
On the Expressiveness of Infinite Behavior and
Name Scoping in Process Calculi

Pablo Giambiagi1, Gerardo Schneider2,3�, and Frank D. Valencia3��

1 KTH Royal Institute of Technology, IMIT, Electrum 229, 164 40 Kista, Sweden
pgiamb@imit.kth.se

2 IRISA/CNRS, Campus de Beaulieu F-35042 Rennes, France
3 Uppsala University, Dept. of Computer Systems, Box 337, 751 05 Uppsala, Sweden

{gerardos,frankv}@it.uu.se

Abstract. In the literature there are several CCS-like process calculi differing in
the constructs for the specification of infinite behavior and in the scoping rules
for channel names. In this paper we study various representatives of these calculi
based upon both their relative expressiveness and the decidability of divergence.
We regard any two calculi as being equally expressive iff for every process in each
calculus, there exists a weakly bisimilar process in the other.
By providing weak bisimilarity preserving mappings among the various variants,
we show that in the context of relabeling-free and finite summation calculi: (1)
CCS with parameterless (or constant) definitions is equally expressive to the
variant with parametric definitions. (2) The CCS variant with replication is equally
expressive to that with recursive expressions and static scoping. We also state that
the divergence problem is undecidable for the calculi in (1) but decidable for
those in (2). We obtain this from (un)decidability results by Busi, Gabbrielli and
Zavattaro, and by showing the relevant mappings to be computable and to preserve
divergence and its negation. From (1) and the well-known fact that parametric
definitions can replace injective relabelings, we show that injective relabelings
are redundant (i.e., derived) in CCS (which has constant definitions only).

1 Introduction

The study of concurrency is often conducted with the aid of process calculi. Undoubtedly
CCS [9], a calculus for synchronous communication, remains a standard representative.
In fact, many foundational ideas in the theory of concurrency have grown out of this
calculus.

Nevertheless, there are several variants of CCS in the literature. This is reasonable
as a variant may simplify the presentation of the calculus or be tailored to specific appli-
cations. Given two variants, a legitimate question is whether they are equally expressive.
To answer this question one has to agree on what it means for one calculus to be as
expressive as the other. A natural way of doing this in CCS is by comparing w.r.t. some
standard process equivalence such as (weak) bisimilarity: If for every process P in one
calculus there is a process Q in the other calculus such that Q is (weakly) bisimilar to
� Work supported by European project ADVANCE, Contract No. IST–1999–29082.

�� Work supported by European project PROFUNDIS.

I. Walukiewicz (Ed.): FOSSACS 2004, LNCS 2987, pp. 226–240, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Expressiveness of Infinite Behavior and Name Scoping in Process Calculi 227

P then we say that the second calculus is at least as expressive as the first one. Another
legitimate question, given a variant, is whether some fundamental property such as di-
vergence (i.e., the existence of divergent computations) becomes simpler or harder to
analyze.

In this paper, we study both the relative expressiveness w.r.t. weak bisimilarity and
the decidability of divergence for various CCS-like calculi. We shall focus upon two
sources of variation found in the CCS literature: The constructs used to express infinite
behavior and the way in which scoping of channel (port) names is dealt with. As for the
constructs for finite behavior, in all the calculi we confine our attention to prefix, finite
sums, restriction, and parallel composition. The calculi here studied can be described as
follows:

– CCSk: Infinite behavior is given by a finite set of constant (i.e., parameterless)

definitions of the form A
def= P. The calculus is essentially CCS [9] with neither

relabelings nor infinite summations.
– CCSp: Like CCSk but using parametric definitions of the form A(x1, . . . , xn) def= P.

The calculus is the variant in [10], Part I.
– CCS!: Infinite behavior given by replication of the form !P. This variant is presented

in [3].
– CCSµ: Infinite behavior given by recursive expressions of the form µX.P as in [9].

However, we adopt static scoping of channel names in the sense discussed in [5].

In particular, we show that (1) CCSk is exactly as expressive as CCSp while (2) CCSµ

is exactly as expressive as CCS!. We use recent work by Busi et al. [3] to also state that
(3) the divergence problem is undecidable for the calculi in (1) but decidable for those
in (2). The results (1-3) are summarized in Figure 1.

Also, as a consequence of (1), we prove that (4) injective relabelings, from the ex-
pressiveness point of view, are redundant operators in CCS. More precisely, the behavior
of any CCS process involving relabelings (all of them being injective) can be expressed
up to strong bisimilarity by a CCSk process. Furthermore, we also illustrate that CCSk

exhibits dynamic scoping of channel names and that it does not satisfy α-conversion.
By dynamic scoping we mean that, unlike the static case, the occurrence of a name can
get dynamically (i.e., during execution) captured under a restriction.

Let us now elaborate on the significance and implications of the above results. A
noteworthy aspect of (1) is that any finite set of parametric (possibly mutually recursive)
definitions can be replaced by an also finite set of parameterless definitions using neither
infinite summations nor relabelings. This arises as a result of the restricted nature of
communication in CCS (e.g., absence of mobility). Related to this result is that of [9]
which shows that, in the context of value-passing CCS, a parametric definition can be
encoded using an infinite set of constant definitions and infinite sums.

Regarding (1) some readers may feel that given a process P with a parametric
definition D, one could simply create as many constant definitions as permutations of
possible parameters w.r.t. the finite set of names in P and D. This would not work for
CCSp; an unfolding of D within a restriction may need α-conversions to avoid name
captures, thus generating new names (i.e., names not in P nor D) during execution.

