Theories for the Global Ubiquitous Computer

Robin Milner

University of Cambridge, The Computer Laboratory,
J J Thomson Avenue, Cambridge CB3 OFD, UK

Abstract. This paper describes an initiative to provide theories that can underlie
the development of the Global Ubiquitous Computer, the network of ubiquitous
computing devices that will pervade the civilised world in the course of the next few
decades. We define the goals of the initiative and the criteria for judging whether
they are achieved; we then propose a strategy for the exercise. It must combine a
bottom-up development of theories in directions that are currently pursued with
success, together with a top-down approach in the form of collaborative projects
relating these theories to engineered systems that exist or are imminent.

A Grand Challenge for Computational Theories

Ubiquitous Computing entails large-scale networks of computing devices and agents.
They are hardware or software; static, mobile or wearable; permanent or ephemeral;
communicating, reflective and location-aware. They operate in highly distributed —even
global- scenarios involving both processes and data, at low power and in a timely fashion,
guaranteeing privacy and security, individually exhibiting high failure rate yet reliable
and dependable as a whole.

There is no doubt that over the next few decades we shall see ubiquitous computing
pervade the civilised world. This paper describes an initiative to provide theories that
will underlie this dramatic development, both to realise its full potential and to avoid the
huge inconvenience and possible disaster that can be caused by the ad hoc engineering
of such a pervasive network of artefacts. The exercise forms part of a Grand Challenge
programme mounted by the UK Computing Research Committee, but is also intended
to merge with international programmes with similar goals.

For this Challenge we make no separation between Ubiquitous Computing and
Global Computing. They cover the Internet, together with the mobile physical devices
linked to it and the software platforms built upon it; they also cover designed systems
such as healthcare coordinated across a country, which involves highly distributed med-
ical data, care-scheduling, mobile resources and emergency action. Furthermore they
cover all possible collaborations among such systems, and between them and humans.
We refer to this whole, which is part engineered and part natural phenomenon, as the
Global Ubiquitous Computer (GUC).

As engineered artifact, the GUC is probably the largest in human history. Yet a
rigorous understanding of it, and of how it might develop, is lacking. When we add
devices and software to it, we do so with some understanding of these new parts, but no
clear grasp of the whole onto which we graft them. As natural phenomenon, the GUC is
as complex as many others —physical, chemical, biological or ecological— that have long

I. Walukiewicz (Ed.): FOSSACS 2004, LNCS 2987, pp. 5-I1] 2004.
(© Springer-Verlag Berlin Heidelberg 2004



6 R. Milner

been the objects of scientific study. The parts we build form part of a whole which is
not, and probably never will be, the realisation of a single design; to that extent it occurs
‘naturally’, and demands scientific understanding in the traditional sense.

Just as differential equations, Laplace and Fourier transforms, and numerical linear
algebra serve as toolkits both for physical theories and for traditional engineering, so
computer scientists must develop theories both for understanding and for building the
GUC. ‘Understanding’ and ‘building’ are generic terms that cover a range of distinct ac-
tivities. We may adapt, analyse, combine, correct, design, diagnose, document, enhance,
evaluate, expand, exploit, formalise, implement, instrument, refine, re-use, specify, test,
validate, ... systems. Pervading all these activities is modelling. The key to a science
for the GUC is that the same models should be used both in the analytic activity (the
understanding) and in the synthetic activity (the building).

Our Grand Challenge is therefore:

— To develop a coherent informatic science whose concepts, calculi, theories and
automated tools allow descriptive and predictive analysis of the GUC at each level
of abstraction;

— That every system and software construction — including languages — for the GUC
shall employ only these concepts and calculi, and be analysed and justified by these
theories and tools.

We deliberately pose this as an ideal goal. It will never be fully achieved, but we
pose it in this ideal form because we see no argument that limits the degree of attainable
success. If at first it seems absurd, consider that other engineering disciplines come
close to achieving this goal, since —unlike software engineering— they are founded on a
pre-existing science.

