
Angelic Semantics of Fine-Grained Concurrency�

Dan R. Ghica and Andrzej S. Murawski

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
{Dan.Ghica,Andrzej.Murawski}@comlab.ox.ac.uk

Abstract. We introduce a game model for a procedural programming
language extended with primitives for parallel composition and synchro-
nization on binary semaphores. The model uses an interleaved version
of Hyland-Ong-style games, where most of the original combinatorial
constraints on positions are replaced with a simple principle naturally
related to static process creation. The model is fully abstract for may-
equivalence.

1 Introduction

The two major paradigms of concurrent programming are message-passing and
shared-variable. The latter style of programming is closer to the underlying ma-
chine model, which makes it both more popular and more “low-level” (and more
error-prone) than the former. This constitutes very good motivation for the
study of such languages. Concurrent shared-variable programming languages
themselves can come in several varieties:

– Fine-grained languages have designated atomic actions which are imple-
mented directly by the hardware on which the program is executed. In
contrast, coarse-grained programming languages can specify sequences of
actions to appear as indivisible.

– Languages with static process creation execute statements in parallel and
then synchronize on the completion of all the statements. Conversely, dy-
namic process creation languages can create wholly autonomous new threads
of execution.

– The procedure invocation mechanism can be call-by-name or call-by-value.

Any combination of the features above is possible and yields interesting pro-
gramming languages. In this paper we consider fine-grained, static, call-by-name
languages. We found that this particular set of choices is most naturally suited
to the particular semantic model we intend to present.

Our language comes very close to Brookes’s Parallel Algol (PA) [1], which is a
coarse-grained, static, call-by-name language. Whereas PA uses a coarse-grained
await construct, we use fine-grained semaphores, with atomic operations grab
� Work funded by British EPSRC, Canadian NSERC and St John’s College, Oxford.

I. Walukiewicz (Ed.): FOSSACS 2004, LNCS 2987, pp. 211–225, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

212 D.R. Ghica and A.S. Murawski

and release. Additionally, unlike PA, our language allows side-effects in expres-
sions. But otherwise it is very similar to PA, and both are quite faithful to
Reynolds’s principles of combining call-by-name λ-calculus with local-variable
imperative programming.

For sequential Algol, the combination of procedures and state gives rise to
difficult semantic problems [2], which were first given an adequate solution rel-
atively recently by Abramsky and McCusker using game semantics [3]. Their
game model of Algol uses Hyland-Ong-style (HO) games which had previously
been used to model sequential functional computation, notably for the language
PCF [4]. Since game models are strikingly concurrent, adapting them to the anal-
ysis of parallel computation is a natural step. As it will be seen in this paper, the
game model of concurrency is substantially simpler than that of sequentiality.
One can think of sequentiality as a highly-constrained and deterministic form of
interleaving of concurrent actions, this being reflected by the nature of the rules
governing the HO games. To model concurrency we renounce almost all the HO
rules, including the most basic one, the embodiment of sequentiality, alterna-
tion, and replace them with a single principle that is an immediate reflection
on the nature of static concurrency. The relative simplicity of our model is best
illustrated by the direct definability proof. While the factorization method seems
possible in principle, it would perhaps obscure the connection between the con-
current nature of computation and the concurrent nature of games. The resultant
game model is fully abstract with respect to may-equivalence. Therefore it can
be used to reason about safety properties, but not liveness (deadlock-freeness).

Concurrent games, using a true concurrency representation, have been used
by Abramsky and Melliès to model multiplicative additive linear logic [5].
Abramsky also made the first attempt to model PA using resumption-style
games [6], but the theoretical properties of that model have not been inves-
tigated. We found that the interleaved representation is the most suitable for
our language, because it deals more easily with the possibility of synchroniza-
tion which happens either inherently at process creation and termination, or
explicitly through the usage of semaphores.

Laird’s game model of synchronous message-passing concurrency [7] is the
work most closely related to ours. It draws from the HO model, and it also
uses a non-alternating interleaved representation of concurrency. However, the
technical differences are substantial. Laird’s model introduces additional struc-
ture (concurrency pointers, to explicitly model threads) and additional condi-
tions (pointer-blindness, to cut-down the model) in order to set up a framework
compatible with the PCF constraints (visibility, innocence, well-bracketing). By
contrast, our approach is more direct and yields an explicit model which seems
more accessible.

Other work on denotational models for shared-variable concurrency we con-
sider related to ours are Brookes’s full abstraction result for a transition-trace
model of a ground-type programming language [8] and his relational parametric
model of PA [1]. Also interesting is Röckl and Sangiorgi’s process semantics of PA

Angelic Semantics of Fine-Grained Concurrency 213

using the π-calculus [9]. A representation of our game model into the π-calculus
seems possible, which would give a fully abstract π-calculus model of PA.

