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Abstract. The λµµ̃-calculus, defined by Curien and Herbelin [7], is a
variant of the λµ-calculus that exhibits symmetries such as term/context
and call-by-name/call-by-value. Since it is a symmetric, and hence a
non-deterministic calculus, usual proof techniques of normalization needs
some adjustments to be made to work in this setting. Here we prove the
strong normalization (SN) of simply typed λµµ̃-calculus with explicit
substitutions. For that purpose, we first prove SN of simply typed λµµ̃-
calculus (by a variant of the reducibility technique from Barbanera and
Berardi [2]), then we formalize a proof technique of SN via PSN (preser-
vation of strong normalization), and we prove PSN by the perpetuality
technique, as formalized by Bonelli [5].

1 Introduction

1.1 λµµ̃-Calculus and Explicit Substitutions

The λµµ̃-calculus, defined by Curien and Herbelin [7], is a symmetric variant
of Parigot’s λµ-calculus [11] that provides a term notation for classical sequent
calculus. It exhibits symmetries such as terms/contexts and call-by-name/call-
by-value. Its two main reduction rules form a symmetric critical pair, which
makes the calculus non-deterministic (non-confluent) and raises difficulties in
normalization proofs : a naive definition of reducibility candidates would fall in
a symmetric loop of mutual induction.

On the other hand, calculi with explicit substitutions were introduced [1]
as a bridge between λ-calculus [6] and concrete implementations of function-
nal programming languages. Those calculi intend to refine the evaluation pro-
cess by proposing reduction rules to deal with the substitution mechanism – a
meta-operation in the traditionnal λ-calculus. In the study of those calculi, an
important task was to establish good properties such as:

• Simulation of β reduction, which says that a term that can be reduced to
another in the traditionnal λ-calculus can also be reduced to the same one
in the calculus with explicit substitutions.
• Confluence, which says that whatever reduction strategy you choose, you

can always find a common reduct.
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• Preservation of strong normalization (PSN), which says that if a term is
β-strongly normalizing (i.e. cannot be infinitely reduced), it is also strongly
normalizing with respect to the calculus with explicit substitutions.
• Strong normalization (SN), which says that, with respect to a typing sys-

tem, every typed term is strongly normalizing in the calculus with explicit
substitutions.

It was remarked, at once, that explicit substitutions raises more difficulties
in normalization proofs, due to the fact that reductions can now take place
in an argument substituted in a term to a variable which is not free in that
term. Such reductions produce no trace in the original calculus, because the
substitution is bounded to disappear. Therefore we cannot easily infer SN for
explicit substitutions from strong normalization of the original calculus.

1.2 The λµµ̃-Calculus with Explicit Substitutions: λµµ̃x

Here we work on λµµ̃x, an explicit substitutions version “à la” λx [4] of the
λµµ̃-calculus. Its syntax was introduced in [9] and, in the same paper, there
was an attempt to prove strong normalization of the deterministic call-by-name
fragment directly by the reducibility technique. Unfortunately, the technique did
not work so nicely, and the proof of a key lemma (Weakening lemma) turned out
to be bugged... We keep this technique for the pure calculus (i.e. without explicit
substitutions), and, in order to lift it to the symmetric calculus, we adjust it like
Barbanera and Berardi did for their symmetric λ-calculus [2]. We will see that
reducibility sets constructed by fixed point ensure that their definition will not
fall in the symmetric infinite loop of terms defined by contexts and vice versa.

To prove SN, we formalize a technique initially suggested by Herbelin, which
consists in expanding substitutions into pure λµµ̃-redexes and to inherit SN of
the whole calculus by SN of the pure calculus and by PSN.

Finally, to prove PSN, we use the perpetuality technique, as formalized by
Bonelli [5]. The main point of this technique is to exhibit a strategy wich pre-
serves infinite reductions. This together with some material to trace the substi-
tutions backwards, allows us to establish PSN by contradiction.

In the sequel, we will note SNR for the set of strongly normalizing terms in
the calculus R. We will use FV (t) to denote the set of free variables of t, defined
in the usual way.

1.3 Organization

We first present the (simply typed) λµµ̃-calculus and we prove SN by the re-
ducibility technique (section 2). In section 3, we use the perpetuality technique
to establish PSN. Section 4 formalizes the proof technique of SN via PSN, and
gives the material to use it for λµµ̃x. Finally, we give the proof of SN of λµµ̃x
in section 4.3.
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2 The λµµ̃-Calculus and Its Strong Normalization

We first recall the definition of the λµµ̃-calculus, then we define reducibility sets
and finally we establish strong normalization of the pure calculus.