To be worthy of the name ‘Grand Challenge’, a goal must not only lie beyond
the reach of existing concepts and technology, but must also admit clear criteria for
achievement. Ours certainly meets the first requirement. For the second, we shall be able
to declare success just to the extent to which, in one or more activities mounted on the
GUC platform (e.g. distributed business processes, instrumented buildings, healthcare
coordination), both the structure and the behavioural analysis of its specific software
systems are couched fully in terms of the new science.

The full case for this Grand Challenge can be found on the UK website for Grand
Challenges in Computing Research:
http://www.nesc.ac.uk/esi/events/Grand_Challenges).

The Existing Theoretical Platform

Considerable success has already been achieved over the past four decades in modelling
many subtle features of computation. These models lead from highly developed theories
of sequential computing and databases, to theories that are less developed —but already
enjoy fair consensus— for concurrent interacting systems and distributed data. Here is
a skeleton, roughly in order of discovery:

universal machines, automata theory, formal language theory, functional calculi,
database theory, automated logics, program semantics, logics for specification


http://www.nesc.ac.uk/esi/events/Grand_Challenges

Theories for the Global Ubiquitous Computer 7

and verification, type theories, Petri nets and process calculi, temporal and modal
logics, calculi for mobile systems, semi-structured data, game semantics.

Almost all of these have been augmented with automated tools for design and analysis,
such as simulation, computer-assisted reasoning and model-checking.

This is a substantial science base. A companion paper to the Grand Challenge
proposal, under the title Theories for ubiquitous processes and data, outlines the
state of the art in these topics. This survey, referred to here as the ‘Platform Pa-
per’, contains a large bibliography and is available at http://www.cl.cam.ac.uk/
users/rm135/plat.pdf. It gives ample evidence of progressive refinement of the
science, and also of its influence on industrial practice.

Nonetheless, this influence has been incomplete and haphazard. Why?

The explanation lies in the extraordinary pace of technological development, and the
corresponding pace of change in market expectations. The science has been aimed at a
moving target, attempting to underpin the ever more complex designs made possible by
advances in hardware and networking technology. Moreover, theories typically remain
far longer in gestation than opportunistic design practices. Two effects can be observed:

- The theories themselves are not yet complete or unified;
- Software engineers have designed what the market required, rather than what has
been analysed even by currently available theories.

In other words, theories have not sufficiently informed software design. Often they have
been retrofitted to it, revealing weaknesses too late to mend the design. A classic example
is the application of type theory to legacy code, revealing just where it was vulnerable to
the Y2000 problem. There were no great disasters after the millennial date, but enormous
expense was incurred before it, in anticipation of what might happen. Such lack of
confidence would not arise with well-typed code. The necessary type theory had been
researched and published at least two decades previously.

A second exampleﬂ (closer to the GUC) concerns the IEEE 802.11 standard for data
confidentiality known as Wireless Equivalent Privacy (WEP), introduced in 1999. This
was found in 2001 to be severely imperfect. Analysts showed how an attacker, using a
few million encrypted packets, can deduce the shared key used by WEP. Several other
attacks have subsequently been found. By then, millions of devices employing WEP had
been sold worldwide.

There are two motivations for our Grand Challenge. The first is negative: unless
we offer a soundly based methodology to supplant the practice of opportunist software
creation, there will be consequences of the kind we have illustrated, and a further mass
of inscrutable legacy software. These consequences will be greatly more damaging than
previously, because the GUC is pervasive, self-modifying and complex in the extreme.

The second motivation is positive, and concerns the range of concepts that we must
bring under control in understanding the GUC. This range —as we briefly indicate below—
is so impressive as to justify a science; it also ensures that the design of software and
systems will undergo a revolution, during which entrenched practices may be abandoned
and the science may properly inform all analysis and design, as indeed it does in other
engineering disciplines.

! Reported in Communications of the ACM, May 2003.



8 R. Milner

So what are the scientific concepts involved? We do not yet know them all, but we
are not starting from scratch. Theoretical work over the past fifty years has created an
impressive platform of concepts, structures and tools relevant to the GUC. The Platform
Paper surveys several that have emerged most recently, under eight headings:

Space and mobility; Security; Boundaries, resources and trust; Distributed data;
Game semantics; Hybrid systems; Stochastics; Model-checking.

