
Reasoning about Dynamic Policies

Riccardo Pucella and Vicky Weissman

Department of Computer Science
Cornell University
Ithaca, NY 14853

{riccardo,vickyw}@cs.cornell.edu

Abstract. People often need to reason about policy changes before they are
adopted. For example, suppose a website manager knows that users want to enter
her site without going through the welcome page. To decide whether or not to
permit this, the wise manager will consider the consequences of modifying the
policies (e.g., would this allow users to bypass advertisements and legal notices?).
Similiarly, people often need to compare policy sets. For example, consider a per-
son who wants to buy health insurance. Before choosing a provider, the customer
will want to compare the different policies. In other words, the customer wants to
reason about the effect of choosing one policy set over another. We introduce a
logic, based on propositional dynamic logic, in which these tasks can be done. We
give a sound and complete axiomatization for our logic, and also show that it is de-
cidable. More precisely, the satisfiability problem is decidable in nondeterministic
exponential time.

1 Introduction

Many applications include a set of statements, called policies, that say what is and what
is not permitted. Policies arise in many different settings. They can be access control
policies, describing which agents are permitted to access resources. They can be legal
policies, describing what actions are legally permitted, in a normative sense.An important
observation is that an application’s set of policies might not be static. They often change
over time, particularly in response to a user’s request. A user not only asks for policy
changes, she usually compares the policies of different applications and chooses the
one that’s best for her. Even before a policy set can be changed or rejected outright, a
system designer needs to create the original set. This might involve comparing different
options with respect to what they allow, as well as how difficult they are to implement.
Choosing whether or not to modify a policy set, deciding to accept or reject one, and
creating policies are nontrivial tasks. To get a sense of what needs to be done in practice,
consider the following examples.

Example 1.1. Suppose Alice has a junior library card that lets her into the junior section
of the library and nowhere else. Alice asks her librarian Libby for an adult card, because
she wants to read the books on Classical Philosophy that are kept in the library’s adult
nonfiction section. Should Libby change the library’s policies so that Alice may act as an
adult patron? To answer this question wisely, Libby needs to determine the consequences
of her change. If the only consequence is that Alice may access the adult fiction and adult

I. Walukiewicz (Ed.): FOSSACS 2004, LNCS 2987, pp. 453–467, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

454 R. Pucella and V. Weissman

nonfiction collections, then it seems reasonable for Libby to grant the request. On the
other hand, if the adult card would allow Alice to enter the library’s section on erotic
literature, then Libby might look for another solution.

Example 1.2. A company wants to offer its employees health insurance. The providers
under consideration areAetna and Blue Cross Blue Shield.To make an informed decision,
the company needs to determine which actions are permitted under Aetna’s policies that
are not allowed under Blue Cross Blue Shield’s and vice-versa.

Example 1.3. A software company is building a new application.The policies that govern
the application need to enforce the principle of least privilege [24, p.242], which says
that each agent has only those permissions that are necessary to do her job. Alice is told
to create the policies. To do this, she needs to build a policy set and then check that it
meets the principle of least privilege. Once she has found an appropriate set, she gives it
to Bob, whose job is to implement the policies correctly. Bob creates a new policy set that
is relatively easy to implement and seems equivalent to the one Alice gave him. Before
implementing the new set, however, Bob needs to verify that his set allows exactly the
same actions as Alice’s.

These examples demonstrate a need for a language in which people can compare
policies and reason about suggested changes. There are many languages for articulating
and reasoning about policies. A survey by Wieringa and Meyer [29] provides some
examples. Others may be found in a variety of Computer Science communities, including
computer systems security [7,13,8], automated legal reasoning [19], database integrity
[23], and digital rights management [27,17,2,11]. All of these languages were created
to determine which permissions follow from a single, fixed set of policies. They simply
were not designed to address the issues highlighted by our examples. In particular, they
cannot express that one policy set is equivalent to another, or that one is strictly more
permissive.