2.1 Definition

There are three syntactic categories: terms, contexts and commands, respectively
noted v, e and c. We take two variable sets: V ar is the set of term variables,
noted x, y, z etc. ; V ar⊥ is the set of context variables, noted α, β, etc. We will
note t an object, i.e. one of v, e or c. The syntax of the λµµ̃-calculus is:

c ::= 〈v|e〉
v ::= x | λx.v | e · v | µα.c
e ::= α | αλ.e | v · e | µ̃x.c

Reduction rules are given below. The rules (µ) and (µ̃) form a critical pair:

(β) 〈λx.v|v′ · e〉 → 〈v′|µ̃x.〈v|e〉〉
(β̃) 〈e′ · v|αλ.e〉 → 〈µα.〈v|e〉|e′〉
(µ) 〈µα.c|e〉 → c[e/α]
(µ̃) 〈v|µ̃x.c〉 → c[v/x]

(sv) µα.〈v|α〉 → v if α �∈ FV (v)
(se) µ̃x.〈x|e〉 → e if x �∈ FV (e)

Types are usual simple types plus the minus type A − B which is the sym-
metric counterpart of the arrow type A → B, its meaning is A and not B. We
work here in classical sequent calculus, with a notation to exhibit a formula in a
sequent: Γ � A|∆ is the same sequent as Γ � A,∆ but the formula A is exhibited
as active formula. For further details about this framework and the isomorphism
with objects of the λµµ̃-calculus, see [7].

Three sequent forms are used to type the syntactic categories: the commands
are typed by (Γ � ∆), the terms by Γ � A|∆ and the contexts by Γ |A � ∆.
Here are the typing rules:

c : (Γ, x : A � ∆)
Γ |µ̃x.c : A � ∆

Γ � v : A|∆ Γ |e : A � ∆
〈v|e〉 : (Γ � ∆)

c : (Γ � α : A,∆)
Γ � µα.c : A|∆

Γ |α : A � ∆,α : A Γ, x : A � ∆|x : A

Γ |e : B � α : A,∆
Γ |αλ.e : A−B � ∆

Γ, x : A � v : B|∆
Γ � λx.v : A→ B|∆

Γ � v : A|∆ Γ |e : B � ∆
Γ |v · e : A→ B � ∆

Γ � v : B|∆ Γ |e : A � ∆
Γ � e · v : A−B|∆



426 E. Polonovski

2.2 Reducibility Sets

We simultaneously define, by induction of the type structure:

– the operators:

Lambda(X1, X2) =Def {λx.v | ∀v′ ∈ X1, e ∈ X2 〈v[v′/x]|e〉 ∈ [[�]]}
Cons(X1, X2) =Def {v · e | v ∈ X1 and e ∈ X2}

L̃ambda(X1, X2) =Def {αλ.e | ∀e′ ∈ X1, v ∈ X2 〈v|e[e′/α]〉 ∈ [[�]]}
C̃ons(X1, X2) =Def {e · v | e ∈ X1 and v ∈ X2}

Mu(X) =Def {µα.c | ∀e ∈ X c[e/α] ∈ [[�]]}
M̃u(X) =Def {µ̃x.c | ∀v ∈ X c[v/x] ∈ [[�]]}

Remark 1. Mu and M̃u are decreasing operators: the greater X is, the lesser
one can find µα.c’s (resp. µ̃x.c’s) that normalize against all e in X.

Then

• if A is atomic
Neg[[�A]](Y ) = V ar ∪Mu(Y )
Neg[[A�]](X) = V ar⊥ ∪ M̃u(X)

• if A = A1 → A2

Neg[[�A]](Y ) = V ar ∪Mu(Y ) ∪ Lambda([[� A1]], [[A2 �]])
Neg[[A�]](X) = V ar⊥ ∪ M̃u(X) ∪ Cons([[� A1]], [[A2 �]])

• if A = A1 −A2

Neg[[�A]](Y ) = V ar ∪Mu(Y ) ∪ C̃ons([[A1 �]], [[� A2]])

Neg[[A�]](X) = V ar⊥ ∪ M̃u(X) ∪ L̃ambda([[A1 �]], [[� A2]])

Since Mu and M̃u are decreasing operators,Neg is also a decreasing operator.
So Neg[[�A]] ◦ Neg[[A�]] is an increasing operator, and by Tarski’s theorem it
has a fixed point X0 ;

– the reducibility sets:

[[�]] = SN λµµ̃

and

[[� A]] = X0 and [[A �]] = Neg[[A�]](X0).
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Proposition 1 (Good definition). The reducibility sets defined above satisfies

(i) V ar ⊂ [[� A]]
(ii) V ar⊥ ⊂ [[A �]]
(iii) v ∈ [[� A]] ⇐⇒ either v = x

or v = e · v′ with A = A1 −A2,
e ∈ [[A1 �]] and v′ ∈ [[� A2]]

or v = µα.c and
∀e ∈ [[A �]] c[e/α] ∈ [[�]]

or v = λx.v′ with A = A1 → A2 and
∀v′′ ∈ [[� A1]], e ∈ [[A2 �]] 〈v′[v′′/x]|e〉 ∈ [[�]]

(iv) e ∈ [[A �]] ⇐⇒ either e = α
or e = v · e′ with A = A1 → A2,
v ∈ [[� A1]] and e′ ∈ [[A2 �]]

or e = µ̃x.c and
∀v ∈ [[� A]] c[v/x] ∈ [[�]]

or e = αλ.e′ with A = A1 −A2 and
∀e′′ ∈ [[A1 �]], v ∈ [[� A2]] 〈v|e′[e′′/α]〉 ∈ [[�]]

Proof. From the definition of the reducibility sets, we have [[�]] = SN λµµ̃ and
the points (i) and (ii). We prove the points (iii) and (iv). Due to the symmetry,
it suffices to prove (iii).

v ∈ [[� A]] ⇐⇒ v ∈ Neg[[�A]] ◦Neg[[A�]]([[� A]]).