2 Syntax and Operational Semantics

The types are β ::= exp | com and θ ::= β | var | sem | θ → θ. The type
judgements are of form Γ � M : θ where Γ maps identifiers to types. The typing
rules are those of Idealized Algol (IA) with active expressions plus rules for the
following new terms:

Γ � C1 : com Γ � C2 : com
Γ � C1 ||C2 : com

Γ, x : sem � M : β

Γ � newsemx := n inM : β

Γ � S : sem
Γ � grab(S) : com

Γ � S : sem
Γ � release(S) : com

We define the semantics of the language using a (small-step) transition relation
Σ � M, s −→ M ′, s′. Σ is a set of names of variables denoting memory cells
and of semaphores denoting locks; s, s′ are states, i.e. functions s, s′ : Σ → N,
and M, M ′ are terms.

The reduction rules specific to our language are those for parallel composi-
tion, semaphore manipulation and binding and we give them below.

Σ � C1, s −→ C ′
1, s′

Σ � C1 ||C2, s −→ C ′
1 ||C2, s′

Σ � C2, s −→ C ′
2, s′

Σ � C1 ||C2, s −→ C1 ||C ′
2, s′

Σ, v � C[v/x], s ⊗ (v �→ n) −→ C ′, s′ ⊗ (v �→ n′)
Σ � newsemx := n inC, s −→ newsemx := n′ inC ′[x/v], s′

Σ � grab(v), s ⊗ (v �→ 0) −→ skip, s ⊗ (v �→ 1)
Σ � release(v), s ⊗ (v �→ n) −→ skip, s ⊗ (v �→ 0) n > 0

Semaphores are interpreted in a standard way, using stateful locks, v. If v is 0
then the semaphore can be grabbed, which changes its state to 1; if v is non-zero
then the semaphore can be released, which changes its state back to 0. Note
that semaphore operations are atomic, i.e. they cannot be interrupted by other
concurrent processes.

It is common to identify var with (exp → com) × exp and use a variable
constructor mkvar : (exp → com) → exp → var [2]. In the same “object-
oriented” spirit, we identify sem with com × com and introduce a semaphore
constructor mksem : com → com → sem.

We use the following abbreviations: M, s ⇓ if ∃s′, M, s −→∗ c, s′, with c ∈ N∪
{skip}, and M ⇓ if M is closed and M, ∅ ⇓. We define a contextual approximation
relation Γ � M1 �∼θ M2 by ∀C[−] : com, C[M1] ⇓ implies C[M2] ⇓, where C[Mi]
are closed programs of com type. Contextual equivalence (Γ � M1 ∼=θ M2) is
defined as Γ � M1 �∼θ M2 and Γ � M2 �∼θ M1.

Note that the definition of termination M ⇓ is angelic. We consider a term
to terminate if there exists a terminating evaluation. However, the evaluation is

214 D.R. Ghica and A.S. Murawski

not deterministic, so it is possible that a term has both terminating and non-
terminating evaluations. Moreover, we do not differentiate between the various
reasons that termination might fail. In our language this can happen either
because of infinite reductions (divergence, e.g. fix(λx.x)) or stuck configurations
(deadlock, e.g. newsem s := 0 in grab(s);grab(s)).

3 Game Semantics

Game semantics models computation as a game between a Proponent (P), rep-
resenting a term, and an Opponent (O), representing the environment of the
term. Any play of the game is an interaction consisting of basic actions called
moves, which are of two kinds: questions and answers. The fundamental rule is
that questions can only be asked if they are justified by some previous question,
and answers can be given only to relevant questions. A common metaphor is
that of polite conversation: one must not ask irrelevant questions or provide un-
requested answers. In addition, any play must obey other various rules, which
are particular and intimately related to the kind of computations one is inter-
ested in modeling. P must always play according to a strategy that interprets
the term. O does not play using some pre-determined strategy, but it still needs
to behave according to the rules of play.

The game-semantic approach, which is highly intensional and interactive, is
particularly well suited for modeling concurrent programming languages. Iron-
ically perhaps, the greatest initial success of game semantics was in providing
models for sequential computation. Sequentiality is a straitjacketed form of in-
teraction, and its game models reflect this situation by being governed by a
number of combinatorial rules.

The essential rule common to all sequential games, is that of alternation: O
and P must take turns. In order to model concurrency we also discard this rule.
The “static” style of concurrency of our programming language requires that
any process starting sub-processes must wait for the children to terminate in
order to terminate itself. At the level of games, this is reflected by the following
principle:

In any prefix of a play, if a question is answered then that question
and all questions justified by it are answered exactly once.

It is helpful to spell out this property using two simpler and more precise rules:

Forking Only a question that has not been answered can be used as a justifier
for future moves.

Waiting A question can be answered only after all the questions justified by it
have been answered.

A lot of by now standard definitions in game semantics can be adapted to the
new setting. We detail the similarities and differences in what follows.