The interesting point about (4) is that injective relabelings are perhaps the most used
kind of relabelings (e.g., injective relabelings are used in [9] to define linking operators,

228 P. Giambiagi, G. Schneider, and F.D. Valencia

CCSp CCSk

Undecidable

CCS! CCSµ

Decidable

Fig. 1. Classification of CCS variants. An arrow from X to Y indicates that Y is at least as
expressive as X . (Un)decidability is understood w.r.t. the existence of divergent computations

buffers, counters and stacks). In fact, [9] points out that the CCS laws for equational
reasoning with injective relabelings as side conditions can usually be applied as one
mostly works with this kind of relabeling. In the context of SCCS, another CCS variant
where interaction is synchronous, idempotent relabelings are known to be redundant [8].
In fact, under some natural assumptions, the same holds for general relabelings in SCCS.

Another noteworthy aspect of our results is the qualitative distinction between static
and dynamic name scoping for the calculi under consideration. Static scoping renders
the calculus decidable (w.r.t. the divergence problem) and as expressive as that with
replication. In contrast, dynamic scoping renders the calculus undecidable and as ex-
pressive as that with parametric definitions. This is interesting, since as we shall see,
the difference between the calculi with static or dynamic scoping is very subtle. Using
static scoping for recursive expressions was discussed in the context of ECCS [5], an
extension of CCS whose ideas lead to the design of the π-calculus [10].

It should be noticed that preservation of divergence is not a requirement for equality
of expressiveness; weak bisimilarity does not preserve divergence. Hence, although the
results in [3] prove that divergence is decidable for CCS! (and undecidable for CCSp), it
does not follow directly from the arrows in Figure 1 that it is also decidable for CCSµ.

Finally, it is worth pointing out that, as exposed in [7], decidability of divergence
does not imply lack of Turing expressiveness. In fact the authors in [2] show that CCS! is
Turing-complete. But this does not imply that CCS! is equally expressive to CCSp either;
the notions of expressiveness used in concurrency theory may not coincide with those
in computability. For example, [11] shows that under some reasonable assumptions the
asynchronous version of the π-calculus, which can certainly encode Turing Machines,
is strictly less expressive than the synchronous one.

Overall, the general contribution of this paper is to provide and clarify some quali-
tative and semantics distinctions among various CCS variants.

2 CCS-Like Calculi

We shall classify CCS-like calculi that differ in their way of specifying infinite behavior
and name scope. Let us begin with their common finite fragment.

In CCS, processes can perform actions or synchronize on them. These actions can
be either offering port names for communication, or the so-called silent action τ. We
presuppose a countable set N of port names, ranged over by a, b, x, y . . . and their

On the Expressiveness of Infinite Behavior and Name Scoping in Process Calculi 229

Table 1. An operational semantics for a process calculus

primed versions. We then introduce a set of co-names N = {a | a ∈ N} disjoint from
N . The set of labels, ranged over by l and l′, is L = N ∪ N . The set of actions Act ,
ranged over by α and β, extends L with a new symbol τ. Actions a and a are thought of
as complementary, so we decree that a = a. We also decree that τ = τ .

The processes specifying finite behavior are given by:

P, Q . . . ::=
∑

i∈I αi.Pi | P\a | P ‖ Q (1)

Intuitively
∑

i∈I αi.Pi, where I is a finite set of indexes, represents a process able to
perform one–but only one–of its αi’s actions and then behave as the corresponding Pi.
We write the summation as 0 if |I| = 0, and drop the “

∑
i∈I” if |I| = 1. The restriction

P\a behaves as P except that it can offer neither a nor ā to its environment. The names
a and ā in P are said to be bound in P\a. The bound names of P , bn(P), are those with
a bound occurrence in P , and the free names of P , fn(P), are those with a not bound
occurrence in P . Finally, P ‖ Q represents parallelism; either P or Q may perform an
action, or they can also synchronize when performing complementary actions.

The above description is made precise by the operational semantics in Table 1. A
transition P

α−→ Q says that P can perform α and evolve into Q.
In the literature there are at least four alternatives to extend the above syntax to

express infinite behavior. We describe them next.

2.1 Parametric Definitions: CCSp

A common way of specifying infinite behavior is by using parametric definitions [10].
In this case we extend the syntax of finite processes (Equation 1) as follows:

P, Q, . . . := . . . | A(y1, . . . , yn) (2)

Here A(y1, . . . , yn) is an identifier (also call, or invocation) of arity n. We assume that

every such an identifier has a unique, possibly recursive, definition A(x1, . . . , xn) def=
PA where the xi’s are pairwise distinct, and the intuition is that A(y1, . . . , yn) behaves
as its body PA with each yi replacing the formal parameter xi. We denote by D the set
of all definitions. We often use the notation x as an abbreviation of x1, x2, . . . , xn.

Convention 1 (Finitary D) Similar to [13], we shall require any process to depend
only on finitely many definitions. Below we formalize this requirement.

230 P. Giambiagi, G. Schneider, and F.D. Valencia

Given A(x) def= PA and B(y) def= PB in D, we say that A (directly) depends on B,
written A � B, if there is an invocation B(z) in PA. The above requirement can be
then formalized by requiring the strict order induced by �∗ (the reflexive and transitive
closure of �)1 to be well-founded. We also stipulate the following requirement.