We then consider the different shapes of A and we inline the corresponding
definition of Neg[[�A]] ◦Neg[[A�]]([[� A]]).

2.3 Strong Normalization

Here are the two traditionnal lemmas of strong normalization of the reducibility
sets (RS) and closure by reduction.

Lemma 1 (SN of RS). Let A be a type. Then [[� A]] ⊂ SN λµµ̃ (1), [[A �]] ⊂
SN λµµ̃ (2) and [[�]] ⊂ SN λµµ̃ (3).

Proof. By induction on the structure of A.

1. We consider the different forms of v ∈ [[� A]]:
– v = x: then v ∈ SN λµµ̃.
– v = e · v′: then A = A1 − A2 and we conclude by using the induction

hypothesis twice.
– v = µα.c: by the point (ii) of proposition 1, α ∈ [[A �]], then, by the point

(iii) of proposition 1, c[α/α] ∈ [[�]], that gives us c ∈ [[�]](= SN λµµ̃). We
then have µα.c ∈ SN λµµ̃.

– v = λx.v′, then A = A1 → A2: to get v ∈ SN λµµ̃, we need v′ ∈ SN λµµ̃.
By reducibility of λx.v′, we have ∀v′′ ∈ [[� A1]], e ∈ [[A2 �]] 〈v′[v′′/x]|e〉 ∈
[[�]](= SN λµµ̃). By the points (i) and (ii) of proposition 1, we can take
x for v′′ and α for e, and that gives us 〈v′[x/x]|α〉 ∈ SN λµµ̃. We deduce
v′ ∈ SN λµµ̃ and conclude.
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2. The proof for e is similar to the proof for v by symmetry.
3. By definition [[�]] = SN λµµ̃.

Lemma 2 (Closure by reduction).

1. v ∈ [[� A]], v → v′ =⇒ v′ ∈ [[� A]].
2. e ∈ [[A �]], e→ e′ =⇒ e′ ∈ [[A �]].
3. c ∈ [[�]], c→ c′ =⇒ c′ ∈ [[�]].

Proof. By induction on A, considering the different shapes of v, e, and c.

1.1. v = x: then no more reduction can occur.
1.2. v = e1 · v1: we must consider two possible reductions e1 · v1 → e2 · v1 or

e1 · v1 → e1 · v2. In either case, we conclude by induction hypothesis.
1.3. v = µα.c: we consider the following two cases.

– The reduction is µα.c → µα.c′. By definition of µα.c ∈ [[� A]] we have
∀e ∈ [[A �]] c[e/α] ∈ SN λµµ̃. Then we get c′[e/α] ∈ SN λµµ̃ (always for
any e ∈ [[A �]]) and we conclude with the point (iii) of proposition 1.

– The reduction is µα.〈v|α〉 → v with α �∈ FV (v). We know by hypoth-
esis that µα.〈v|α〉 ∈ [[� A]], then, by the point (iii) of proposition 1,
∀e ∈ [[A �]] 〈v|α〉[e/α] ∈ SN λµµ̃, i.e. 〈v|e〉 ∈ SN λµµ̃. If v is a vari-
able, then we conclude immediately. if v = µβ.c, 〈µβ.c|e〉 ∈ SN λµµ̃

implies that c[e/β] ∈ SN λµµ̃, which gives us µβ.c ∈ [[� A]] by the
point (iii) of proposition 1. If v = λx.v′, 〈λx.v′|e〉 ∈ SN λµµ̃ gives us,
for e = v1 · e1, 〈v1|µ̃x.〈v′|e1〉〉 ∈ SN λµµ̃ then 〈v′|e1〉[v1/x] ∈ SN λµµ̃

and 〈v′[v1/x]|e1[v1/x]〉 ∈ SN λµµ̃ and finally, since x is not free in e1,
〈v′[v1/x]|e1〉 ∈ SN λµµ̃, which is enough, by the points (iv) and (iii) of
proposition 1, to conclude.

1.4. v = λx.v′ : A = A1 → A2 and the reduction is λx.v′ → λx.v′′. By the point
(iii) of proposition 1, we know that ∀v′′′ ∈ [[� A1]], e ∈ [[A2 �]] 〈v′[v′′′/x]|e〉 ∈
[[�]] = SN λµµ̃, so ∀v′′′ ∈ [[� A1]], e ∈ [[A2 �]] 〈v′′[v′′′/x]|e〉 ∈ [[�]] = SN λµµ̃,
and we are done.

2.x. Same as 1.x. by symmetry (where x ranges from 1 to 4).
3. c ∈ [[�]] : then c ∈ SN λµµ̃ and c→ c′ implies that c′ ∈ SN λµµ̃ = [[�]].

Here are now some lemmas to “inductively build” the membership of a RS.

Lemma 3.
v ∈ [[� A]], e ∈ [[A �]] =⇒ 〈v|e〉 ∈ [[�]].