In this paper, we introduce a logic in which we can reason about non-static (i.e.,
dynamic) policies. The logic is based on Dynamic Logic of Permission (DLP) defined
by van der Meyden [21], which is itself based on Propositional Dynamic Logic (PDL)
[9]. DLP is used to reason about a fixed policy set that governs an application whose
behavior is modeled by a transition system. For example, in DLP, we can formulate the
query ‘Is Alice permitted to enter the adult fiction section’; then, we can answer the
query based on the particular application and policy set. DLP is a very expressive logic.
It was developed to support the kind of reasoning found in intelligent legal information
systems. To do so, it considers permissions to be associated with transitions (any given
state transition is either permitted or forbidden), and provides two different operators
to query whether actions are permitted: an action is permitted if there is a possible
execution of the action using only permitted transitions, and it is freely permitted if all
possible executions of the action use only permitted transitions. For many computer
applications, this distinction is not necessary. (Indeed, the examples we use in this paper
do not use free permissions.) However, by extending DLP, our logic remains appropriate
for reasoning about policies in legal information systems. We extend DLP by adding the
ability to mention and to modify the policies of the application in the formulas. This lets

Reasoning about Dynamic Policies 455

us write queries such as ‘Assuming we change the policy so that Alice is treated as an
adult, may she enter the adult fiction section’. Moreover, we can determine the truth of
such conditional queries with respect to the particular application and the original policy
set.

The uses for our logic go well beyond reasoning about basic conditionals. In our
logic, we can update a policy set (i.e., add or remove policies) within a query at arbitrary
points. This allows us to reason about the execution of a scenario which begins under one
policy set and completes under a modified version. For example, suppose a university has
a policy p that says no one can pass her thesis defense, unless she has fulfilled her minor
requirements. After witnessing several students with finished theses, scrambling to meet
minor requirements, the university decides that the policy should be changed. The new
policy says that minor requirements must be met for a student to pass her preliminary
exam; since passing the preliminary exam is already a requirement for passing the
defense, the univerisity removes p from its policy set. Now, under either policy set,
a student cannot pass her defense unless she has completed her minor requirements.
However, a student with fortunate timing can avoid the requirement (she passes the
preliminary exam under the old policy and defends under the new). We can use our
framework to detect this type of consequence.

The rest of the paper is organized as follows. In the next section we review transition
systems. Then, we present both the syntax and the semantics of our logic. We finish
the section by applying our logic to the situations in Examples 1.1, 1.2, and 1.3. In
Section 3 we give a sound and complete axiomatization for our logic. The satisfiability
problem is considered in Section 4, where we show that our logic is decidable. In fact,
the satisfiability problem is decidable in nondeterministic exponential time. (We suspect
that the problem is decidable in deterministic exponential time, which is the complexity
of the satisfiability problem for PDL.) Related work is discussed in Section 5 and we
conclude in Section 6. For reasons of space, the proofs are left to the full paper.

2 A Logic for Reasoning about Dynamic Policies

Application Model. We assume the application is modeled by a set of states, a set of
labelled transitions, and a set of policies.A state is a snapshot of the application in time.A
state can, for instance, record the value of all the variables in the application. Transitions
between the states represent progress of the application. Each transition is labelled by an
action; intuitively, a transition between states s and s′ labelled with an action a means
that by performing a in s, the application might progress to s′. Note that actions can be
nondeterministic, in the sense that more than one transition from the same state can be
labelled with the same action. The set of policies tells us which transitions are permitted.

As an example of these concepts, suppose Alice wants a file and can obtain it either
by downloading it from the network or copying it from a disk. We can capture this
scenario in a model that has three states, s1, s2, and s3, where Alice wants the file in s1
and has the network version of the file in s2 and the disk version of the file in s3. The
model has two transitions, t and t′, where t goes from s1 to s2 and is labeled ‘download
from network’, while t′ goes from s1 to s3 and is labeled ‘download from disk’. Now
suppose t′ is permitted and t is not, according to the application’s policies. (For instance,

456 R. Pucella and V. Weissman

the policy may want to restrict access to the network.) Then if Alice wants the file, she is
permitted to copy it from the disk, but is not permitted to download it from the network.