This is neither a complete nor a coherent classification of relevant work; other topics
will emerge, but these provide an initial foothold. In all of these topics we can predict
outcomes over the next few years that are certain to be important for the GUC. We can
think of research in these directions as the bottom-up approach to a science for the GUC.

Strategy for Attacking the Challenge

To complement the essential bottom-up theoretical advances, a Grand Challenge must
also be approached by goal-directed navigation; the top-down approach. What kinds of
project provide this navigation?

Here we identify three levels at which experimental projects can be defined without
delay. We also propose a means by which the research community can generate a portfolio
of such projects and train them towards the main Challenge. These projects will will
enhance the value of the bottom-up research and provide incentive to undertake it.

(1) Experimental Applications. The first kind of project aims to achieve part of the goal
of the Challenge for a particular application area; it consists of an Exemplary application,
probably defined and achieved in (say) three-year phases. The aim of such an Exemplar
is primarily experimental, not practical; it will experiment with existing and new calculi,
logics and associated tools to achieve a prototypical system in which specification and
design are permeated by theoretical understanding. Its success consists not in delivering
the application for use in the field, but in exhibiting its formal structure and analysing
its behaviour in terms of an appropriate scientific model. Here are three possible topics
for such project, all of which are currently researched:

- A sentient building;
- Health-care coordinated across a city or country;
- A platform for business processes.

For example, programming for the sentient building may be based upon a process cal-
culus for space and mobility, expanded to accommodate continuous space and time; the
database for the health-care application may illustrate a theory of mobile distributed
semi-structured data; the business-process platform may illustrate a particular use of
process calculus and logics for specification, implementation and coordination.

There is no reason why the studied application should be a new one; there is great
scientific value in taking an existing system that works in the field and re-constructing
it on a more explicitly scientific basis. The goal of our Challenge is that theories should
pervade the construction of a system, not merely be brought in to analyse it after con-
struction. To mount such a theory-based design and then compare it with one that is
currently working is a valuable scientific experiment.



Theories for the Global Ubiquitous Computer 9

(2) Experimental Generic Systems. Experimental Exemplars such as the above will
confront many conceptual problems. Many of these will be generic —i.e. we would
expect the same problem and solution in widely differing applications. This suggests that,
besides underlying theories, universal engineering principles for ubiquitous systems are
to be sought. A sister Grand Challenge, entitled Scalable Ubiquitous Computing Systems
(SCUS), is being mounted as part of the UK exercise, with the purpose of eliciting these
principles. The two Challenges will benefit from joint work on specific aspects of design.
In each case we would expect to ask: How do theoretical models assist the structuring
and analysis of certain aspects of a system?
Three possible topics for collaboration are:

- Stochastic models for reconfigurable systems;
- Resource allocation in an open distributed environment;
- Logic and language for reflectivity.

In the first topic, we aim for models that can predict the behaviour of reconfigurable
systems —e.g. communications networks— that respond probabilistically to demands. We
already have calculi for mobile distributed systems; we understand stochastic behaviour
in non-mobile process calculi; we have experience in stochastic model-checking. The
GUC provides the incentive to combine these three, in the attempt to establish design
principles, and indeed to predict behaviour in existing systems such as the Internet.

In the second topic, one concern is how to represent disciplines for the allocation
of resources —including processors, memory, and services— in a suitable calculus and
associated programming language. Another concern is safety, in an open system where
clients are not a priori trustworthy. This entails a logic of trust (e.g. if A trusts B and
B spawns C, does A trust C?), and ways of verifying that a program implements a
trust-discipline expressed in the logic.

Reflectivity, the third topic, is the ability of a system to report on its own actions, and
on its ability to fulfil its own intentions. What degree of reflectivity should be present
in each subsystem of the GUC? The answer will be embodied in an engineering design
principle, as sought by SCUS. The theoretical challenge is to define a calculus in which
the reflectivity of a process is modelled explicitly, and to demonstrate that this reflectivity
is correctly implemented in a lower-level calculus or language.