Proof. To show that 〈v|e〉 ∈ [[�]] is, by definition, to show that 〈v|e〉 ∈ SN λµµ̃.
We take all possible pairs for v and e and we reason by induction on the strong
normalisation of v and e (which we get by lemma 1) and on the length of v and
e. We consider all the possible reductions of 〈v|e〉. If the reduction occurs in v
or e, we conclude by induction hypothesis and lemma 2. Else,

• if v = µα.c, the reduction is 〈µα.c|e〉 → c[e/α] and we conclude by definition
of µα.c ∈ [[� A]],
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• if e = µ̃x.c, we conclude symmetrically to the last point,
• if v = λx.v′ and e = v′′ · e′ (with A = A1 → A2), the reduction is 〈λx.v|v′′ ·
e′〉 → 〈v′′|µ̃x.〈v′|e′〉〉. We consider the possible reductions of 〈v′′|µ̃x.〈v′|e′〉〉.
By reducibility of v and e, we have v′′ ∈ SN λµµ̃ and 〈v′[v′′/x]|e′〉 ∈ SN λµµ̃.
Consequently, since the reductions cannot occur infinitely in those terms, we
will get to reduce one of the following (where v′′ →∗ v1, 〈v′|e′〉 →∗ 〈v2|e2〉):
– 〈v1|µ̃x.〈x|e2〉〉 → 〈v1|e2〉 : by induction hypothesis, we have 〈v′′|e′〉 ∈
SN λµµ̃ and 〈v1|e2〉 is one of its reducts.

– 〈v1|µ̃x.〈v2|e2〉〉 → 〈v2[v1/x]|e2[v1/x]〉 : this term is also a reduct of
〈v′[v′′/x]|e′[v′′/x]〉 which is in SN λµµ̃ by reducibility of v, due to the
fact that since x is not free in e′, hence in e2, e2[v1/x] = e2.

– 〈µα.c1|µ̃x.〈v2|e2〉〉 → c1[µ̃x.〈v2|e2〉/α] with v1 = µα.c1. By reducibility
of e and by the lemma 2 we have µα.c1 ∈ [[� A1]], that gives us, by
definition, that c1[µ̃x.〈v2|e2〉/α] belongs to [[�]] if µ̃x.〈v2|e2〉 belongs to
[[A1 �]]. And this last condition is satisfied, by definition, if and only if
∀v3 ∈ [[� A1]] we have 〈v2[v3/x]|e2[v3/x]〉 ∈ [[�]], which is a consequence
of the reducibility of v (with e2[v3/x] = e2, by the same argument as
above).

• If e = αλ.e′ and v = e′′ · v′, we conclude symmetrically to the last point.
• In all other cases, no reduction can occur.

Lemma 4. If v[v′/x] ∈ [[� B]] for all v′ ∈ [[� A]] then λx.v ∈ [[� A→ B]]. If
e[e′/α] ∈ [[B �]] for all e′ ∈∈ [[A �]] then αλ.e ∈ [[� A−B]].

Proof. By symmetry, we need only to prove one of the implications, let us take
the first one. To prove that λx.v ∈ [[� A→ B]], we need, by the point (iii) of
proposition 1, to prove that for all v′ ∈ [[� A]], e ∈ [[B �]], 〈v[v′/x]|e〉 ∈ [[�]]. By
hypothesis, we have v[v′/x] ∈ [[� B]]. We conclude with the lemma 3.

Here is the adequacy lemma.

Lemma 5 (Adequacy). Let A be a type and t an object such that FV (t) ⊂
X1 ∪X2 (X1 ⊂ V ar and X2 ⊂ V ar⊥) and the variables xi ∈ X1 are of type Bi

and the variables αj ∈ X2 are of type Cj. For all set of objects vi, ej such that
∀i vi ∈ [[� Ai]] and ∀j ej ∈ [[Bj �]] we have, accordingly to the shape of t,

1. if X1 : B � v : A|X2 : C then v[v1/x1, ..., vn/xn, e1/α1, ..., em/αm] ∈ [[� A]]
2. if X1 : B|e : A � X2 : C then e[v1/x1, ..., vn/xn, e1/α1, ..., em/αm] ∈ [[A �]]
3. if c : (X1 : B � X2 : C) then c[v1/x1, ..., vn/xn, e1/α1, ..., em/αm] ∈ [[�]]

Remark 2. We note X1 : B the enumeration {xi : Bi|i ∈ [1, n]} (the same for
X2 : C).

Proof. We note [//] the substitution [v1/x1, ..., vn/xn, e1/α1, ..., em/αm]. We rea-
son by induction on the structure of t

– v = x : then, by hypothesis, ∃i, A = Bi. So v[//] = vi ∈ [[� Bi]] = [[� A]].
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– v = e · v′ : by induction hypothesis on e and v′, and by the point (iii) of
proposition 1, we conclude immediately.

– v = λx.v′ : we then haveA = A′ → A′′. Since we can rename bound variables,
we can suppose that x �∈ {x1, ..., xn}, which gives us (λx.v′)[//] = λx.(v′[//]).
By induction hypothesis, for all v′′ ∈ [[� A′]] we have v′[v′′/x, //] ∈ [[� A′′]]
and by the lemma 4, we are done.