Syntax. We now introduce the syntax of DLPdyn, which is our logic for reasoning about
dynamic policies. (We assume the policies are part of an application whose behavior
is modeled by a transition system.) DLPdyn is an extension of DLP, which is itself an
extension of PDL. As in PDL, we assume a set of primitive actions, Act0, and then
provide combinators for building more complex actions from the primitive ones.

Syntax for Actions:

a ∈ Act0 primitive action
α, β ::= action

a primitive action
α;β sequential
α ∪ β alternative
α∗ repetition

The action α;β represents the sequential composition of α and β; it means ‘first execute
α, then execute β’. The action α ∪ β represents the nondeterministic choice of α or β;
it means ‘either execute α or execute β’. Finally, the action α∗ represents the repeated
execution of action α, some nondeterministically chosen number of times (possibly
zero).

As with actions, the formulas of our logic are written by combining primitives. In
this case, however, the primitives are propositions from a set Φ0.

Syntax for Formulas:

p ∈ Φ0 primitive proposition
ϕ,ψ, ρ ::= formula

p primitive proposition
¬ϕ negation
ϕ ∧ ψ conjunction
〈α〉ϕ effect of action α
Perm(α)ϕ permission
FreePerm(α)ϕ free-choice permission
Grant(ρ1, ρ2)ϕ granting permissions
Revoke(ρ1, ρ2)ϕ revoking permissions

The negation (¬) and conjunction (∧) operators are the standard ones from propositional
logic. We abbreviate ¬(¬ϕ ∧ ¬ψ) as ϕ ∨ ψ and abbreviate ¬ϕ ∨ ψ as ϕ ⇒ ψ. Also,
we define true to be the formula p∨ ¬p, where p is a fixed primitive proposition in Φ0.
false is ¬true. We define the sublanguage Φp of propositional formulas of our logic; it
is the set of primitive propositions in Φ0 closed under negation and conjunction. We let
ρ range over propositional formulas in Φp.

The PDL operator 〈α〉ϕ says by doing α, the application can progress to a state
satisfying ϕ. We abbreviate ¬〈α〉¬ϕ as [α]ϕ. Observe that the formula [α]ϕmeans after
any execution of α, the formula ϕ is true.

Reasoning about Dynamic Policies 457

The DLP operators, which we write as Perm(α)ϕ and FreePerm(α)ϕ, capture two
different types of permissions. The formula Perm(α)ϕ means there is at least one ex-
ecution of α that is both permitted and leads to a state where ϕ is true. For example,
consider the formula Perm(download ∪ copy)haveFile. It says that there is a way to
get the file legitimately either by downloading it from the network or copying it from
the disk, however, it does not say which of the two actions is permitted. The formula
FreePerm(α)ϕ means all executions of α that lead to a state satisfying ϕ are permitted.
For example, consider the formula FreePerm(download ∪ copy)haveFile. It says that
every way of obtaining the file by downloading it from the network or copying it from
the disk is legitimate.

Finally, we introduce the operators Grant(ρ1, ρ2)ϕ and Revoke(ρ1, ρ2)ϕ. The for-
mula Grant(ρ1, ρ2)ϕmeansϕ holds, if we assume every transition from a state satisfying
ρ1 to a state satifying ρ2 is permitted. Conversely, the formula Revoke(ρ1, ρ2)ϕ means
ϕ holds, if we assume that every transition from a state satisfying ρ1 to a state satifying
ρ2 is not permitted. The only restriction on these operators is that ρ1 and ρ2 must be
propositional formulas. Roughly speaking, this limitation means that we cannot easily
reason about permissions that are defined in terms of other permissions. For example,
we cannot say ‘ϕ holds if whenever someone is permitted to download a file from the
network, she is permitted to copy it from the disk’. (We believe that none of our results
fundamentally depend on this restriction.)

Semantics. The semantics of our logic is based on Kripke structures, which are the
formal models of the applications. Intuitively, a Kripke structure encodes a transition
system, along with the characteristics of each state (i.e., which primitive propositions are
true in each state). A Kripke structureM = (S, π, τ) is a set of states S, an interpretation
π used to interpret the primitive propositions, and an interpretation τ used to interpret
the primitive actions. More specifically, for a primitive proposition p, π(p) is the set of
states where p holds, and for a primitive action a, τ(a) is the set of transitions s1s2 that
could occur by doing a.