Convention 2 For each A(x1, . . . , xn) def= PA, we require fn(PA) ⊆ {x1, . . . , xn}.

We shall use CCSp to denote the calculus with parametric definitions with the above
syntactic restrictions. The rules for CCSp are those in Table 1 plus the rule:

CALL
PA[y1, . . . , yn/x1, . . . , xn] α−→ P ′

A(y1, . . . , yn) α−→ P ′
if A(x1, . . . , xn) def= PA (3)

As usual P [y1 . . . yn/x1 . . . xn] results from syntactically replacing every free occur-
rence of xi with yi renaming bound names, i.e., performing name α-conversion, wher-
ever needed to avoid capture. It follows from [10] that in CCSp we can identify process
expressions obtained by renaming bound names (so P\a is the same as P [b/a]\b). We
then say that CCSp satisfies name α-equivalence .

2.2 Constant Definitions: CCSk

We now consider the alternative for infinite behavior given in CCS [9]. We refer to
identifiers with arity zero and their corresponding definitions as constants and constant
(or parameterless) definitions, respectively. We omit the “()” in A().

Given A
def= P , requiring all names in fn(P) to be formal parameters, as we did for

CCSp (Convention 2), would be too restrictive—P would have no visible actions. Con-
sequently, let us drop the requirement in Convention 2 to consider a fragment allowing
only constant definitions but with possible occurrence of free names in their bodies. The
rules for this fragment, which we call CCSk, are simply those of CCSp. In this case Rule
CALL (which for CCSk we prefer to call CONS) takes the form

CONS
PA

α−→ P ′

A
α−→ P ′

if A
def= PA (4)

i.e., no α-conversion involved; thus allowing name captures. As illustrated in the next
section, this causes scoping to be dynamic and α-equivalence not to hold.

Relabelings. The reader familiar with process algebras may have noticed that CCSk

is basically CCS except for the absence of relabeling. A relabeling f : Act → Act
is the identity for all but finitely many actions. Furthermore, f satisfies f(a) = f(a),
f(a) �= τ and f(τ) = τ . For each action α performed by P , the relabeled process P (f)
executes f(α). More precisely:

1 The relation �∗ is a preorder. By induced strict order we mean the strict component of �∗

modulo the equivalence relation obtained by taking the symmetric closure of �∗.

On the Expressiveness of Infinite Behavior and Name Scoping in Process Calculi 231

Remark 1. It is well known that the behavior specified by any process involving only
injective relabelings can be equivalently specified (up to strong bisimilarity) by a relabel-
ing-free process with the help of parametric definitions [12]. This is important since, as
pointed out in [9], one usually works with injective relabelings. ��

2.3 Recursion Expressions: CCSµ

Hitherto we have seen process expressions whose recursive behaviors are specified by
an underlying set of definitions. It is often convenient, however, to have expressions
which can specify recursive behavior on their own. Let us now extend our set of finite
processes (Equation 1) with such recursive expressions:

P, Q, . . . := . . . | X | µX.P (5)

Here µX.P binds the occurrences of the process variable X in P . As for bound and
free names, we define the bound variables of P , bv(P) are those with a bound occurrence
in P , and the free variables of P , fv(P) are those with a not bound occurrence in P .
An expression generated by the above syntax is said to be a process (expression) iff it
is closed (i.e., it contains no free variables). The process µX.P behaves as P with the
free occurrences of X replaced by µX.P applying variable α-conversions wherever
necessary to avoid captures. The semantics µX.P is given by the rule:

We call CCSµ the resulting calculus. From [5] it follows that in CCSµ we can identify
processes up to name α-equivalence. Furthermore, we make a typical assumption on
CCSµ process variables; they need to be guarded. We say that an expression is guarded
in P iff it lies within some sub-expression of P of the form α.Q.

Convention 3 (Guarded Recursion) We shall confine ourselves to CCSµ processes
where all variables are guarded.

Static and Dynamic Scope. An interesting issue regarding expression P [µX.P/X] (cf.
rule REC) is whether bound names in P should be renamed to avoid captures (i.e.,
name α-conversion). Such a requirement seems necessary should we want to identify
processes up to α-equivalence. In fact, the requirement gives CCSµ static scoping of
names. Let us illustrate this with an example.

Example 1. Consider µX.P with P = (a ‖ (a.b ‖ X)\a). First, let us assume we
perform name α-conversions to avoid captures. So, [µX.P/X] in P renames the bound
a by a fresh name, say c, thus avoiding the capture of P ′s free a in the replacement: I.e,

P [µX.P/X] = (a ‖ (c̄.b ‖ µX.P)\c) = (a ‖ (c̄.b ‖ µX.(a ‖ (a.b ‖ X)\a))\c)

The reader may care to verify (using the rules in Table 1 plus Rule REC) that b will not
be performed; i.e., there is no µX.P

α1−→ P1
α2−→ . . . s.t. αi = b.

232 P. Giambiagi, G. Schneider, and F.D. Valencia

Now let us assume that the substitution makes no name α-conversion. This causes a
free occurrence of a in P (indicated by the dashed circle) to get bound, dynamically, in
the scope of the outermost restriction: I.e.,

P [µX.P/X] = (a ‖ (ā.b ‖ µX.P)\a) = (a ‖ (ā.b ‖ µX.(a ‖ (a.b ‖ X)\a))\a).