– v = µα.c : since we can rename bound variables, we can suppose that
α �∈ {α1, ..., αm}. Now, by the point (iii) of proposition 1, to prove that
(µα.c)[//] = µα.(c[//]) ∈ [[� A]] we need only to prove that, for all e ∈ [[A �]],
c[e/α, //] ∈ [[�]] which is done by induction hypothesis.

– e : the cases for e are similar to those for v by symmetry.
– c = 〈v|e〉. By induction hypothesis on v and e, and by the lemma 3, we

conclude immediately.

We can now establish the main theorem of this section.

Theorem 1. Every typed λµµ̃ object is strongly normalizing.

Proof. Let t be an object of the λµµ̃-calcul typed by Γ and ∆, i.e. such that
the conclusion of its typing judgement is either Γ � t : A|∆, or Γ |t : A � ∆,
or t : (Γ � ∆). Suppose that its free variables are {α1, ..., αm, x1, ..., xn}, each
one typed xi : Ai and αi : Bi. By the points (i) and (ii) of proposition 1,
we get that for all i, xi ∈ [[� Ai]] and αi ∈ [[Bi �]]. Then, by the lemma 5,
t[x1/x1, ..., xn/xn, α1/α1, ..., αm/αm] = t is in a reducibility set. By the lemma 1,
we get t ∈ SN λµµ̃.

3 PSN of λµµ̃-Calculus with Explicit Substitutions

We first define the λµµ̃-calculus with explicit substitutions. Then we show some
useful results on the substitution calculus. And finally, we establish the property
of preservation of strong normalization.

3.1 Definition

To the three syntactic categories presented in the last section, we add a fourth,
regarding explicit substitutions, noted τ . In the sequel, ∗ will stand for either a
term or a context variable. The syntax of the λµµ̃x-calculus is:

c ::= 〈v|e〉 | cτ
v ::= x | λx.v | e · v | µα.c | vτ
e ::= α | αλ.e | v · e | µ̃x.c | eτ
τ ::= [x← v] | [α← e]

The source Dom(τ) of τ is x if τ = [x← v] and α if τ = [α← e]. The body
S(τ) of τ is v in the first case and e in the second. We will say that a substitution
belongs to SN λµµ̃x if its substituend itself belongs to SN λµµ̃x.
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We extend the typing system by adding a new form of sequent (Γ � ∆) ⇒
(Γ ′ � ∆′). Here are the typing rules for explicit substitutions:

Γ � v : A|∆
[x← v] : (Γ, x : A � ∆)⇒ (Γ � ∆)

Γ |e : A � ∆
[α← e] : (Γ � ∆,α : A)⇒ (Γ � ∆)

Γ |e : A � ∆ τ : (Γ � ∆)⇒ (Γ ′ � ∆′)
Γ ′|eτ : A � ∆′

Γ � v : A|∆ τ : (Γ � ∆)⇒ (Γ ′ � ∆′)
Γ ′ � vτ : A|∆′

c : (Γ � ∆) τ : (Γ � ∆)⇒ (Γ ′ � ∆′)
cτ : (Γ ′ � ∆′)

The reduction rules are the following:

(β) 〈λx.v|v′ · e〉 → 〈v′|µ̃x.〈v|e〉〉
(β̃) 〈e′ · v|αλ.e〉 → 〈µα.〈v|e〉|e′〉
(mu) 〈µα.c|e〉 → c[α← e]
(m̃u) 〈v|µ̃x.c〉 → c[x← v]

(sv) µα.〈v|α〉 → v if α �∈ FV (v)
(se) µ̃x.〈x|e〉 → e if x �∈ FV (e)

(cτ) 〈v|e〉τ → 〈vτ |eτ〉
(xτ1) xτ → S(τ) if x ∈ Dom(τ)
(xτ2) xτ → x if x �∈ Dom(τ)
(ατ1) ατ → S(τ) if α ∈ Dom(τ)
(ατ2) ατ → α if α �∈ Dom(τ)
(·τ) (v · e)τ → (vτ) · (eτ)
(̃·τ) (e · v)τ → (eτ) · (vτ)
(λτ) (λx.v)τ → λx.(vτ)
(λ̃τ) (αλ.e)τ → αλ.(eτ)
(µτ) (µα.c)τ → µα.(cτ)
(µ̃τ) (µ̃x.c)τ → µ̃x.(cτ)

We reason modulo α-conversion on the bound variable in the rules (µτ), (µ̃τ),
(λτ) and (λ̃τ).

3.2 Substitution Calculus

We will note:

• x the set of rules concerning the propagation of substitutions, namely cτ ,
xτ1, xτ2, ατ1, ατ2, ·τ , ·̃τ , λτ , λ̃τ , µτ and µ̃τ ,
• ¬x the set of rules not in x, namely those concerning reductions of the original

calculus: β, β̃, mu, m̃u, sv and se.

We present here some usual results on substitution calculi [5].
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Lemma 6 (Strong normalization of x). x is strongly normalizing and its
normal forms are pure objects (i.e. without substitutions).