We associate every (not necessarily primitive) action α with a set of finite traces,
where a trace is a sequence of states. Roughly speaking, a trace is in the set if there is an
execution of the action that travels through each of the states in the trace, in turn. The
set of traces τs(α) includes every trace that could be encountered during an execution
of α from state s. The following table defines this notion formally

Sequences of States Associated with Actions: τs(α)

τs(a) � {s1s2 ∈ τ(a) | s1 = s}
τs(α;β) � {σαs

′σβ | σαs
′ ∈ τs(α), s′σβ ∈ τs′(β)

τs(α ∪ β) � τs(α) ∪ τs(β)
τs(α∗) � {ss} ∪ τs(α) ∪ τs(α;α) ∪ τs(α;α;α) ∪ . . .

This definition of τs essentially yields the trace semantics of PDL [25].
To establish the truth of our formulas, we need to keep track of which transitions are

assumed to be permitted. We store this information in a policy set P , which is simply a
set of transitions. A transition is assumed to be permitted, according toP , if and only if it

458 R. Pucella and V. Weissman

is in P . If a transition is in P , then we say it is P-green. Otherwise, we say the transition
is P-red. More generally, a sequence of transitions is P -green, if every transition in
the sequence is P -green. Otherwise, the sequence is P -red. Notice that this definition
suggests that an action sequence is illegal if any action in the sequence is illegal.

A formula ϕ is true (or satisfied) in a state s of a model M given a policy set P ,
written (M, s, P) |= ϕ, if it is true according to the following definition, where σf

denotes the final element of σ for any nonempty finite sequence σ.

Satisfaction Relation: (M, s, P) |= ϕ

(M, s, P) |= p if s ∈ π(p)
(M, s, P) |= ¬ϕ if (M, s, P) �|= ϕ
(M, s, P) |= ϕ ∧ ψ if (M, s, P) |= ϕ and (M, s, P) |= ψ
(M, s, P) |= 〈α〉ϕ if for some σ ∈ τs(α), (M,σf , P) |= ϕ
(M, s, P) |= Perm(α)ϕ if for some P -green σ ∈ τs(α), (M,σf , P) |= ϕ
(M, s, P) |= FreePerm(α)ϕ if for all σ ∈ τs(α) such that (M,σf , P) |= ϕ,

σ is P -green
(M, s, P) |= Grant(ρ1, ρ2)ϕ if (M, s, P ∪ P ρ1,ρ2) |= ϕ
(M, s, P) |= Revoke(ρ1, ρ2)ϕ if (M, s, P \ P ρ1,ρ2) |= ϕ

where P ρ1,ρ2 � {s1s2 | (M, s1, P) |= ρ1, (M, s2, P) |= ρ2}

A formula ϕ is true at a state s of a model M , written (M, s) |= ϕ, if for any policy
set P , (M, s, P) |= ϕ. We can easily check that a propositional formula does not
require the set of policies to determine its truth value. Formally, if ρ is a propositional
formula, then (M, s, P) |= ρ for some P if and only if (M, s) |= ρ. It follows that
P ρ1,ρ2 is {(s1, s2) | (M, s1) |= ρ1, (M, s2) |= ρ2}, because ρ1 and ρ2 are propositional
formulas. If (M, s) |= ϕ for all s ∈ S, then we say ϕ is valid in M , and write M |= ϕ.
Finally, if M |= ϕ for all Kripke structures M , we say ϕ is valid, and write |= ϕ. We
now revisit the examples given in the introduction.

Example 2.1. In Example 1.1, we present a scenario in which the librarian Libby needs
to decide whether or not to give Alice an adult patron card. To make this example more
concrete, suppose that having an adult card means Alice may do any primitive action in
a set ActA. We now show that we can use our logic to help Libby make an informed
decision. To do this, suppose

– M is the model that represents the library system and P is the library’s current
policy set.