The reader can verify that, in this case, b may eventually be performed. Such an execution
of b cannot be performed by µX.Q where Q is (a ‖ (c.b ‖ X)\c) i.e, P with the binding
and bound occurrence of a syntactically replaced with c. This shows that name α-
equivalence does not hold when dynamic scoping is used. ��

Remark 2. It should be pointed out that using recursive expressions with no name α-
conversion is in fact equivalent to using instead constant definitions as in the previous
calculus CCSk. In fact, in presenting CCS, [9] uses alternatively both kinds of construc-
tions: using Rule REC, with no name α-conversion, for one and Rule CONS for the

other. For example, by taking A
def= P with P as in Example 1 one can verify that,

in CCSk, A exhibits exactly the same dynamic scoping behavior illustrated by the ex-
ample. So, name α-equivalence does not hold in CCS (exposing yet another semantic
difference between CCS and the π-calculus as the latter uses static scoping and satisfies
α-equivalence). ��

2.4 Replication: CCS!

One simple way of expressing infinite behavior is by using replication. Although mostly
found in calculi for mobility, replication has also been studied in the context of CCS [3,
2]. In this case the syntax of finite processes (Equation 1) is extended with:

P, Q, . . . := . . . | !P (7)

Intuitively !P behaves as P ‖ P ‖ . . . ‖ P ‖ !P ; as many copies of P as you wish.
We call CCS! the calculus that results from the above syntax. The operational rules for
CCS! are those in Table 1 plus the following rule:

From [10] we know that CCS! processes can be identified under α-equivalence.

2.5 Summary of Calculi

We described several calculi based on the literature of CCS. We have CCSp the cal-
culus with parametric definitions and CCSk the calculus with constant (or parame-
terless) definitions. We also have CCSµ the statically scoped calculus with recursive
expressions—the dynamically scoped version instead coincides with CCSk. Finally, we
have the calculus with replication, CCS!.

On the Expressiveness of Infinite Behavior and Name Scoping in Process Calculi 233

Convention 4 Henceforth, we use Σ to denote the signature {p, k, µ, !} of our calculi
sub-indexes. We shall use σ, σ′, . . . to range over Σ. In the following sections, we shall
index sets and relations with the appropriate symbol from Σ to make explicit the calculus
under consideration. For example,

α−→σ represents a transition of CCSσ . Similarly, we
shall use Procσ to denote the set of CCSσ processes. However, we may omit the indexes
when these are unimportant or clear from the context.

3 Expressiveness and Classification Criteria

Here we introduce the means we shall use to compare and classify the various calculi.

Comparing Calculi: Bisimilarity. We wish to compare the behavior of two given pro-
cesses P and Q w.r.t. the standard notion of (weak) bisimilarity [9]. However, P and Q
may belong to two different calculi, say CCSσ and CCSσ′ . We then find it convenient
to state the standard notion as below. First, recall that the converse of a binary relation
S is S−1 = {(e′, e) | (e, e′) ∈ S}
Definition 1 (Bisimilarity). A relation S ⊆ Procσ × Procσ′ , with σ, σ′ ∈ Σ, is said
to be a (strong) simulation iff for all (P, Q) ∈ S:

whenever P
α−→σ P ′ then, for some Q′, Q α−→σ′ Q′ and (P ′, Q′) ∈ S.

The relation S is called a (strong) bisimulation if both S and its converse are simulations.
Furthermore, we say that P ∈ Procσ and Q ∈ Procσ′ are strongly bisimilar (w.r.t.,
σ and σ′), written P ∼σ′

σ Q (or simply P ∼ Q), iff there exists a bisimulation S ⊆
Procσ × Procσ′ , such that (P, Q) ∈ S. The relation ∼ is called (strong) bisimilarity.

��
Let us now recall the weaker notion of bisimilarity which abstracts away from silent

(i.e., τ) actions. We need some little notation. Define
s=⇒,with s = α1.α2. . . . ∈ L∗, as

(τ−→)∗ α1−→ (τ−→)∗ . . . (τ−→)∗ αn−→ (τ−→)∗. The notions of weak (bi)simulation and
weak bisimilarity can be derived from the strong versions by replacing in Definition 1

α−→ and ∼ with
s=⇒ and ≈, respectively (cf. [9, §7.1]). We can now make precise our

criterion for expressiveness.

Definition 2. We say that CCSσ is as expressive as CCSσ′ iff for every P ∈ Procσ , there
exists Q ∈ Procσ′ such that P and Q are weakly bisimilar (w.r.t. σ and σ′). ��

To prove equivalence on expressiveness, we shall provide (weak) bisimulation pre-
serving mappings [[·]], which we call encodings, from the processes of one calculus into
the processes of another. Some encodings will be chosen to preserve one further prop-
erty: divergence. It should be noticed that unlike strong bisimulation, weak bisimulation
identifies some divergent processes with non-divergent ones. Let us formalize the notion
of divergence.

Definition 3. We say that P is divergent (or that it diverges) iff P (τ−→)ω, i.e., there
exists an infinite sequence P = P0

τ−→ P1
τ−→ ��

234 P. Giambiagi, G. Schneider, and F.D. Valencia

Classifying Calculi: Decidability of Divergence. We shall classify the various calculi
according to whether divergence is decidable for the calculus. By divergence being
decidable for CCSσ , we mean that there exists an algorithm which can fully determine,
given P ∈ Procσ , whether P is divergent.