Proof. We define the following measure h:

h(∗) = 1 h(〈v|e〉) = h(v) + h(e) + 1
h(v · e) = h(v) + h(e) + 1 h(e · v) = h(v) + h(e) + 1
h(λx.v) = h(v) + 1 h(αλ.e) = h(e) + 1
h(µα.c) = h(c) + 1 h(µ̃x.c) = h(c) + 1
h(t[∗ ← t′]) = h(t) ∗ (h(t′) + 1)

We easily check that each x-reduction strictly decreases h. We prove by contra-
diction that the normal forms are pure objects: if there is a substitution, we look
to the object to which it is applied and we find a reduction to perform.

We will note x(t) the x-normal form of an object t.

Lemma 7 (Confluence of x). x is confluent.

Proof. All critical pairs have disjoint redexes, which gives us local confluence.
By Newman lemma and lemma 6 we get confluence.

Lemma 8 (Substitution). x(t[∗ ← t′]) = x(t){∗ ← x(t′)}.
Proof. We prove, by induction on the height of t and of the ti, that

x(t[∗1 ← t1]...[∗n ← tn]) = x(t){∗1 ← x(t1)}...{∗n ← x(tn)}.

Lemma 9 (Simulation of the λµµ̃-calculus). For all t and u pure objects,
if t→λµµ̃ u then t→∗

λµµ̃x
u.

Proof. By induction on the structure of t. The only interesting cases are those
in which the reduction occurs at the root.

– 〈µα.c|e〉 →µ c{∗ ← e}: we have

〈µα.c|e〉 →mu c[∗ ← e]→x x(c[∗ ← e]) lemma 8= x(c){∗ ← x(e)}.
Since 〈µα.c|e〉 is a pure object, x(c) = c, x(e) = e and we are done.

– 〈v|µ̃x.c〉 →µ c{∗ ← v}: this case is similar to the previous by symmetry.
– The other rules are simulated in one step by their homonymes in λµµ̃x.

We say that a reduction is void if it occurs in the body of a substitution
t[∗ ← t′] such that ∗ �∈ x(t). We note it v→.

Lemma 10 (Projection).

1. If t→λµµ̃x u then x(t)→∗
λµµ̃

x(u).
2. If t→¬x u is not a void reduction, then x(t)→+

λµµ̃
x(u).

Proof. We consider three cases:

– the reduction is t→x u. Then x(t) = x(u).
– the reduction is t v→¬x u. Then x(t) = x(u).
– the reduction is t→¬x u and is not void. The redex appears in x(t) and we

can reduce it, then obtain x(u).
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3.3 Around Perpetuality

We use the perpetuality technique, formalised by Bonelli [5]. In fact, we use
only the first part of the technique, which is enough to prove preservation of
strong normalisation. We give some lemmas to extract a void substitution with
an infinite derivation inside, and to trace this substitution backwards.

Lemma 11. Let t0 →λµµ̃x t1 →λµµ̃x t2 →λµµ̃x ... be an infinite reduction. If
x(t0) ∈ SN λµµ̃, then there exists an integer k such that for all i > k, we have
ti

v→λµµ̃ ti+1.

Proof. Since x is strongly normalizing, the reduction must be t0 →∗
x t1 →¬x

t2 →∗
x t3 →¬x t4... By lemma 10, we have x(t0) →∗

λµµ̃
x(t1) →∗

λµµ̃
x(t2) →∗

λµµ̃

x(t3) →∗
λµµ̃

x(t4)... Furthermore, for all even i, if ti+1 →¬x ti+2 is not a void

reduction, then x(ti) →+
λµµ̃

x(ti+2). From x(t0) ∈ SN λµµ̃ we deduce that there

exists k such that for all even i greater than k we have ti+1
v→¬x ti+2. We must

now prove that from a certain point, both ¬x and x reductions are void. For
that, we define the following measure:

h(∗) = 1 h(〈v|e〉) = h(v) + h(e) + 1
h(µα.c) = h(c) + 1 h(µ̃x.c) = h(c) + 1

h(t[∗ ← t′]) =
{
h(t) ∗ (h(t′) + 1) if ∗ ∈ FV (x(t))
h(t) ∗ 2 else

The last clause guarantees that a void reduction leaves the measure unchanged.
We easily satisfies that all other reductions strictly decraese this measure, and
we conclude.

The next notion is useful to isolate a void substitution.

Definition 1 (Skeleton). The skeleton of an object, noted SK(t), is induc-
tively defined as follows:

SK(∗) = ∗ SK(〈v|e〉) = 〈SK(v)|SK(e)〉
SK(µα.c) = µα.SK(c) SK(µ̃x.c) = µ̃x.SK(c)
SK(t[∗ ← u]) = SK(t)[∗ ← •]
We remark that if t v→ u, then SK(t) = SK(u).

The following lemma says that if there is an infinite derivation, then there
exists a substitution in which there is an infinite derivation.