– A state in M satisfies the primitive proposition ‘Alice acted as an adult’ if and only
if every transition into the state is labeled with an action in ActA.

– For ease of exposition, we assume that either all transitions into a state are labeled
with an action in ActA or none are. (Note that if this is not true, we could easily
create a model, equivalent to M , that satisfies the condition.)

An action α that Alice may not do according to P would be allowed according to the
modified policy set, if for some state s in M

(M, s, P) |= ¬Perm(α)true ∧ Grant(true, ‘Alice acted as an adult’)Perm(α)true.

Reasoning about Dynamic Policies 459

By considering each action α of interest, we can determine the consequences of Libby
granting Alice’s request.

Example 2.2. Suppose the company in Example 1.2 suspects that every permission they
care about is either granted by the Blue Cross Blue Shield policies, or is not granted by
either set of policies. To test this hypothesis:

– Let PA and PB be the Aetna and Blue Cross Blue Shield policies, respectively.
– Let M be a Kripke structure capturing the states of the application and the possible

transitions. For example, a state could represent the flu season, and a transition from
the state could represent Alice getting a free flu shot. We assume that every state can
be uniquely described by a propositional formula; in other words, for every state s,
there is a propositional formula ρs which is true only at s.

– Let PolA(ϕ) be an abbreviation for Grant(ρs1 , ρs′
1
) . . .Grant(ρsk

, ρs′
k
)ϕ where

PA = {s1s′
1, . . . , sks

′
k}. Let PolB(ϕ) be the corresponding abbreviation based

on PB .
– LetϕdesP be a formula that represents the desired permissions. As a simple example,
ϕdesP could be Perm(Alice gets free flu shot)true, which means there is a way for
Alice to get a free flu shot.

The company’s hypothesis is correct if

M |= (PolA(ϕdesP)) ⇒ (PolB(ϕdesP)).

Example 2.3. Consider Example 1.3.

– Let PLP be the set of policies that Alice created to enforce the principle of least
privilege.

– Let M be a Kripke structure capturing the states of the application and the possible
transitions. As in the previous example, we assume that every state can be uniquely
described by a propositional formula; in other words, for every state s, there is a
propositional formula ρs which is true only at s.

– Let PolP (ϕ) be an abbreviation for Grant(ρs1 , ρs′
1
) . . .Grant(ρsk

, ρs′
k
)ϕ, for any

policy set P = {s1s′
1, . . . , sks

′
k}.

– Let ϕjobP be a formula that represents the permissions required for users to do their
job. As a simple example, ϕjobP could be Perm(edit user’s own files)true, which
means users have a way to edit their own files.

We want to verify that PLP satisfies the principle of least privilege. However, this is a
bit tricky, because there are at least two interpretations of the principle. The first says
that PLP satisfies the principle of least privilege if we cannot remove any policy from
PLP and still allow the users to do their job. According to this definition, PLP satisfies
the principle of least privilege if and only if

M |= PolPLP

(
ϕjobP ∧

∧
ss′∈PLP

Revoke(ρs, ρs′)¬ϕjobP

)
.

460 R. Pucella and V. Weissman

A second interpretation is the stronger statement that PLP satisfies the principle of least
privilege if it lets the users do their job, and there is no smaller set of policies that does.
Assuming that the Kripke structure M is finite, we can formalize this interpretation as
follows. The policy set PLP satisfies the principle of least privilege if and only if

M |= PolPLP
(ϕjobP) ∧

∧
P∈PM

PolP (¬ϕjobP),

where PM = {P |P is a policy set over M , |P | < |PLP |}, the set of all policy sets with
fewer elements than PLP . The key observation is not that there are many interpretations
of the principle of least privilege, but that we can capture the different interpretations in
our framework.

Before leaving this section, we should emphasize that Grant(ρ1, ρ2)ϕ means ‘ϕ
holds under the assumption that every single transition from a state satisfying ρ1 to a state
satisfyingρ2 is permitted’. This does not mean that we assume all sequences of transitions
from states satisfying ρ1 to states satisfying ρ2 are permitted. This consequence of our
logic seems particularly desirable. To see why consider the statement ‘any transition
from a state in which Alice is in school to one in which she is home is permitted’. It
might follow from the statement that Alice may bike home from school or even take a
cab. However, we should not conclude from the statement that Alice is allowed to bike
from school to the docks, convince some disreputable people to buy her beer, stagger
home, and then beat-up her brother, despite the fact that the action sequence begins with
Alice at school and ends with Alice at home.