4 Encodings

In this section we give the various encodings. Furthermore, in order to classify the calculi
w.r.t. to the decidability of divergence, we shall also prove the relevant encodings to be
divergence-preserving and computable.

4.1 Encoding CCSp into CCSk

Here we give an encoding [[·]] : CCSp → CCSk. For the sake of presentation, we consider
only unary parametric definitions. The encoding can be easily generalized to the n-ary
case by extending our concepts and definitions from names to vector of names.

For simplicity and w.l.o.g we assume there is a definition of the form MP (x) def=
P ∈ DP with MP not occurring in P and DP being the finite set of definitions arising
from the identifiers in P—think of MP as the “main” procedure of P . Formally, DP is
the set of definitions for the identifiers in the closure under � of {MP } (See Convention
1).

For the encoding we would like to associate to each process P in CCSp a process
in CCSk substituting By for each invocation B(y) in P . How many invocations of this
form should be considered? Given that CCSp satisfies α-equivalence, there is potentially
an infinite number of such invocations—which means that a careful choice of names
y is needed if we want to obtain a finite number of constant definitions. To complicate
things further, rule CALL may force an α-conversion anywhere in the execution of a
CCSp process.

Instead of presenting the encoding mapping right away, we proceed in a stepwise
fashion. We start with the set of all CCSk processes (because of α-conversions) that may
be associated to a single CCSp process. In Def. 5, we identify sufficient conditions for
subsets of those processes to define a good encoding into CCSk. Finally, we show a
procedure to effectively construct such an encoding.

Definition 4. The function ·̂ : CCSp → P(CCSk) is inductively defined over the struc-
ture of its parameter:

P̂ =

{0} if P = 0
{α.Q | Q ∈ P̂ ′} if P = α.P ′

{Q1 ‖ Q2 | Qi ∈ P̂i , i = 1, 2} if P = P1 ‖ P2

{Σi∈Iαi.Qi | Qi ∈ P̂i , i ∈ I} if P = Σi∈Iαi.Pi

{Q\β | ∃P ′ ∈ Procp . P ≡α P ′\β ∧ Q ∈ P̂ ′} if P = P ′′\α
{Ay} if P = A(y).

Example 2. If P = a.b.0 + B(b) then P̂ is the singleton {a.b.0 + Bb}. ��

On the Expressiveness of Infinite Behavior and Name Scoping in Process Calculi 235

Example 3. If P = (z.x.0 ‖ x.0 ‖ A(z))\z then P̂ contains (among many others) the
elements (z.x.0 ‖ x.0 ‖ Az)\z and (y.x.0 ‖ x.0 ‖ Ay)\y. ��

Remark 3. The definition of ·̂ is invariant under α-conversions. More generally, it can
be shown that P ≡α Q iff P̂ = Q̂. ��

We now define [[P]] which requires specifying the set [[DP]] of (constant) definitions
induced by [[P]].

Definition 5. Given a process P ∈ CCSp with associated definition set DP , an encod-
ing of P in CCSk is defined as the CCSk constant MP

x (called [[P]]) together with an
underlying set of definitions [[DP]], satisfying the following two conditions:

(I) [[DP]] contains a definition (MP
x

def= P0) for some P0 ∈ P̂ .

(II) If (Ay
def= QA) ∈ [[DP]], Bz occurs in QA and (B(x) def= PB) ∈ DP , then there is

QB ∈ ̂PB [z/x] s.t. (Bz
def= QB) ∈ [[DP]].

We understand a set of definitions to contain at most one definition per process constant.
A set of definitions satisfying conditions (I) and (II) is called an encoding set. ��

Observe that, according to the definition, there are (infinitely) many encodings for a
given process P . Not only can an encoding be extended with definitions and still remain
an encoding, but also condition (II) allows for many different definitions for constant Bz .

If, say, QB , Q′
B ∈ ̂PB [z/x], then an encoding [[DP]] may contain either the definition

Bz
def= QB or the definition Bz

def= Q′
B (but not both).

The following lemma2 characterizes the shape of minimal encoding sets.

Lemma 1. Given an encoding set [[DP]], the set D = {(Ay
def= QA) ∈ [[DP]] |

QA ∈ ̂PA[y/x]}, is an encoding set (included in [[DP]]). ��
Recall that DP contains finitely many definitions. We shall show that an encoding

can be effectively constructed (so that the resulting set of definitions [[DP]] is also finite).
First let us illustrate the construction with the following example.

Example 4. Let P = A(x) with DP = {A(x) def= (z.x.0 ‖ x.0 ‖ A(z))\z}. We
proceed to define an encoding by constructing a set [[DP]] so that it satisfies conditions

(I) and (II). To satisfy condition (I), let MP
x

def= (z.x.0 ‖ x.0 ‖ Az)\z ∈ [[DP]]. Then,

condition (II) requires a definition such as: Az
def= (z1.z.0 ‖ z.0 ‖ Az1)\z1 ∈ [[DP]].

