × P({1, . . . , k}2)
will represent the equivalence classes of ∼p on k-tuples.
If p contains k free variables x1, . . . , xk, we write Dp to denote the domain
({0, . . . , n + 1}2 × {0, . . . ,K − 1})k × P({1, . . . , k}2) and Dsat

p to denote the
set {[z]{1,... ,k} ∈ Dp : z ∈ sol(p)}. The set Dp is indeed a finite abstraction
of the infinite domain Z

k with respect to the constraint p and Dsat
p is a finite

representation of the possibly infinite set sol(p). In the sequel, we show how an
element of Dsat

p can be represented by a semi-simple periodicity constraint.
To each 〈i, j, l〉 ∈ {0, . . . , n+1}2×{0, . . . ,K−1}, and variable index α ∈ N,

we associate a semi-simple periodicity constraint IPC<(〈i, j, l〉, α) in IPC{<}

with free variable xα defined as follows:

IPC<(〈i, j, l〉, α) = (xα ≡K l) ∧






xα = ci if i = j,
(ci < xα) ∧ (xα < cj)
if j = i+ 1, i �= 0, and j �= n+ 1,
xα < c1 if i = 0 and j = 1,
cn < xα if i = n and j = n+ 1,
undefined otherwise.
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We are now able to show that IPC++ satisfies (QE) by appropriately extend-
ing the map IPC<. To each 〈〈t1, . . . , tk〉, X〉 ∈ Dp we associate a semi-simple
periodicity constraints IPC++(〈〈t1, . . . , tk〉, X〉) defined by

(
∧

1≤i≤k

IPC<(ti, i)) ∧ (
∧

〈i,j〉∈X

xi = xj) ∧ (
∧

〈i,j〉�∈X

¬(xi = xj)).

The following lemma (not difficult to show) makes explicit the relationship be-
tween the constraints generated by the map IPC++(·) and the map [·]{1,... ,k}.

Lemma 2. For all 〈z1, . . . , zk〉 ∈ Z
k and u ∈ Dp, we have [x1 ← z1, . . . , xk ←

zk] |= IPC++(u) iff [〈z1, . . . , zk〉]{1,... ,k} = u.

Theorem 2. IPC++ admits quantifier elimination.

Proof. Let p be a constraint in IPC++ with free variables x1, . . . , xk. We define
below a constraint p′ in IPC++ such that sol(p) = sol(p′):

p′ =
∨

〈〈t1,... ,tk〉,X〉∈Dsat
p

IPC++(〈〈t1, . . . , tk〉, X〉).

Equality between sol(p) and sol(p′) can be proved by using Lemma 2.

3.2 PSPACE-Complete Satisfiability Problem

We establish that IPC++-satisfiability is decidable in polynomial space.

Theorem 3. IPC++-satisfiability is pspace-complete.

Proof. (idea) pspace-hardness is immediate by reducing QBF. Satisfiabil-
ity in pspace can be shown via a procedure similar to first-order model-
checking [CM77], see details in [Dem03]. The pspace upper bound is obtained
since the recursion depth of the procedure is polynomial and quantification over
exponential size sets is performed, which requires only polynomial space.

The pspace-completeness of IPC++-satisfiability does not play in favor of
the tractability of this first-order theory, especially if one compares it with
nlogspace consistency problems. However, Presburger arithmetic is of much
higher complexity and pspace-hardness is the optimal lower bound one can
expect for pspace-complete PLTL over fragments of Presburger arithmetic.

Corollary 1. Let p be a constraint in IPC++. Checking whether u ∈ Dp belongs
to Dsat

p can be done in pspace.

Finally (QE) holds and requires only polynomial space.

Corollary 2. Given a constraint p in IPC++, one can compute an equivalent
quantifier-free p′ in polynomial space in |p| (but |p′| is in O(2|p|)).

This is a mere consequence of the proof of Theorem 2, Corollary 1, and the
fact that the elements of Dp can be enumerated using polynomial space in |p|.
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4 Complexity of PLTLmod

Let φ be a PLTLmod formula with free variables x1, . . . , xs, constants c1 < . . . <
cn (c0 = −∞ and cn+1 = +∞), and natural numbers k1, . . . , ku occurring in the
context of ≡-atomic formulae and their lcm is K. Without any loss of generality,
we can assume that these sets of integers are non-empty. Let X(φ) be one plus
the greatest i for some term Xixj occurring in φ. For instance, X(φ) = 2 with
φ = �(Xx ≡4 x+1). In the sequel, we pose l = X(φ). l is the maximal number of
consecutive states necessary to evaluate an atomic subformula of φ. We provide
below a procedure to decide satisfiability of φ using only polynomial space in
|φ|.