3 A Sound and Complete Axiomatization

In this section we present a sound and complete axiomatization for our logic. Recall that
a formula ϕ is provable if it can be proven using the axiom system’s axioms and rules of
inferences. If every provable formula is valid, then the axiom system is sound. If every
valid formula is provable, then the axiom system is complete.

Our axiom system AX can be divided into six parts. The first set of axioms accounts
for propositional reasoning.

Axioms for Propositional Reasoning:

Taut. All instances of propositional tautologies
MP. From ϕ and ϕ ⇒ ψ infer ψ

As an example, an instance of Taut is ϕ ∨ ¬ϕ, for any formula ϕ. Axiom Taut can be
replaced by a sound and complete axiomatization for propositional tautologies, such as
the one given in Mendelson [20].

The second set of axioms accounts for the PDL modality 〈 〉.
Axioms for 〈 〉:
A1. 〈α〉false ⇔ false

Reasoning about Dynamic Policies 461

A2. 〈α;β〉ϕ ⇔ 〈α〉〈β〉ϕ
A3. 〈α ∪ β〉ϕ ⇔ 〈α〉ϕ ∨ 〈β〉ϕ
A4. 〈α∗〉ϕ ⇔ ϕ ∨ 〈α;α∗〉ϕ
A5. 〈α〉(ϕ ∨ ψ) ⇔ 〈α〉ϕ ∨ 〈α〉ψ
A6. ϕ ∧ [α∗](ϕ ⇒ [α]ϕ) ⇒ [α∗]ϕ
A7. From ϕ infer [α]ϕ

This is essentially the axiomatization for PDL due to Segerberg [28].AxiomsA1 through
A5 and axiom A7 are straightforward. Axiom A6 is an induction axiom that captures the
infinitary behavior of the ∗ operator.

The third set of axioms accounts for the DLP modalities Perm and FreePerm.

Axioms for Perm and FreePerm:

P1. Perm(α)ϕ ⇒ 〈α〉ϕ
P2. Perm(α;β)ϕ ⇔ Perm(α)Perm(β)ϕ
P3. Perm(α ∪ β)ϕ ⇔ Perm(α)ϕ ∨ Perm(β)ϕ
P4. Perm(α∗)ϕ ⇔ ϕ ∨ Perm(α;α∗)ϕ
P5. Perm(α)(ϕ ∨ ψ) ⇔ Perm(α)ϕ ∨ Perm(α)ψ
P6. ϕ ∧ ¬(Perm(α∗)¬(ϕ ⇒ ¬Perm(α)¬ϕ)) ⇒ ¬Perm(α∗)¬ϕ
P7. [α]¬ϕ ⇒ FreePerm(α)ϕ
P8. FreePerm(α;β)ϕ ⇔ FreePerm(α)〈β〉ϕ ∧ [α]FreePerm(β)ϕ
P9. FreePerm(α ∪ β)ϕ ⇔ FreePerm(α)ϕ ∧ FreePerm(β)ϕ
P10. FreePerm(α∗)ϕ ⇔ FreePerm(α;α∗)ϕ
P11. FreePerm(α)(ϕ ∨ ψ) ⇔ FreePerm(α)ϕ ∨ FreePerm(α)ψ
P12. [α∗]FreePerm(α)〈α∗〉ϕ ⇒ FreePerm(α∗)ϕ
P13. FreePerm(α)ϕ ∧ 〈α〉ϕ ⇒ Perm(α)ϕ
P14. Perm(α)ϕ ∧ [α](ϕ ⇒ ψ) ⇒ Perm(α)ψ
P15. FreePerm(α)ψ ∧ [α](ϕ ⇒ ψ) ⇒ FreePerm(α)ϕ

These axioms are due to van der Meyden [21]. Axioms P1–P6 and P7–P12 correspond
closely to axioms A1–A6, indicating the tight relationship between the PDL and DLP
modalities. (This relationship is further clarified by Csirmaz [3].) Note that axiom P6
uses the dual of Perm(α)ϕ, written as ¬Perm(α)¬ϕ. Axioms P13–P15 capture the
interactions between the different modalities.