Notice that due to α-conversion in equation Az we have obtained a new name z1 and
hence we have to give a new definition for Az1 . Of course because of the α-conversion
we could have chosen another fresh name z2, but that would only lead to a different but

equally useful encoding. Using condition (II) again: Az1

def= (z.z1.0 ‖ z1.0 ‖ Az)\z ∈
[[DP]], and we are done; no other definition needs to be added to [[DP]] . It is easy to
check that the resulting set satisfies conditions (I) and (II), and therefore constitutes an
encoding of P in CCSk. ��

2 See [6] for the proof of the lemmas in this paper.

236 P. Giambiagi, G. Schneider, and F.D. Valencia

We now show that for any P , one can compute an encoding set [[DP]].

Theorem 1. For any P ∈ CCSp with a finite set DP of associated definitions, one can
effectively construct an encoding set [[DP]].

Proof. LetVar(DP)be the set of all the names occurring inDP . For eachA(x) def= PA ∈
DP and each y ∈ Var(DP), choose a P y

A so that P y
A ∈ ̂PA[y/x]. Define S = {Ay

def=

P y
A | (A(x) def= PA) ∈ DP ∧ y ∈ Var(DP)}. Notice that S is a finite set. Proceed

by defining F = {z | ∃ constant Bz. Bz occurs in S ∧ Bz is not defined in S}, and

notice that F is a finite set too. Observe that, for each definition A(x) def= PA ∈ DP and
for each y ∈ F , the substitution PA[y/x] requires no alpha-conversion. Consequently

it is possible to choose P y
A ∈ ̂PA[y/x] so that for each constant Bz occurring in P y

A,
z ∈ (Var(DP) ∪ F). We have now a candidate ΣDP

for the set of definitions in

the encoding of P . It is simply defined as ΣDP
= {Ay

def= P y
A | (A(x) def= PA) ∈

DP ∧ y ∈ (Var(DP) ∪ F)}. Since (MP
x

def= P0) ∈ S ⊆ ΣDP
, with P0 ∈ P̂ , our

candidate set satisfies condition (I) in Def. 5. It remains to be shown that ΣDP
also

satisfies condition (II). Assume now that (Ay
def= QA) ∈ ΣDP

, that Bz occurs in QA

and that (B(x) def= PB) ∈ DP . By construction, z ∈ (Var(DP) ∪ F), and therefore

(Bz
def= P z

B) ∈ ΣDP
. This shows that ΣDP

satisfies condition (II). Therefore, our
effectively constructed candidate ΣDP

is indeed an encoding [[DP]]. ��
We now state the correctness of the encoding up to (strong) bisimilarity. The theorem

actually says that parametric definitions are not more expressive than constant definitions.

Theorem 2. Given a process P ∈ CCSp with associated set of definitions DP , any
encoding [[P]] with definition set [[DP]] satisfies P ∼k

p [[P]]. ��

Remark 4. It follows from Remark 1 and the above theorem that injective relabelings
are redundant in CCS (up to strong bisimilarity).

Now, [3] shows that divergence is undecidable for CCSp. Furthermore, we also showed
that the above encoding is computable. Since divergence is invariant under strong bisim-
ilarity, we can then conclude the following result.

Theorem 3. The divergence problem is undecidable for CCSk. ��

4.2 Encoding CCSk into CCSp

Intuitively, if the free names are treated dynamically, then they could equivalently be
passed as parameters. Thus, we can define the encoding as follows:

Definition 6. Given P ∈ CCSk with a set of associated constant definitions of the form

A
def= PA and given a strict total order over names, the encoding of P into CCSp is a

process [[P]] with associated set of definitions
{

A(x1, . . . , xn) def= [[PA]] | (A def= PA) ∈ Dp ∧ fn(PA) = {x1, . . . , xn}
}

.

On the Expressiveness of Infinite Behavior and Name Scoping in Process Calculi 237

The encoding function [[·]] : Prock → Procp, which is an homomorphism over all other
operators, satisfies [[A]] = A(x1, . . . , xn) where fn(PA) = {x1, . . . , xn}. Both in
definitions and in invocations, all lists of argument names are assumed sorted. ��
(By homomorphism we mean that [[P ‖ Q]] = [[P]] ‖ [[Q]] and similarly for the other
operators.)

The following theorem states that constant definitions with dynamic scoping are not
more expressive than parametric definitions with static scoping.

Theorem 4. For every process P in CCSk, [[P]] ∼p
k P . ��

4.3 Encoding CCSµ into CCS!

The main idea behind this encoding is to associate a replicated process !x.P ′ to each
occurrence of the recursion operator, µX.P . In the past a similar approach has been used
to show that, in the π-calculus, recursion can be expressed using replication [13]. While
in [13] each π-calculus process and its encoding happen to be strongly bisimilar, this is
not the case for CCSµ. Although in general a CCSµ process is only weakly bisimilar to
its encoding, we show that divergence properties are always preserved.

Our definition assumes that process variables are indexed by I , i.e. {Xi | i ∈ I}:

Definition 7. Let [[·]] : Procµ → Proc! be the encoding function that is homomorphic
over all operators in the sub-calculus defining finite behavior and is otherwise defined
as follows:

[[Xi]] = xi.0
[[µXi.P]] = (!xi.[[P]] ‖ xi.0)\xi

where the names {xi | i ∈ I} are fresh. ��
The freshness condition on the variables xi is meant to guarantee that every time we
apply [[P]], P mentions none of them.

Remark 5. The above encoding would not work had we adopted dynamic scoping in
the Rule REC for CCSµ (see Remark 2). The µX.P in Example 1 actually gives us a
counter-example. ��
The following example illustrates why a CCSµ process may not be strongly bisimilar to
its encoding.