These three topics illustrate a rich vein of research challenges. They all explore
the mutual influence between engineering principles and theoretical concepts. A pivotal
component in all three is a programming language informed by the theory.

(3) A Theoretical Hierarchy. A distinctive feature of computational modelling is that
models must exist at many levels. At a high level are specifications and logics; at a low
level are assembly codes. Intermediate levels are already suggested by some of the above
project topics. For example, at a certain level we may model trust but not locality; at a
lower level, locality but not trust. Again, at a certain level we may model communications
as instantaneous, but implement them at a lower level by complex protocols.

With this in mind, models at many levels of abstraction were stipulated as part of the
main goal of our Grand Challenge. Having seen some of the rich conceptual armoury
required for the GUC, we can now see more clearly how these levels should be related,
and can refine the main goal as follows:



10 R. Milner

— To express theories for the GUC as a hierarchy of models and languages, assigning
each relevant concept to a certain level in the hierarchy;

— To define, for each model M, how a system description described in M may be
realised or implemented in models M, . .. , M, lying below M;

— To devise methods and tools for reasoning both at each level and between levels.

We now begin to see how specific projects can be mounted to bridge the gap between
the platform of existing research and the achievement of the Challenge. Each such project
can be seen as either developing a model for a limited range of concepts, or developing
the realisation of such a model in terms of lower ones. For example:

- Extending an existing calculus for mobile distributed systems to incorporate con-
tinuous spatial variables and stochastic state transitions;

- A coordination calculus for systems that are heterogeneously modelled or pro-
grammed.

The first topic is of theoretical interest in its own right, but can be linked to the Exem-
plar study of a sentient building. It should naturally include a programming language
as a sub-model. The second topic acknowledges that, to meet the Challenge in a way
that embraces existing applications, one must accommodate systems implemented in
arbitrary languages. Just as Corba (for example) coordinates the execution of hetero-
geneously programmed systems, so a coordination calculus must admit the analysis of
such systems. A good example is provided by existing communications protocols; the
way to accommodate them in the Challenge is to show —for each protocol in what-
ever language— that it behaves correctly according to a specification expressed in the
coordination calculus itself.

Mounting the Exercise

We have discussed theoretical topics to be developed bottom-up, and we have defined
three categories of project that can be mounted on our existing theoretical platform
(as defined in the Platform Paper), as first top-down steps in attacking our Challenge.
But this is not enough to get a concerted work programme going; the various research
communities need a means to converge upon specific initial projects. This is most likely
to be achieved by networks and workshops organised for that purpose.

An example of a ‘vertical’ network —one that aims to link different top-
ics of research relevant to ubiquity— is UK UbiNet, recently formed and al-
ready organising workshops for groups with different research skills (covering
hardware, software and theory) to inform each other. The relevant website is
http://www-dse.doc.ic.ac.uk/Projects/UbiNet/ . In contrast, a European net-
work focussing upon theories for global computing already exists; known as GC2, it
is an FET pro-active initiative for Framework Programme 6 of the European Commis-
sion. The GC2 Strategy Group has recently published a vision for GC2 entitled Building
the Case for Global Computing, coordinated by Vladimiro Sassone; it can be found at
http://www.cogs.susx.ac.uk/users/vs/gc2/gc2.pdf .


http://www-dse.doc.ic.ac.uk/Projects/UbiNet
http://www.cogs.susx.ac.uk/users/vs/gc2/gc2.pdf

Theories for the Global Ubiquitous Computer 11

Conclusion

We can consider the Global Ubiquitous Computer as the ultimate distributed system.
We have already responded to the exciting challenge of distributed systems; the result
has been a new generation of computing theories. We now see that the technology
of ubiquitous computing has extended this challenge still further; current theories of
distributed and mobile computing systems can be seen as precursors of a still broader
science. There is an opportunity, and an urgent need, to develop this science before
methodologies for the GUC become established and hard to change. This can only be
done by an ever closer collaboration between engineers, theorists and users.



	A Grand Challenge for Computational Theories
	The Existing Theoretical Platform
	Strategy for Attacking the Challenge
	Mounting the Exercise
	Conclusion