Angelic Semantics of Fine-Grained Concurrency 215

3.1 Arenas

The definition of arenas remains standard. An arena A is a triple 〈MA, λA,�A〉
where MA is a set of moves, λA : MA → { O, P } × {Q, A } is a function de-
termining for each m ∈ MA whether it is an Opponent or a Proponent move,
and a question or an answer. We write λOP

A , λQA
A for the composite of λA with

respectively the first and second projections. �A is a binary relation on MA,
called enabling, satisfying

– if m �A n for no m then λA(n) = (O, Q),
– if m �A n then λOP

A (m) �= λOP
A (n),

– if m �A n then λQA
A (m) = Q.

If m �A n we say that m enables n. We shall write IA for the set of all moves
of A which have no enabler; such moves are called initial. Note that an initial
move must be an Opponent question.

The product (A × B) and arrow (A ⇒ B) arenas are defined by:

MA×B = MA + MB

λA×B = [λA, λB]
�A×B = �A + �B

MA⇒B = MA + MB

λA⇒B = [〈 λPO
A , λQA

A 〉, λB]
�A⇒B = �A + �B + { (b, a) | b ∈ IB and a ∈ IA }

where λPO
A (m) = O if and only if λOP

A (m) = P .
An arena is called flat if its questions are all initial (consequently the P-moves

can only be answers). The arenas used to interpret base types are all flat:

Arena O-question P-answers Arena O-question P-answers
�com� run ok �exp� q n

�var� read n �sem� grab ok
write(n) ok release ok

Note that �sem� is isomorphic to �com�× �com� and �var� = �com�ω × �exp�,
where by �com�ω we mean the product of countably many copies of �com�.

3.2 Positions

A justified sequence in arena A is a finite sequence of moves of A equipped with
pointers. The first move is initial and has no pointer, but each subsequent move
n must have a unique pointer to an earlier occurrence of a move m such that
m �A n. We say that n is (explicitly) justified by m or, when n is an answer,
that n answers m. Note that interleavings of several justified sequences may not
be justified sequences; instead we shall call them shuffled sequences.

If a question does not have an answer in a justified sequence, we say that it
is pending in that sequence. In what follows we use the letters q and a to refer
to question- and answer-moves respectively, m will be used for arbitrary moves
and mA will be a move from MA. When we write justified sequences we only
indicate those justification pointers which cannot be inferred without ambiguity
from the structure of the sequence.

Next we define what sequences of moves are considered “legal”:

216 D.R. Ghica and A.S. Murawski

Definition 1. The set PA of positions (or plays) over A consists of the justified
sequences s over A which satisfy the two conditions below.

FORK : In any prefix s′ = · · · q · · · m
��

of s, the question q must be pend-
ing before m is played.

WAIT : In any prefix s′ = · · · q · · · a
��

of s, all questions justified by q
must be answered.

The simplest sequences of moves that violate FORK and WAIT respectively are:

q a
��

m
��

and q q��
a

��

The notion of a play is stable with respect to various swapping operations:

Lemma 1. – If sm1m2 ∈ PA and λOP
A (m1) = λOP

A (m2), then sm2m1 ∈ PA.
– If smq ∈ PA and q is not justified by m then sqm ∈ PA.
– If sqa ∈ PA and a is not justified by q, then saq ∈ PA.
– If sa1a2 ∈ PA and sa2a1 satisfies WAIT then sa2a1 ∈ PA.

Note that the definitions of A×B and A ⇒ B no longer imply the usual switching
condition, which characterizes sequential execution.

Definition 2. A play s ∈ PA is complete iff no questions in s are pending.

The following notations will be useful. For two shuffled sequences s1 and s2,
s1 � s2 will denote the set of all interleavings of s1 and s2. For two sets of
shuffled sequences S1 and S2: S1 � S2 =

⋃
s1∈S1,s2∈S2

s1 � s2. Given a set X of
shuffled sequences, we define X0 = X, Xi+1 = Xi �X. Then X�, called iterated
shuffle of X, is defined to be

⋃
i∈N

Xi.

3.3 Strategies

Strategies describe the way programs (represented by P) interact with their
environment (represented by O).

Definition 3. A strategy σ on A (written σ : A) is a prefix-closed subset of
PA, which is O-complete, i.e. if s ∈ σ and so ∈ PA, where o is an (occurrence
of an) O-move, then so ∈ σ.

O-completeness signifies the fact that the environment cannot be controlled dur-
ing the interaction, and can make any legal move at any time. We will often define
strategies using sets of sequences omitting the prefix- or O-closure. We will say
that P has a response at position s (when following σ) if sp ∈ σ for some P-
move s. The set of non-empty complete plays of a strategy σ will be denoted by
comp(σ).

Two strategies σ : A ⇒ B and τ : B ⇒ C can be composed by considering
their possible interactions in the shared arena B. Moves in B are subsequently
hidden yielding a sequence of moves in A and C.

Angelic Semantics of Fine-Grained Concurrency 217

Each play in A ⇒ B has a unique initial move, but plays in τ may use several
initial B-moves. The latter corresponds to multiple uses of the argument of type
B. Thus, when the strategies are interacting, positions of σ will be replicated in
order to allow for any number of copies of σ to be “used” by τ .