Lemma 12. Let an infinite derivation be t0 →λµµ̃x t1 →λµµ̃x t2 →λµµ̃x ... If
x(t0) ∈ SN λµµ̃, then there exists an integer k, an object t, a variable ∗, a context
C and an object sequence ui such that

t0 →∗
λµµ̃x

tk = C[t[∗ ← uk]]
v→λµµ̃x C[t[∗ ← uk+1]]
v→λµµ̃x C[t[∗ ← uk+2]] . . .

with uk →λµµ̃x uk+1 →λµµ̃x uk+2 →λµµ̃x uk+3...
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Proof. By lemma 11, there exists k such that for all i > k, ti
v→λµµ̃x ti+1. Then,

we have SK(tk) = SK(ti) for all i ≥ k. The derivation tree of tk being infinite,
by the pigeon hole principle, an infinite derivation must take place in the same
substitution of SK(tk), and we are done.

Lemma 13 (Substitution tracing – 1 step). Let t and u be two objects such
that t→λµµ̃x u and u = C[u1[∗ ← u2]]. Then

1. either t = C ′[u′
1[∗ ← u2]],

2. or t = C ′[u′
1[∗ ← u′

2]] with u2 → u′
2,

3. or u1 is a command and
if ∗ = α then t = C[〈µα.u1|u2〉] else t = C[〈u2|µ̃x.u1〉].

Proof. We reason by induction on t and we consider the following two cases:

• The reduction takes place at the root. First note that if u1[∗ ← u2] appears
in a sub-term of u, which is also a sub-term of t, then for a context C ′ and
u′

1 = u1 the first item holds. This applies also when the rule used to reduce
at the root is one of xτ or ατ . Else if the rule is mu or m̃u, then the third
item holds, else if it is another rule, then the first item holds, in both cases,
we use the empty context.
• The reduction is internal.

– t = ∗. The result holds trivially.
– t = 〈v|e〉 with either v →λµµ̃x v

′ or e →λµµ̃x e
′. We consider the first

case, since the second one is similar. We have u = 〈v′|e〉 and:
� if the sub-term u1[∗ ← u2] occurs in v′, then we use induction hy-

pothesis.
� else the sub-term u1[∗ ← u2] occurs in e ; then the first item holds.

– t = v · e or t = e · v with either v →λµµ̃x v
′ or e →λµµ̃x e

′. We conclude
similarly to the previous point.

– t = µα.c or µ̃x.c or λx.v or αλ.e. We use induction hypothesis.
– t = t1[∗ ← t2]. There are two cases:

� t1 →λµµ̃x t
′
1 and u = t′1[∗ ← t2]. Then if u1[∗ ← u2] occurs in t′1

we use induction hypothesis. If it occurs in t2 the first item holds
trivially. Finally, if u = u1[∗ ← u2] then we take the empty context
for C ′, u′

1 = t1 and the first item holds.
� t2 →λµµ̃x t

′
2 and u = t1[∗ ← t′2]. Then if u1[∗ ← u2] occurs in t1 the

first item holds trivially. If it occurs in t′2 we use induction hypothesis.
Finally, if u = u1[∗ ← u2] then we take the empty context for C ′,
u′

1 = t1 and u′
2 = t2 and the second item holds.

This result is naturally extended to many-steps reductions.

Lemma 14 (Substitution tracing). Let t1, ..., tn be objects such that, for all
i, ti →λµµ̃x ti+1 and tn = C[u1[∗ ← u2]]. Then

1. either ∗ = α and there is i such that ti = C ′[〈µα.u′
1|u′

2〉] with u2 →∗
λµµ̃x

u′
2,

2. or ∗ = x and there is i such that ti = C ′[〈u′
2|µ̃x.u′

1〉] with u2 →∗
λµµ̃x

u′
2,

3. or t1 = C ′[u′
1[∗ ← u′

2]] with u2 →∗
λµµ̃x

u′
2.
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Proof. By induction on the number of reduction steps, using lemma 13.

We formalise the notion of derivation ordering.

Definition 2. Let φ and ψ be two infinite derivations starting form an object
t1. Then φ is called smaller than ψ if they reduce the same redexes for the first
n− 1 steps, and the nth redex reduced by φ is a strict subterm of the nth redex
reduced by ψ.

Here is the main theorem of this section.

Theorem 2 (PSN). t ∈ SN λµµ̃ ⇒ t ∈ SN λµµ̃x.

Proof. By contradiction. Suppose that there exists a pure term t which can be
infinitely reduced in the λµµ̃x-calculus. We take a minimal derivation of this
term. By lemma 12, at a certain point, we can exhibit a infinite derivation in
a void substitution. By lemma 14, we can go backwards until we reach the
reduction which creates this substitution while keeping the infinite reduction in
it. This creation point (chosen by the minimal derivation) is a proper prefix of
the reduction point of the infinite derivation inside the future body of the void
substitution. This contradicts the minimality of the derivation.

4 PSN Implies SN

4.1 Proof Technique

The technique we present here is very general and can be applied to many calculi
with explicit substitutions. The idea of this technique is the following : let t be
a typed term with explicit substitutions, with its typing judgement, we build a
typed term t′ of the pure calculus by expanding the substitutions of t in redexes.
We call this expansion Ateb. We require the following two properties, which are
enough to establish theorem 3.

Property 1 (Preservation of typability). If t is typable in the calculus with ex-
plicit substitution, then Ateb(t) is typable in the pure calculus.