4.1 Abstraction of PLTLmod Models

A model σ of φ is a structure σ : N × {x1, . . . , xs} → Z such that σ, 0 |= φ.
However, each σ(i) : {x1, . . . , xs} → Z can take an infinite amount of values.
By contrast, for classical LTL, there is a finite amount of intepretations over a
finite set of propositional variables. That is why, we abstract such valuations as
elements of a finite set, more precisely the set ({0, . . . , n + 1}2 × {0, . . . ,K −
1})k × P({1, . . . , k}2) with k = s × l. The rest of this section is dedicated to
such abstractions by using Sect. 3.

Another way to understand a function σ : N × {x1, . . . , xs} → Z with the
PLTLmod semantics, is to view it as a structure σ′ : N×({x1, . . . , xs}×{0, . . . , l−
1}) → Z such that (C1) for all i ∈ N, α ∈ {1, . . . , s}, and β ∈ {1, . . . , l − 1},
σ′(i, 〈xα, β〉) = σ′(i+ 1, 〈xα, β − 1〉). In that way, the pair 〈xα, β〉 plays the rôle
of Xβxα. So far, the profile of σ′ depends on φ by the value l and the number of
variables s but one has also to relate σ′ with σ. The condition (C2) below does
the job: (C2) for all i ∈ N and α ∈ {1, . . . , s}, σ′(i, 〈xj , 0〉) = σ(i, xj).

The lemma states the relevance of this encoding.

Lemma 3. φ is satisfiable iff there is a structure σ′ : N × ({x1, . . . , xs} ×
{0, . . . , l − 1}) → Z satisfying (C1) such that σ′, 0 |= φ′ where φ′ is obtained
from φ by replacing every occurrence of Xβxα by 〈xα, β〉.

In Lemma 3 above, we assume that σ′, i |= p[x1 ← 〈xj1 , β1〉, . . . , xd ←
〈xjd

, βd〉] holds true with p ∈ IPC++ and p has free variables x1, . . . , xd when-
ever [x1 ← σ′(i, 〈xj1 , β1〉), . . . , xd ← σ′(i, 〈xjd

, βd〉)] |= p in IPC++. For the
Boolean and temporal operators, the relation |= on structures σ′ is defined in
the homomorphic way.

Let us now abstract the functions of the form σ′ : N × ({x1, . . . , xs} ×
{0, . . . , l − 1}) → Z. We pose k = s × l and we write Dφ to denote the set
({0, . . . , n+ 1}2 × {0, . . . ,K − 1})k ×P({1, . . . , k}2) by similarity to the devel-
opments made in Sect. 3. Dsat

φ is defined as the subset of Dφ which is the image
of [·]{1,... ,k}. In order to relate terms of the form Xβxα and variables xi (i ∈
{1, . . . , k}), we introduce the map f : {x1, . . . , xs}×{0, . . . , l−1} → {1, . . . , k}
as the bijection defined by f(〈xα, β〉) = s×β+α. The inverse function f−1 can be
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easily defined with the operations of the Euclidean division. Details are omitted
here. One can check that f−1(1), f−1(2), . . . , f−1(k) is precisely the sequence
〈x1, 0〉, 〈x2, 0〉, . . . , 〈xs, 0〉, 〈x1, 1〉, . . . , 〈x1, l − 1〉, 〈x2, l − 1〉, . . . , 〈xs, l − 1〉, that
is, first the variables at the current state are enumerated, then the variables at
the next state are enumerated and so on.

Another way to understand a map σ : N×({x1, . . . , xs}×{0, . . . , l−1})→ Z

is to view it as a map σ′ : N → Dsat
φ such that (C3) for every i ∈ N, if

σ′(i) = 〈〈t1, . . . , tk〉, X〉 and σ′(i+ 1) = 〈〈t′1, . . . , t′k〉, X ′〉 then

1. 〈ts+1, . . . , tk〉 = 〈t′1, . . . , t′k−s〉 (shift of the values of s first variables)
2. X ∩ {s + 1, . . . , k}2 = {〈u + s, v + s〉 : 〈u, v〉 ∈ X ′, u + s ≤ k, v + s ≤ k}

(preservation in X ′ of X restricted to the indices in {s+ 1, . . . , k}).