More formally, let u be a sequence of moves from arenas A, B and C with
justification pointers from all moves except those initial in C such that pointers
from moves in C cannot point to moves in A and vice versa. Define u � B, C to
be the subsequence of u consisting of all moves from B and C (pointers between
A-moves and B-moves are ignored). u � A, B is defined analogously (pointers
between B and C are then ignored). We say that u is an interaction sequence
of A, B and C if u � A, B ∈ P�

A⇒B and u � B, C ∈ PB⇒C . The set of all such
sequences is written as int(A, B, C). Then the interaction sequence σ � τ of σ
and τ is defined by σ � τ = { u ∈ int(A, B, C) | u � A, B ∈ σ�, u � B, C ∈ τ }.

Suppose u ∈ int(A, B, C). Define u � A, C to be the subsequence of u con-
sisting of all moves from A and C, but where there was a pointer from a move
mA ∈ MA to an initial move mB ∈ MB extend the pointer to the initial move in
C which was pointed to from mB . Then the composite strategy σ; τ is defined
to be { u � A, C | u ∈ σ � τ }.

3.4 Saturated Strategies

The original definition of strategies is inherently sequential. It relies on sequences
of moves. Clearly, this cannot be sufficient to interpret concurrent computation.
Sequences of events represent only one of possibly many observations of events
which occur in parallel. Much of the ordering of the events present in such a
sequence is arbitrary. We must consider strategies containing all possible such
(sequential) observations of (parallel) interactions. In other words, strategies
must be closed under inessential (i.e. unobservable) differences in the order of
moves:

– Any action of the environment could be observed at any time between the
moment when it becomes possible and the moment when it actually occurs.

– Dually, any action of the program could be observed at any time between
the moment when it actually occurs and the moment it ceases to be possible.

To formalize this in terms of moves and plays, we define a preorder � on PA for
any arena A as the least transitive relation satisfying s′ � s for all s, s′ ∈ PA

such that

1. s′ = s0 · o · s1 · s2 and s = s0 · s1 · o · s2, or
2. s′ = s0 · s1 · p · s2 and s = s0 · p · s1 · s2,

where o is any O move and p is any P move and every move in s has the same
justifier as in s′. Since s, s′ are legal plays by definition, it follows that no move
in s1 is justified by o (1) and p justifies no move in s1 (2).

Definition 4. A strategy σ is saturated if and only if whenever s ∈ σ and s′ � s
then s′ ∈ σ.

218 D.R. Ghica and A.S. Murawski

The two saturation conditions, in various formulations, have a long pedigree
in the semantics of concurrency. For example, they have been used by Udding
to describe propagation of signals across wires in delay-insensitive circuits [10]
and by Josephs et al to specify the relationship between input and output in
asynchronous systems with channels [11]. Laird has been the first to use them
in game semantics, in his model of Idealized CSP [7].

For technical arguments it is convenient to use an equivalent “small-step”
characterization of saturated strategies.

Lemma 2. σ : A is saturated if and only if the two conditions below hold.

1. If sm1m2 ∈ σ and λA(m1) = λA(m2) then sm2m1 ∈ σ.
2. If spo ∈ σ and sop ∈ PA then sop ∈ σ. ��

Recall that in the second clause it is necessary to stipulate sop ∈ PA (Lemma 1).
Arenas and saturated strategies form a category Gsat in which Gsat(A, B)

consists of saturated strategies on A ⇒ B. The identity strategy will be defined
by saturating the strictly alternating copy-cat strategy, which is turn defined in
the same way as identity strategies used for modeling sequential languages (but
with respect to the new notion of positions).

Let P alt
A be the subset of PA consisting of alternating plays (no two consec-

utive moves are by the same player). The “alternating copy-cat strategy” idalt
A

is the least strategy containing { s ∈ P alt
A1⇒A2

| ∀ t �even s, t � A1 = t � A2 }. In
idalt

A P copies O-moves as they come provided he is “fast enough” to do so before
the next O-move; otherwise the strategy breaks down.

Recall the lack of switching conditions for A1 ⇒ A2. Consequently, idalt
A

also admits plays of the shape d2d1e1e2f1f2, which are illegal in the alternating
setting. We used subscripts 1, 2 to indicate which instance of a type provides a
move.

The identity strategy idA will allow P to copy O-moves from one copy of A
to the other in a “parallel” fashion: the P-copy of an O-move does not have to
follow the O-move immediately and can be delayed by some other O- or P-moves.

Definition 5. Let sat(τ) be the least saturated strategy containing the strategy
τ . We define the identity strategy idA as sat(idalt

A).

The product and arena constructions make Gsat into a Cartesian closed cat-
egory. The empty arena is the terminal object, pairing amounts to taking the
sum (up to the canonical embeddings in the disjoint sum). Because the arenas
A × B ⇒ C and A ⇒ (B ⇒ C) are almost identical (up to associativity of dis-
joint sum), currying and un-currying essentially leave the strategies unchanged.