Example 5. Consider the CCSµ process P = µX.a.X with corresponding encoding
[[P]] = (!x.a.x̄ ‖ x̄)\x. They are clearly not strongly bisimilar, as P has the single trace
µX.a.X

a→µ µX.a.X
a→µ µX.a.X . . . while [[P]] only produces (!x.a.x̄ ‖ x̄)\x

τ→µ

(!x.a.x̄ ‖ a.x̄)\x
a→µ (!x.a.x̄ ‖ x̄)\x

τ→µ . . . Observe that each transition in the first
trace uses rule REC, and that every other step in the second one reflects explicitly, as an
internal transition, each recursive call. ��

In comparing CCSµ and CCS!, we find it convenient to consider yet another variant
calculus, as an intermediate step, which we call CCSτ : Its syntax agrees entirely with

238 P. Giambiagi, G. Schneider, and F.D. Valencia

CCSµ’s (i.e. Procτ = Procµ), and its semantics differs from CCSµ’s only by a replace-
ment of REC with a rule in which the unfolding performs a τ action—hence the name
CCSτ :

REC’
µX.P

τ→τ P [µX.P/X]

Example 6. Consider process P as given in Example 5 but this time within CCSτ (which
is possible thanks to Procτ = Procµ). The only trace exhibited by P is: µX.a.X

τ→τ

a.(µX.a.X) a→τ µX.a.X
τ→τ . . . and therefore P ∼!

τ [[P]] . ��
In fact, the property illustrated by the previous example holds in general, as stated

in the following theorem. The proof is essentially an adaptation of the one given by
Sangiorgi and Walker in [13].

Theorem 5. If P ∈ CCSτ , then P ∼!
τ [[P]]. ��

Because strong bisimilarity is known to preserve expressiveness and divergence, the
above theorem lets us reduce the problem of studying the encoding to investigating the
relation between CCSτ and CCSµ.

We define a binary relation R ∈ (Procµ × Procτ) as follows: P R Q iff there exist
n ≥ 0 such that P = Q0

τ→τ Q1
τ→τ . . . Qn = Q, where each derivation Qi

τ→τ Qi+1
involves the application of rule REC’.

We show that besides being a weak bisimulation relation, R also relates processes
with equal divergence properties. As a first step, notice that each

α→µ transition can be
mimicked by R-related processes in CCSτ after possibly some τ transitions (which
correspond to recursive invocations involving rule REC’).

Lemma 2. If P R Q and P
α→µ P ′ then there exists Q′ such that Q(τ→τ)∗ α→τ Q′ and

P ′ R Q′. ��

Remark 6. Notice that we have restricted our attention to processes where all variables
are guarded. Without this assumption divergence would not be preserved by our encod-
ing. For example, µX.X diverges in CCSτ but deadlocks in CCSµ. ��

Lemma 3. If P R Q and there is a derivation of Q
α→τ Q′ which does not involve the

application of rule REC’, then there exists P ′ s.t. P
α→µ P ′ and P ′ R Q′. ��

To show that two identical processes, interpreted in CCSµ and resp. CCSτ , are weakly
bisimilar we need to show two simulations: One is provided by Lemma 2 and the other
follows by a combination of Lemma 3 and the definition of R (to cover the case in which
Q

α→τ Q′ does use rule REC’). The result is summarized by our next theorem.

Theorem 6. Given a process P in CCSµ, P ≈τ
µ P . ��

Observe that this is still not enough to show that R relates processes with the same
divergence properties. If P R Q and Q diverges, Lemma 3 is not strong enough to show
that P may execute a single τ transition. However, it turns out that Q cannot diverge by
executing only recursive calls (again, a result of our assumptions on guarded summation

On the Expressiveness of Infinite Behavior and Name Scoping in Process Calculi 239

and guarded recursion; see Remark 6 and [6]). So, if after some finite execution trace,
Q performs a τ transition that does not involve REC’, we can apply Lemma 3 to deduce
that P may also perform a τ transition. Since this process can be repeated endlessly it
must be concluded that divergence in CCSτ forces divergence in CCSµ. The converse
is an easy consequence of Lemma 2. That is, we have shown:

Proposition 1. For P ∈ CCSµ, P (τ→µ)ω iff P (τ→τ)ω. ��
Our journey from CCSµ to CCS! through CCSτ has rendered the following result.

Corollary 1. For P ∈ Procµ, P ≈!
µ [[P]]. Moreover, P diverges iff [[P]] diverges. ��

From the above corollary, the fact that the encoding is computable, and the result of
[3] showing that divergence is decidable for CCS! we conclude the following:

Theorem 7. The divergence problem is decidable for CCSµ. ��

4.4 Encoding CCS! into CCSµ

Except for the syntax and our restriction to guarded recursion, this encoding is essentially
that given in [13] for the π-calculus.

Definition 8. Let [[·]] : Proc! → Procµ be the encoding function that is homomorphic
over all operators in the sub-calculus defining finite behavior and is otherwise defined
as follows: [[!P]] = µX.([[P]] ‖ τ.X). ��

In fact, the proof of the following theorem follows that in [13].