One has also to relate σ′ with σ. The condition (C4) below does the job. First
we need a preliminary definition. Given g : {x1, . . . , xs} × {0, . . . , l − 1} → Z,
we write gk to denote the k-tuple 〈g(f−1(1)), . . . , g(f−1(k))〉. gk is simply a
representation of g as a k-tuple of Z

k with k = s × l. (C4) is then defined as
the condition: for all i ∈ N, σ′(i) = [σ(i)k]{1,... ,k}. The following lemma shows
the relevance of this abstraction.

Lemma 4. φ is satisfiable iff there is a structure σ′ : N→ Dsat
φ satisfying (C3)

such that σ′, 0 |= φ′ where φ′ is obtained from φ by replacing every occurrence
of Xβxα by xf(〈xα,β〉).

In Lemma 4 above, we assume that σ′, i |= p[x1 ← xf(〈xj1 ,β1〉), . . . , xd ←
xf(〈xjd

,βd〉)] holds true with p ∈ IPC++ and p has free variables x1, . . . , xd

whenever p[x1 ← xf(〈xj1 ,β1〉), . . . , xd ← xf(〈xjd
,βd〉)] ∧ IPC++(σ′(i)) is IPC++

satisfiable where IPC++(.) is the map defined in Sect. 3.1. For the Boolean and
temporal operators, the relation |= on structures σ′ is defined in the homomor-
phic way. The abstraction of PLTLmod models is now satisfying since the domain
of σ′ in Lemma 4 is finite and is of exponential cardinality in |φ|.

4.2 Büchi Automata

Using the standard approach for LTL reducing model checking and satisfiability
problems to the emptiness problem for Büchi automata [VW94], we construct
a Büchi automaton Aφ on the alphabet Dφ such that L(Aφ), the language rec-
ognized to Aφ, is non-empty iff φ is PLTLmod satisfiable. The automaton Aφ is
defined as the intersection of the following Büchi automata.

1. The automaton ADsat
φ

recognizes all the ω-sequences in (Dsat
φ )ω. ADsat

φ
is

the structure 〈Q,Q0,→, F 〉 such that Q = Q0 = F = Dφ and u
u′′
−→ u′ iff

u = u′′ and u ∈ Dsat
φ . By Corollary 1, one can check in polynomial space in

|φ| whether u u′′
−→ u′.
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2. The automaton A(C3) recognizes the ω-sequences satisfying (C3). A(C3) is

the structure 〈Q,Q0,→, F 〉 such that Q = Q0 = F = Dφ and u
u′′
−→ u′

iff u = u′′ and if u = 〈〈t1, . . . , tk〉, X〉 and u′ = 〈〈t′1, . . . , t′k〉, X ′〉 then
〈ts+1, . . . , tk〉 = 〈t′1, . . . , t′k−s〉 and X ∩ {s + 1, . . . , k}2 = {〈u + s, v + s〉 :
〈u, v〉 ∈ X ′, u + s ≤ k, v + s ≤ k}. One can check in polynomial time in |φ|
whether u u′′

−→ u′.
3. The automaton APLTL recognizes the ω-sequences in Dsat

φ that satisfying φ
(with the extended version of the relation |=).

The rest of this section is dedicated to construct APLTL based on develop-
ments from [LMS02] and on the abstraction introduced in Sect. 4.1. As usual,
we define cl(φ), the closure of φ, as the smallest set of formulae such that

– {φ,X−1�,�} ⊆ cl(φ) and cl(φ) is closed under subformulae;
– cl(φ) is closed under negation (we identify ¬¬ψ with ψ);
– ψUψ′ ∈ cl(φ) implies X(ψUψ′) ∈ cl(φ); ψSψ′ ∈ cl(φ) implies X−1(ψSψ′) ∈

cl(φ).

The cardinality of cl(φ) is polynomial in |φ|. We define an atom of φ to be a
maximally consistent subset of cl(φ) defined as follows. X is an atom of φ iff

– X ⊆ cl(φ) and � ∈ X;
– for every ψ ∈ cl(φ), ψ ∈ X iff not ¬ψ ∈ X;
– for every ψ ∧ ψ′ ∈ cl(φ), ψ ∧ ψ′ ∈ X iff ψ ∈ X and ψ′ ∈ X;
– for every ψUψ′ ∈ cl(φ), ψUψ′ ∈ X iff either ψ′ ∈ X or {ψ,X(ψUψ′)} ⊆ X;
– for every ψSψ′ ∈ cl(φ), ψSψ′ ∈ X iff either ψ′ ∈ X or {ψ,X−1(ψSψ′)} ⊆ X;
– for every X−1ψ ∈ cl(φ), X−1ψ ∈ X implies X−1� ∈ X.