Proposition 1. Gsat is Cartesian closed.

The set of strategies on a given arena A can be ordered by inclusion, which makes
it into a complete lattice. The largest element �A is PA, the empty strategy ⊥A,
in which positions are merely the initial O-moves, is the least element. Greatest
lower bounds and lowest upper bounds are calculated by taking intersections
and sums respectively. Saturated strategies inherit this structure because sums
and intersections of saturated strategies remain saturated.

Angelic Semantics of Fine-Grained Concurrency 219

Theorem 1. Gsat is an ωCPO-enriched Cartesian closed category.

We finish with a technical lemma which shows that in some cases saturation is
preserved by composition even though one of the strategies may not be saturated.

Lemma 3. If σ : A ⇒ B, τ : B ⇒ C are strategies, σ is saturated and C is flat
then σ; τ = σ; sat(τ). In particular, σ; τ : A ⇒ C is saturated.

As we shall see later, sometimes it will be convenient to use τ instead of sat(τ)
to simplify reasoning about composite strategies.

3.5 The Game Model

The lambda-calculus fragment of our language with fixed points can be modelled
in a canonical way using the structure of Gsat exhibited in the previous section.
In particular �fix(λxθ.x)� = ⊥�θ�. We shall write Ωθ for fix(λxθ.x).

Next we show how to interpret the other constructs. It is convenient to present
an alternative, but equivalent syntax of the language using functions rather than
term-forming combinators:

conditional : ifzeroβ : exp → β → β → β
semaphores : grb : sem → com, rls : sem → com
commands : seq : com → β → β, parc : com → com → com.
variables : assg : var → exp → com, deref : var → exp
arithmetic, logic : op : exp → exp → exp.
binders : newvarβ : (var → β) → β, newsemβ : (sem → β) → β.

The strategies interpreting the functional constants of the language can be de-
fined by giving the set of their complete plays.

Those inherited from IA are interpreted exactly as in [3]. For instance �seq� :
�com� ⇒ �β�0 ⇒ �β�1 is given by positions of the shape q1 ·run ·ok ·q0 ·a0 ·a1 and
�assg� : �var�0 ⇒ �exp�1 ⇒ �com�2 is defined by run2 ·q1 ·n1 ·write(n)0 ·ok0 ·ok2.

The interpretations for �grb� , �rls� : �sem�0 ⇒ �com�1 are given respectively
by the positions run1 · grab0 · ok0 · ok1 and run1 · release0 · ok0 · ok1.

For parallel composition, �parc� : �com�0 ⇒ �com�1 ⇒ �com�2 is the satu-
rated strategy generated by run2 · run0 · run1 · ok0 · ok1 · ok2. Thus, its complete
plays are exactly those of run2 · (run0 · ok0 � run1 · ok1) · ok2. Note that this is
the only language constant interpreted by a strategy with non-alternating plays.

3.6 Stateful Behaviour: Cells and Locks

The interpretation of a local variable is defined as the composition of the follow-
ing strategies:

�Γ � newvarx := n inM : β� = Λx(�Γ, x :var � M : β�); cellβn

where Λx is the currying isomorphism and the strategy cellβn :
(
�var� ⇒ �β�

) ⇒
�β� is the least strategy containing the alternating plays of the shape: q ·q · read ·

220 D.R. Ghica and A.S. Murawski

n · write(i) · ok · read · i · · · a · a, where P responds to each write(i) with ok and
plays the most recently written value in response to read (or n if no write(i) has
been played by O yet).

Local semaphore introduction is defined similarly:

�Γ � newsemx := n inM : β� = Λx(�Γ, x : sem � M : β�); lockβ
n,

where lockβ
n :

(
�sem� ⇒ �β�

) ⇒ �β� is the least strategy containing plays of the
shape q · q · � · a · a where � is a segment of alternating grab · ok and release · ok
sequences.

Equivalently, by Lemma 3, instead of cellβn and lockβ
n one can use the saturated

strategies sat(cellβn) and sat(lockβ
n). Therefore, the above definitions always lead

to saturated strategies, i.e. morphisms of Gsat.

3.7 Examples
Example 1 (Nondeterminism). Let M0, M1 : β. Define M0 orM1 : β as

newvarx := 0 in ((x := 0 ||x := 1); ifzero !x thenM0 elseM1).

This construction can be extended to var, sem using mkvar,mksem respec-
tively, and to higher-order types using η-expansion. Then we have �M0 orM1� =
�M0� ∪ �M1�.

Example 2 (Test of linearity). Consider a term Γ � M : β and an identifier
s : sem. If s is initialized to 0 and not used elsewhere, then grab(s); M behaves
exactly like M , but can be used at most once if passed as argument to a function,
as in p : β → β′ � newsem s := 0 in p(grab(s); M). Observe that instantiating
p to λc : com.c; c or λc : com.c || c will not lead to convergence and that the
corresponding strategy has no complete plays.

This construction can be extended to other types as in the case of or (Ex-
ample 1) and plays an important role in the definability argument.