Theorem 8. For P ∈ Proc!, P ≈µ
! [[P]]. ��

Observe that, because of our restriction to guarded recursion, the encoding does not
preserve divergence. For instance, if P =!0 then P is deadlocked in CCS!; but

[[P]] = µX.(0 ‖ τ.X) τ→µ 0 ‖ µX.(0 ‖ τ.X) τ→µ 0 ‖ 0 ‖ µX.(0 ‖ τ.X) τ→µ

5 Concluding Remarks

We studied the relative expressiveness (w.r.t. weak bisimilarity) and the decidability of
divergence for some CCS-like calculi. The calculi differ on the constructs used to express
infinite behavior and on the treatment of scoping of channel names; the finite core being
the same. We showed that parameters can be removed from recursive definitions without
loss of expressiveness provided dynamic name scoping is applied. We also showed that
the expressiveness of recursive expressions with static scoping corresponds precisely to
that of replication. We partitioned the calculi into two groups: For one, divergence is
undecidable (i.e., constant and parametric definitions), whereas it is decidable for the
other (i.e., replication and recursive expressions with static scoping). Figure 1, in the
Introduction, illustrates these results.

As a consequence of our results, we proved that a substantial family of relabelings,
the injective ones, is redundant in CCS (see Remark 4). We also showed that a slightly
different interpretation of Rule REC, namely performing also name α-conversions in
substitutions, can render decidable (w.r.t. divergence) an otherwise undecidable calculus
(see Remark 2). We illustrated that CCS exhibits dynamic name scoping and that it does
not preserve α-equivalence.

240 P. Giambiagi, G. Schneider, and F.D. Valencia

Related Work. Most of the related work was already discussed in the Introduction. The
most closely related work is [3] which shows the (un)decidability of divergence for CCSp

and CCS!. Here we extend these results to the corresponding equally expressive calculi.
The work on ECCS [5], perhaps the most immediate predecessor of the π-calculus,
advocates static scoping of names. In contrast, the work on CHOCS [14] advocates
dynamic name scoping in the context of higher-order CCS. Furthermore, the CCS variant
in [10] uses statically scoped parametric definitions while the Edinburgh Concurrency
Workbench tool [4] uses dynamic scoping for parametric definitions.

The work in [1] shows that that in CCS, non-injective relabelings lead to a sensible
different treatment of asynchrony w.r.t the injective ones. We believe that it would be
interesting to investigate more qualitative distinctions for these two kinds of relabelings.

Acknowledgments. We are indebted to Maurizio Gabbrielli, Jean-Jacques Lévy, Sergio
Maffeis, Catuscia Palamidessi, Joachim Parrow, Rosario Pugliese and Davide Sangiorgi,
for insightful discussions on the topics of this paper.

References

1. M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on asynchronous
processes. Information and Computation, 172(2):139–164, 2002.

2. N. Busi, M. Gabbrielli, and G. Zavattaro. The expressive power of replication in CCS. Draft,
2003.

3. N. Busi, M. Gabbrielli, and G. Zavattaro. Replication vs. recursive definitions in channel
based calculi. In ICALP’03, volume 2719 of LNCS, pages 133–144. Springer Verlag, 2003.

4. R. Cleaveland, J. Parrow, and B. Steffen. The ConcurrencyWorkbench:A semantics based tool
for the verification of concurrent systems. ACM Transactions on Programming Languages
and Systems, 15(1):36–72, 1993.

5. U. Engberg and M. Nielsen. A calculus of communicating systems with label-passing. Tech-
nical report, University of Aarhus, 1986.

6. P. Giambiagi, G. Schneider, and F.D. Valencia. On the expressiveness of CCS-like calculi.
Technical report, Uppsala University, 2004. Postscript available from
http://www.sics.se/fdt/publications/GSV-Expr-TR04.ps.

7. S. Maffeis and I. Phillips. On the computational strength of pure ambient calculi. In EX-
PRESS’03, 2003.

8. R. Milner. Calculi for synchrony and asynchrony. Technical Report CSR-104-82, University
of Edinburgh, 1982.

9. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
10. R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University Press,

1999.
11. C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronous

π-calculus. In ACM Press, editor, POPL’97, pages 256–265, 1997.
12. J. Parrow. An introduction to the π-calculus. In Handbook of Process Algebra, pages 479–543.

Elsevier, 2001.
13. D. Sangiorgi and D. Walker. The π−calculus: A Theory of Mobile Processes. Cambridge

University Press, 2001.
14. B. Thomsen. A calculus of higher order communicating systems. In POPL’89, ACM, pages

143–154, 1989.

	Introduction
	CCS-Like Calculi
	Parametric Definitions: $unhbox voidb @x hbox {CCS}_{texttt {p}} $
	Constant Definitions: $unhbox voidb @x hbox {CCS}_{texttt {k}} $
	Recursion Expressions: $unhbox voidb @x hbox {CCS}_mu $
	Replication: $unhbox voidb @x hbox {CCS}_! $
	Summary of Calculi

	Expressiveness and Classification Criteria
	Encodings
	Encoding $unhbox voidb @x hbox {CCS}_{texttt {p}} $ into $unhbox voidb @x hbox {CCS}_{texttt {k}} $
	Encoding $unhbox voidb @x hbox {CCS}_{texttt {k}} $ into $unhbox voidb @x hbox {CCS}_{texttt {p}} $
	Encoding $unhbox voidb @x hbox {CCS}_mu $ into $unhbox voidb @x hbox {CCS}_! $
	Encoding $unhbox voidb @x hbox {CCS}_! $ into $unhbox voidb @x hbox {CCS}_mu $

	Concluding Remarks