We can now define the generalized Büchi automaton APLTL = (Q,Q0,−→
,F) with F = {F1, . . . , Fm} ⊆ P(Q). A run ρ : N→ Q is accepting according to
F iff for each i ∈ {1, . . . ,m}, ρ(j) ∈ Fi for infinitely many j ∈ N. A generalized
Büchi condition can be easily converted to a Büchi condition. The elements of
APLTL are defined as follows:

– Q = P(cl(φ)); Q0 = {X ∈ Q : {φ,¬X−1�} ⊆ X}.
– X

u−→ Y iff
(ATOM) X and Y are atoms of φ.
(IPC++) for every atomic p in X, p′∧ IPC++(u) is IPC++-satisfiable where

p′ is obtained from p by replacing the occurrences of Xβxα by xf(〈xα,β〉).
(NEXT) for each Xψ ∈ cl(φ), Xψ ∈ X iff ψ ∈ Y .
(PREVIOUS) for each X−1ψ ∈ cl(φ), X−1ψ ∈ Y iff ψ ∈ X.

– Let {ψ1Uϕ1, . . . , ψmUϕm} be the set of until formulas in cl(φ). F = {F1, . . . ,
Fm} with for every i ∈ {1, . . . ,m}, Fi = {Z ∈ Q | ψiUϕi �∈ Z or ϕi ∈ Z}.
In APLTL, one can check whether X u−→ Y holds true in polynomial space

in |φ|. The conditions (ATOM), (NEXT), and (PREVIOUS) can be checked in
polynomial-time in |φ|. However, the above condition (IPC++) requires polyno-
mial space by Corollary 1. The main difference with LTL with past remains in
the condition at the atomic level, involving here an IPC++-satisfiability check.
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Lemma 5. φ is satisfiable iff L(Aφ) is non-empty.

This is a consequence of Lemma 4 and of the construction of Büchi automata
from formulae in LTL with past [LMS02]. It is now standard to prove

Theorem 4. Satisfiability for PLTLmod is in pspace.

The pspace-hardness of PLTLmod is a consequence of the pspace-hardness of
LTL [SC85]. This pspace upper bound is quite remarkable: pspace-completeness
of satisfiability problems in [BC02,DD03] has been mainly established for exten-
sions of LTL over concrete domains with satisfiability problem in P (only).

5 Adding Logical First-Order Quantifiers

In this section, we investigate the complexity of PLTL(IPC+) augmented with
the existential quantifier ∃, extension denoted by PLTL∃(IPC+). In the general
case, first-order LTL is known to be highly undecidable [Aba89]. Decidability of
PLTL∃(IPC+) is mainly due to the fact that the constraint language IPC+ allows
us to use an abstraction based on a finite domain (but whose size depends on
the input formula). A similar argument cannot be used for PLTLmod augmented
with the quantifier ∃ (denoted by PLTL∃(IPC++)) and the decidability status
of this extension is unknown.

In order to define PLTL∃(IPC+), the definition of |= is extended as follows:
σ, i |= ∃ y φ def⇔ there exists n ∈ Z such that σ′, i |= φ, where (1) for all j ∈ N

and x ∈ VAR \ {y}, σ′(j, x) = σ(j, x), and (2) for every j ∈ N, σ′(j, y) = n.
Variables used with quantifiers are said to be global, the other ones are said to
be local (it is not difficult to guarantee that a variable cannot be both local and
global in a given formula). Otherwise stated, PLTL∃(IPC+) is the extension of
PLTL(IPC+) where the temporal operators can be in the scope of ∃.

We write PLTL↓(IPC++) to denote the fragment of PLTL∃(IPC++) where
the quantifier ∃ is used only in formulae of the form ∃x′ (x′ = Xix)∧φ, with i ≥ 0.
We write ↓

x′=Xi
x
φ instead of ∃x′ (x′ = Xix) ∧ φ. The freeze quantifier ↓ that

allows to bind the values of variables to a fixed value is a powerful binder used for
instance in real-time logics [AH94] in order to capture the current value of a clock.
The decidability status of decidable LTL over concrete domains from [DD03] but
augmented with the freeze operator is still open. We treat a particular case with
integer periodicity constraints for which decidability follows from decidability of
PLTLmod.