Example 3 (Test of linear parallelism). The following term generates only non-
alternating complete plays:

p : com1 → com2 → com3 � newsem sl, sr, s := 0 in
p
(
grab(sl);grab(s);grab(s)

)(
grab(sr); release(s); release(s)

)
: com4.

They are generated, using saturation, by: run4 ·run3 ·run2 ·run1 ·ok2 ·ok1 ·ok3 ·ok4
in (�com�1 ⇒ �com�2 ⇒ �com�3) → �com�4. Observe that instantiating p to
λc1 : com, c2 : com.c1; c2 leads to divergence and the corresponding strategy has
no complete plays. However, we have convergence for λc1 : com, c2 : com.c1 || c2.

For many programming tasks it is well known that semaphores can be pro-
grammed using shared variables only (e.g. the tie-breaker algorithms from [12]).
However, such implementations have been defined with the assumption that the
processes involved are distinct and can run different code. This does not seem
uniform enough to program the behaviour required in Examples 2 and 3, where
the competing threads are produced by the same piece of code. This apparent
expressivity failure has motivated the introduction of semaphores as a primitive
in our language.

Angelic Semantics of Fine-Grained Concurrency 221

4 Soundness and Adequacy

Although Gsat can be shown to be inequationally sound, it is not fully abstract.
As is the case for all game models, full abstraction will be proved for the quotient
of Gsat with respect to the so-called intrinsic preorder. Fortunately, in our case
the quotient turns out to have a more explicit representation based on complete
plays (like for IA, but not PCF), which makes it easy to apply our model to
reasoning about program approximation and equivalence.

Let Σ be the game with a single question q and one answer a such that
q �Σ a (note that Σ is essentially the same as �com�). There are two strategies
for Σ: the bottom strategy ⊥Σ and the top strategy �Σ = { ε, q, q · a }. The
intrinsic preorder for saturated strategies on A is defined by τ1 � τ2 iff ∀α ∈
Gsat(A, Σ) if τ1; α = �Σ then τ2; α = �Σ . For composition the strategies τi : A
are regarded as ones between 1 and A.

Theorem 2 (Characterization). Let τ1, τ2 be saturated strategies on A. τ1 �
τ2 if and only if comp(τ1) ⊆ comp(τ2).

Because the quotient Gqsat = Gsat/ � has such a direct representation based on
inclusion of complete plays, it is easy to see that it is also a ωCPO-enriched
category. The compact elements of Gqsat are precisely the equivalence classes
[σ]� such that comp(σ) is finite. Next we examine the theoretical properties of
Gqsat: soundness, adequacy and, finally, full-abstraction.

For the purpose of relating our model with the operational semantics we will
represent a state s : Σ → N by the strategy �s�β :

(
�θ1� ⇒ · · · ⇒ �θm� ⇒

�β�
) ⇒ �β� generated from complete plays of the shape q · q · � · a · a where �

stands for a (possibly empty) sequence of segments of one of the following shapes:
read · n, write(n) · ok , grab · ok or release · ok such that the projections onto θi

are of the same shape as those of suitably initialized (i.e. ni = s(li)) cellβni
or

lockβ
ni

strategies. We can think of �s�β as a “super-sequentialized” store, where
individual cells and locks are accessed sequentially both individually and as a
group. In what follows, �Σ � M : β� ; �s�β will be the interpretation of Σ � M : β
at state s. Recall that, by Lemma 3, the same result would be achieved by using
sat(�s�β).

Lemma 4. For any term Σ � M : β and any any state s, if Σ � M, s −→ M ′, s′

then �λx.M ′� ; �s′�β ⊆ �λx.M� ; �s�β.

Soundness then follows.

Proposition 2 (Soundness). For any Σ � M : β and any state s, if Σ �
M, s ⇓ then �λx.M� ; �s�β �= ⊥.

Our semantic model is adequate in the usual sense. The proof uses logical rela-
tions, adapted to small-step operational semantics.

Proposition 3 (Computational adequacy). For any program P , P ⇓ if and
only if �P � �= ⊥.

222 D.R. Ghica and A.S. Murawski

si · · · si1
�� · · · sij
�� · · · sjk,1

�� · · · sim
�� · · · sjk,mk

�� · · ·
o p− px ok p− ok

Fig. 1. Questions and justification pointers

Together, the two propositions imply:

Theorem 3 (Inequational Soundness). Let Γ � Mi : θ for i = 1, 2. If
�M1� � �M2� then M1 �∼θ M2. Equivalently, comp(�M1�) ⊆ comp(�M2�) implies
M1 �∼θ M2.

5 Full Abstraction

We give a direct recursive algorithm, called PROC+, which, given a position s of
�θ�, returns a term of type θ whose denotation is the smallest saturated strategy
containing s.