Property 2 (Initialization). Ateb(t) reduces to t in 0 or more steps in the calculus
with explicit substitutions.

We can now establish the theorem.

Theorem 3. For all typing system such that all typable terms are strongly nor-
malizing, if there exists a function Ateb from explicit substitution terms to pure
terms satisfying properties 1 and 2 then PSN implies SN.

Proof. For all typed term t of the calculus with explicit substitution, Ateb(t)
is a pure typed term (by property 1). By hypothesis of strong normalization of
the pure typed calculus, we have Ateb(t) ∈ SN (in the present case SN λµµ̃).
By hypothesis of PSN we obtain that Ateb(t) is in SN (in the present case
SN λµµ̃x). By property 2, we get Ateb(t) →∗ t, which gives us directly t ∈ SN
(in the present case SN λµµ̃x).
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4.2 Application to λµµ̃

Here is the definition of Ateb. It is obvious that for all t, Ateb(t) contains no
substitutions. We then check that this function satisfies the two properties we
mention above.

Definition 3.

Ateb(x) = x Ateb(α) = α
Ateb(λx.v) = λx.Ateb(v) Ateb(αλ.e) = αλ.Ateb(e)
Ateb(µα.c) = µα.Ateb(c) Ateb(µ̃x.c) = µ̃x.Ateb(c)
Ateb(e · v) = Ateb(e) ·Ateb(v) Ateb(v · e) = Ateb(v) ·Ateb(e)
Ateb(〈v|e〉) = 〈Ateb(v)|Ateb(e)〉

Ateb(c[x← v]) = 〈Ateb(v)|µ̃x.Ateb(c)〉
Ateb(c[α← e]) = 〈µα.Ateb(c)|Ateb(e)〉
Ateb(v[x← v′]) = µα.〈λx.Ateb(v)|Ateb(v′) · α〉 With α fresh variable
Ateb(v[α← e]) = µβ.〈µα.〈Ateb(v)|β〉|Ateb(e)〉 With β fresh variable
Ateb(e[x← v]) = µ̃y.〈Ateb(v)|µ̃x.〈y|Ateb(e)〉〉 With y fresh variable
Ateb(e[α← e′]) = µ̃x.〈Ateb(e′) · x|αλ.Ateb(e)〉 With x fresh variable

Proof. (of property 1) Easy by induction on the proof of the typing judgement
of t.

Proof. (of property 2) We proceed by induction on t. Only the cases for substi-
tutions are not easy. By the symmetry of the system, we consider only one half
of it.

– We have Ateb(c[x← v]) = 〈Ateb(v)|µ̃x.Ateb(c)〉 and

〈Ateb(v)|µ̃x.Ateb(c)〉 →µ Ateb(c)[x← Ateb(v)].

– We have Ateb(v[x← v′]) = µα.〈λx.Ateb(v)|Ateb(v′) · α〉 and

µα.〈λx.Ateb(v)|Ateb(v′) · α〉
→β µα.〈Ateb(v′)|µ̃x.〈Ateb(v)|α〉〉 →µ̃ µα.(〈Ateb(v)|α〉[x← Ateb(v′)])
→cτ µα.〈Ateb(v)[x← Ateb(v′)]|α[x← Ateb(v′)]〉
→ατ2 µα.〈Ateb(v)[x← Ateb(v′)]|α〉 →sv Ateb(v)[x← Ateb(v′)].

– We have Ateb(v[α← e]) = µβ.〈µα.〈Ateb(v)|β〉|Ateb(e)〉 and

µβ.〈µα.〈Ateb(v)|β〉|Ateb(e)〉 →µ µβ.(〈Ateb(v)|β〉[α← Ateb(e)])
→cτ µβ.〈Ateb(v)[α← Ateb(e)]|β[α← Ateb(e)]〉
→ατ2 µβ.〈Ateb(v)[α← Ateb(e)]|β〉 →sv Ateb(v)[α← Ateb(e)].

In each case, we conclude by induction hypothesis.

We can use Theorem 3.
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4.3 Strong Normalization of λµµ̃x-Calculus

We collect together our results to prove the main theorem of this work.

Theorem 4. The typed λµµ̃x-calculus is strongly normalizing.

Proof. By Theorem 1 (SN for pure calculus), Theorem 2 (PSN) and Theorem 3
(PSN implies SN).

5 Achievements and Perspectives

Using various proof techniques, we have established that the λµµ̃x-calculus is
strongly normalizing. For that purpose, we have formalized a proof technique of
SN via PSN. Let us mention that we have successfully applied this technique,
with some adjustments, to prove SN of the λυ-calculus (introduced in [3]) for
the first time, as far as we know. We also used it to establish that PSN implies
SN for the λσ-calculus [1], for which PSN is known to fail [10], showing that, for
this calculus, the only problem of SN is in PSN.

It remains an open problem to build a direct proof, by the reducibility tech-
nique, of SN for a symmetric non-deterministic calculus with explicit substitu-
tions. Another direction of work could be to replace substitutions “à la” λx by
substitutions “à la” λws [8], which yields, through the addition of explicit weak-
enings, a more powerful substitution system. It may even help us to find a direct
proof of SN. At last, we plan to work on a second order version of λµµ̃x.
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