Lemma 6. Satisfiability for PLTL↓(IPC++) restricted to future-time operators
and simple periodicity constraints is expspace-hard.

The proof is based on a reduction of the 2n-corridor tiling problem into
PLTL↓(IPC++) satisfiability, see [Dem03, Theorem 17]. As a corollary, satisfia-
bility for PLTL∃(IPC++) is also expspace-hard. A preliminary version of this
paper (including [Dem03]) abusively stated the expspace-hardness of the logic
PLTL∃(IPC+), this problem being still open.
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Lemma 7. Satisfiability for PLTL∃(IPC+) is in expspace.

Proof. (idea) Let φ be a PLTL∃(IPC+) formula with (1) free variables x1, . . . , xk;
(2) c1 < . . . < cn are the constants in φ occurring in constraints of the
form x ∼ c with ∼∈ {<,>,=}; (3) k1, . . . , ku occurring in the context of
≡-atomic formulae and their lcm is denoted by K. Let D be {〈i, j, l〉 ∈
{0, . . . , n + 1}2 × {0, . . . ,K − 1} : IPC<(〈i, j, l〉, 1)) is satisfiable}. To each
〈i, j, l〉 ∈ D, we associate a constant d〈i,j,l〉 such that |d〈i,j,l〉| is polyno-
mial in |φ| and [xα ← d〈i,j,l〉] |= IPC<(〈i, j, l〉, α)). We reduce PLTL∃(IPC+)
satisfiability to PLTL(IPC+) satisfiability. The translation t is the following:
t(p) = p for p atomic, t is homomorphic for the Boolean and temporal opera-
tors, t(∃ xα ψ) =

∨
〈i,j,l〉∈D t(ψ[xα ⇐ d〈i,j,l〉]) where ψ[xα ⇐ d〈i,j,l〉] denotes the

formula obtained from ψ by replacing occurrences of xα by d〈i,j,l〉 with adequate
simplications. For instance (x ≡3 xα +[1, 2])[xα ⇐ 5] is equal to x ≡3 0∨x ≡3 1.
φ is PLTL∃(IPC+) satisfiable iff t(φ) is PLTL(IPC+) satisfiable and |t(φ)| is in
2O(|φ|2).

The above translation does not work if we allow atomic constraints of the
form x = y (belonging to IPC++) as in � ↓x′=x X�(¬(x = x′)) that characterizes
models where all the values for x are different. Such a formula is particularly
interesting since in cryptographic protocols, nonces, ideally variables that never
take twice the same value, are often used to guarantee freshness properties.

6 Application to Extended Single-String Automata

In this section, we characterize the complexity of the equivalence problem for
extended single-string automata defined in [LM01, Sect. 5]. This problem is cen-
tral to check whether two time granularities are equivalent (see also [Wij00])
when granularities are encoded with Büchi automata recognizing exactly one
ω-word. Guards on transitions expressed by integer periodicity constraints and
update maps on transitions provide conciseness of such contraint automata. We
improve the known expspace upper bound from [LM01] into a pspace upper
bound by reducing the equivalence problem to the model-checking problem for
PLTLmod-automata. Moreover, although a seemingly efficient algorithm is pre-
sented in [LM01], we show the pspace-hardness by reducing QBF.
Let IPC∗ be the fragment of IPC{∃} containing Boolean combinations of atomic
constraints of the form either x ≡k c or ∃z (x ≡k z ∧ y ≡k′ z). Elements of
IPC∗ will be guards on transitions. An update map g for the variable xi is of
the form either xi := xi + c or xi := c with c ∈ Z. We write UPx1,... ,xn

to denote
the set of update maps for the set {x1, . . . , xn} of variables.

An extended single-string automatonA (ESSA) over the finite set of variables
{x1, . . . , xn} [LM01] is a structure 〈Q, q0, v0, Σ, δ〉 where

– Q is a finite set of states and q0 ∈ Q (initial state);
– v0 ∈ Z

n (initial value of the variables); Σ is a finite alphabet;
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– δ ⊆ Q×Σ×Q×IPC∗×P(UPx1,... ,xn) and for every q ∈ Q, there are exactly
two u such that 〈q, u〉 ∈ δ, say u1 and u2, and in that case u1 is of the form
〈a1, q1, p,X1〉, u2 is of the form 〈a2, q2,¬p,X2〉 where p is a constraint in
IPC∗ built over variables in {x1, . . . , xn} and in both X1 and X2 exactly
one update map for xi is present.