The basic idea of the construction is to use justification pointers to identify
potential threads. If two moves are justified by the same move we can think of
them as occurring in parallel threads spawned by the thread corresponding to
the justifier. When constructing the term for the position we compose all these
threads in parallel. Then we use specially designated side-effects as time-stamps
to enforce the particular order of moves that happens in the position. Of course,
we can only try to achieve this up to the saturation conditions.

In order to generate the desired positions we need to control the way in which
both P and O move. We control P-moves using guards that wait for special side-
effects (time-stamps) caused by O-moves. The effects take place only if a correct
O-move is played and we make sure that they occur only once by using a fresh
semaphore for each O-move. This allows us to enforce arbitrary synchronization
policies, restricting the order of moves present in the original sequence up to the
reorderings dictated by the saturation conditions. Each O-move sj produces an
associated time-stamp which is stored in a variable xj , bound by new at the
top level and initialized to 0. We “time-stamp” the variable by assigning 1 to it.
For 1 ≤ j ≤ |s| − 1, let Oj = { i ∈ N | 0 ≤ i < j, si is an O-move }. Let test ≡
λx : exp.ifzerox then skip elseΩcom. We define WAIT j as the guard which
checks for time-stamps originating from all the O-moves with indices smaller
than j: WAIT j ≡ test(1−!xg1); · · · ; test(1−!xgk

), with Oj = {g1, . . . , gk}.
Below we give the definition of PROC+(s : θ) for the case where θ is gener-

ated from com only (see also the example). The complete definition is available
in [13].

PROC+ first calls PROC and then adds bindings to the term returned by
PROC . The initial argument to PROC is the original position s. In the recursive
invocations, the argument is a subsequence of the form s � m, where t � m is the

Angelic Semantics of Fine-Grained Concurrency 223

subsequence of t consisting of m and all moves hereditarily justified by m, always
an O-question. Note that consequently a move in t is answered in t if and only if
it is answered in s. PROC uses indices relative to the original s; we write si for
the ith move of s, assuming s0 initial. PROC (t : θ) where θ = θ1 → . . . → θh →
com is defined in two stages which manage O-questions and P-answers, and
respectively P-questions and O-answers. If t is empty, λp1 · · · ph.Ωθ0 is returned.
Otherwise, let o = si be the initial move of t (which is always an O-question).

1. Let p1, · · · , ph be all the P-questions enabled by o (corresponding respec-
tively to θ1, · · · , θh). Let i1 < · · · < im be the s-indices of all occurrences of
p1, · · · , ph in t which are explicitly justified by si (see Figure 1). Then PROC
returns λp1 · · · ph.(xi := 1); (P1 || · · · ||Pm);PANS com

i where P1, · · · , Pm are
defined in 2. and PANScom

i is either Ωcom (if si is unanswered in t) or
WAIT i′ (if si′ answers si in t). By convention, (P1 || · · · ||Pm) degenerates
to skip for m = 0.

2. Here we show how to define he terms Pj for 1 ≤ j ≤ m. Let us fix j and
suppose that sij = px (1 ≤ x ≤ h) and θx = θ′

1 → . . . → θ′
n → com. Let

o1, · · · , on be all the O-questions enabled by px (corresponding to θ′
1, · · · , θ′

n

respectively).
For each k (1 ≤ k ≤ n) let jk,1 < · · · < jk,mk

be the s-indices of all
occurrences of ok in t which are explicitly justified by sij

(see Figure 1).
If mk = 0, then P k

j ≡ Ωθ′
k
. Otherwise, for all l = 1, · · · , mk we make the

following definitions: P k,l
j ≡ PROC (t � sjk,l

: θ′
k) and

P k
j ≡ ONCEwjk,1

[P k,1
j] or · · · or ONCEwjk,mk

[P k,mk

j],

where wjk,1 , . . . , wjk,mk
are fresh semaphore names. The construction or is

defined as in Example 1, and ONCEw[M] = grab(w); M as in Example 2.
Pj ≡ WAIT ij ; (pxP 1

j · · ·Pn
j);OANScom

ij
where OANScom

c is skip (if sc is
unanswered in t) or xc′ := 1 (when sc′ answers sc in t).

After PROC (s : θ) returns λp1 · · · pk.M , all variables and semaphores (x−, w−)
used in the construction of M must be bound at the topmost level (the variables
x− must be initialized to 0, the semaphores w− to 0) by taking

λp1 · · · pk.newvarx :=0 in (newsemw :=0 inM).

We denote the final term by PROC+(s : θ).

Example 4. Consider the play

s = run4 run2
��

run1
��

run3
��

ok3
��

ok1
��

ok2
��

ok4
��

0 1 2 3 4 5 6 7

224 D.R. Ghica and A.S. Murawski

in arena �(com1 → com2) → com3 → com4�. The term λf.λx.fx has this
play among its complete positions. The term PROC+(s) is:

λf.λa.newvarx0, x2, x4, x6 := 0 innewsemw2 := 0 in
x0 := 1;

((WAIT 1; f(ONCEw2 [x2 := 1;WAIT 5]);x6 := 1) || (WAIT 3; a; x4 := 1));
WAIT 7

Notice that the second argument a can be evaluated only after the first one
(f) is, because of WAIT 3. On the other hand, a must be evaluated before f ’s
argument because of WAIT 5. The resulting temporal ordering of the moves is,
consequently, the same as in f(a).