The elements of δ are also denoted by q
a,p,X−−→ q′ (p is the guard andX is the global

update map). A configuration is a member 〈q, v〉 ∈ Q× Z
n. We define the one-

step relation a−→ for a ∈ Σ as follows: 〈q, v〉 a−→ 〈q′, v′〉 iff there is 〈q, a, q′, X, p〉 ∈ δ
such that [x1 ← v1, . . . , xn ← vn] |= p (in IPC++) and for every g ∈ X, (1) if g
is xi := xi +c then v′

i = vi +c, and (2) if g is xi := c then v′
i = c. There is exactly

one sequence w = a1a2 . . . ∈ Σω such that 〈q0, v0〉 a1−→ 〈q1, v1〉 a2−→ . . . . The unique
ω-sequence generated from A is denoted by wA. The equivalence problem for
ESSA consists in checking whether wA = wA′ , given two ESSA A and A′. The
condition on δ is introduced in [LM01] to handle priorities between transitions.
For instance, the ω-word associated with the ESSA below is a2n · bω:

Lemma 8. The equivalence problem for ESSA can be solved in pspace.

Proof. Given two ESSA A and A′, we build an LTL(IPC{∃})-automaton B in
polynomial time such that l(B) is non-empty iff wA = wA′ . The LTL(IPC{∃})-
automaton B is indeed a kind of product of A and A′, see details in [Dem03].
The pspace bound is then a corollary of Theorem 1 and Theorem 4.

One can also show that the equivalence problem for ESSA is pspace-hard even
if the constraints occurring in transitions are either in {�,⊥} or literals built
over atomic constraints of the form x ≡k c, the update maps are of the form
either x := x (identity) or x := c, and the alphabet Σ is binary.
Lemma 9. The equivalence problem for ESSA is pspace-hard.

The proof of Lemma 9 (see [Dem03]) entails that the problem remains pspace-
hard when the only integer k in ≡k-guards occurring in A,A′ is 2. Similarly, the
problem remains pspace-hard when only two distinct variables are used.
Theorem 5. The equivalence problem for ESSA is pspace-complete.

7 Concluding Remarks

We have introduced a first-order theory of periodicity constraints IPC++ whose
satisfiability is pspace-complete and a version of LTL with past whose atomic
formulae are constraints from IPC++ (with comparison of variables at differ-
ent states). PLTLmod is a very concise logical formalism to deal with period-
icity constraints. Nevertheless, we have shown that PLTLmod model-checking
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and satisfiability are pspace-complete and that PLTL∃(IPC+), the extension
PLTL(IPC+) with the quantifier ∃ is in expspace. As an application, we have
also proved that the equivalence problem for ESSA introduced in [LM01, Sect.
5] is pspace-complete, even if restricted to two variables.

In the table below, we recall the main results about LTL and PLTL over
periodicity constraints and we indicate open problems related to them.

LTL/PLTL LTL/PLTL + ↓ LTL/PLTL + ∃
{x < y, x = y} pspace-complete ?/undecidable undecidable

[DD02]
{x < y, x = y, x < c, x = c} in expspace ?/undecidable undecidable

[DD03]
IPC + {x < y, x = y} ? ?/undecidable undecidable

IPC+ pspace-complete in expspace in expspace
Theorem 4 Lemma 7 Lemma 7

IPC++ pspace-complete ? ?
Theorem 4

The question mark ’?’ refers to the decidability status. All undecidability
results are (more or less straightforward) consequences of the fact that LTL
over the contraints language allowing atomic constraint of the form x = y and
x = y + 1 is undecidable by simulation of two-counter machines. Among the
open problems, we would like to emphasize that we ignore how to deal with ↓
in the presence of atomic constraints of the form x = y. The decidability status
of LTL({x = y}) + ↓ restricted to formulae with a unique local variable is open.
Finally, the difficulty with the decidability status of PLTL(IPC + {x < y, x =
y}) is that LTL({x < y, x = y}) already characterizes non ω-regular sequences
of constraints, see details in [DD03].
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