Using PROC+ and or we can show the following result:

Theorem 4 (Compact Definability). Any compact saturated strategy σ, i.e.
one generated by a finite set of positions, is definable.

With adequacy and definability established, full abstraction follows routinely.

Theorem 5 (Full abstraction). Let Γ � M, N : θ. Then �M� � �N� if
and only if M �∼θ N . Equivalently, by the Characterization Theorem (Thm. 2),
comp(�M�) ⊆ comp(�N�) if and only if M �∼θ N .

6 Conclusion

We have presented a fully abstract game model for a programming language
with fine-grained shared-variable concurrency. We found that HO-style games
are naturally suited to interpreting concurrency, and most of the technical com-
plexity required for modeling sequential computation can be avoided. Therefore,
we can give a direct definability construction, as opposed to the usual factoriza-
tion method.

In addition to its theoretical interest, our fully abstract model can be used
to reason about program may-equivalence. We can make straightforward argu-
ments about ground-type equivalences such as Brookes’s laws of parallel program-
ming [1], or other typical second-order equivalences. In order for such arguments
to be formalized, and even automated, it is necessary to find a concrete represen-
tation of strategies, along the lines of [14]. For this purpose, the most convenient
representations are those which are finite-state, such as regular expressions, reg-
ular languages, labelled transitions systems, etc. Such a representation can be
easily integrated in our ongoing research effort in game-based software model
checking [15]. However, identifying a non-trivial fragment of this language for
which the strategies are finitary is not straightforward.

The main theoretical development which is required is adapting our model
to dealing with must-equivalence, i.e. a notion of equivalence which considers
not just termination but the full spectrum of observable behaviour: termination,
failure and divergence. Must-equivalence has been studied using game semantics
in the simpler setting of bounded nondeterminism by Harmer and McCusker [16],
and some of their techniques may be applicable in our setting.

Angelic Semantics of Fine-Grained Concurrency 225

Acknowledgements. We are grateful to Samson Abramsky and Guy McCusker
for stimulating discussions on the subject matter of the paper.

References

1. Brookes, S.: The essence of Parallel Algol. Chapter 21 of [2].
2. O’Hearn, P.W., Tennent, R.D., eds.: Algol-like Languages. Progress in Theoret-

ical Computer Science. Birkhäuser (1997)
3. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game

semantics for Idealized Algol with active expressions. Chapter 20 of [2].
4. Hyland, J. M. E., Ong, C.-H. L.: On full abstraction for PCF: I, II and III.

Information and Computation 163(2) (2000) 285–408
5. Abramsky, S., Melliès, P. A.: Concurrent games and full completeness. In: Pro-

ceedings of LICS (1999) 431–442
6. Abramsky, S.: Game semantics of Idealized Parallel Algol. Lecture given at the

Newton Institute (1995)
7. Laird, J.: A games semantics of Idealized CSP. In: Volume 45 of Electronic Notes

in Theoretical Computer Science (2001) 157–176
8. Brookes, S.: Full abstraction for a shared variable parallel language. Chapter 21

of [2].
9. Röckl, C., Sangiorgi, D.: A π-calculus process semantics of Concurrent Idealized

Algol. In: Proceedings of FOSSACS, Volume 1578 of LNCS (1999) 306–322
10. Udding, J.T.: A formal model for defining and classifying delay-insensitive circuits

and systems. Distributed Computing 1(4) (1986) 197–204
11. Jifeng, H., Josephs, M.B., Hoare, C.A.R.: A theory of synchrony and asynchrony.

In: Programming Concepts and Methods. Elsevier (1990) 459–473
12. Andrews, G.: Concurrent Programming: principles and practice. Addison-Wesley

Publishing Company (1991)
13. Ghica, D. R., Murawski, A. S.: Angelic semantics of fine-grained concurrency. Tech-

nical Report PRG-RR-03-20. Oxford University Computing Laboratory (2003)
14. Ghica, D. R., McCusker, G.: Reasoning about Idealized algol using regular lan-

guages. In: Proceedings of ICALP. Volume 1853 of LNCS (2000) 103–116
15. Abramsky, S., Ghica, D. R., Murawski, A. S., Ong, C.-H. L.: Algorithmic game

semantics and component-based verification. In: Proceedings of TACAS. LNCS
(2004)

16. Harmer, R., McCusker, G.: A fully abstract game semantics for finite nondeter-
minism. In: Proceedings of LICS (1999) 422–430

	Introduction
	Syntax and Operational Semantics
	Game Semantics
	Arenas
	Positions
	Strategies
	Saturated Strategies
	The Game Model
	Stateful Behaviour: Cells and Locks
	Examples

	Soundness and Adequacy
	Full Abstraction
	Conclusion