The fourth set of axioms concerns the behavior of the Grant operator.

Axioms for Grant:

G1. Grant(ρ1, ρ2)(ϕ ∧ ψ) ⇔ Grant(ρ1, ρ2)ϕ ∧ Grant(ρ1, ρ2)ψ
G2. Grant(ρ1, ρ2)¬ϕ ⇔ ¬Grant(ρ1, ρ2)ϕ
G3. Grant(ρ1, ρ2)〈α〉ϕ ⇔ 〈α〉Grant(ρ1, ρ2)ϕ
G4. Grant(ρ1, ρ2)Grant(ρ3, ρ4)ϕ ⇔ Grant(ρ3, ρ4)Grant(ρ1, ρ2)ϕ
G5. From ρ3 ⇒ ρ1 and ρ4 ⇒ ρ2 infer Grant(ρ1, ρ2)Grant(ρ3, ρ4)ϕ ⇔ Grant(ρ1, ρ2)ϕ
G6. Grant(false, ρ)ϕ ⇔ ϕ
G7. Grant(ρ, false)ϕ ⇔ ϕ
G8. Grant(ρ1, ρ2)p ⇔ p for primitive propositions p

462 R. Pucella and V. Weissman

G9. Grant(ρ1 ∨ ρ2, ρ3)ϕ ⇔ Grant(ρ1, ρ3)Grant(ρ2, ρ3)ϕ
G10. Grant(ρ1, ρ2 ∨ ρ3)ϕ ⇔ Grant(ρ1, ρ2)Grant(ρ1, ρ3)ϕ
G11. Grant(ρ1, ρ2)(ρ1 ∧ 〈a〉ρ2) ⇒ Grant(ρ1, ρ2)(Perm(a)ρ2) for primitive actions a
G12. Grant(ρ1, ρ2)Perm(α)ϕ ⇔ Grant(ρ1, ρ2)Perm(α)Grant(ρ1, ρ2)ϕ
G13. Grant(ρ1, ρ2)FreePerm(α)ϕ ⇔ Grant(ρ1, ρ2)FreePerm(α)Grant(ρ1, ρ2)ϕ
G14. From ϕ infer Grant(ρ1, ρ2)ϕ

Axioms G1–G3 capture the behavior of Grant under conjunctions, negations, and
the PDL modality. Axiom G4 says that the order in which permissions are granted
is irrelevant. The inference rule G5 allows a permission to be disregarded if it is
already implied by a permission that was granted earlier in the analysis. Axioms
G4 and G5 together imply that if ρ1, ρ2 are respectively equivalent to ρ3, ρ4, then
Grant(ρ1, ρ2)ϕ ⇔ Grant(ρ3, ρ4)ϕ. Axioms G6 through G8 say that an occurrence
of the Grant operator can be removed, if it clearly doesn’t affect the truth of the for-
mula. Axioms G9 and G10 capture the fact that in some sense permission grants are
cumulative. Finally,Axioms G11 through G13 capture the relationship between granting
permissions and the other permission modalities.

The fifth set of axioms concerns the behavior of the Revoke operator.

Axioms for Revoke:

R1. Revoke(ρ1, ρ2)(ϕ ∧ ψ) ⇔ Revoke(ρ1, ρ2)ϕ ∧ Revoke(ρ1, ρ2)ψ
R2. Revoke(ρ1, ρ2)¬ϕ ⇔ ¬Revoke(ρ1, ρ2)ϕ
R3. Revoke(ρ1, ρ2)〈α〉ϕ ⇔ 〈α〉Revoke(ρ1, ρ2)ϕ
R4. Revoke(ρ1, ρ2)Revoke(ρ3, ρ4)ϕ ⇔ Revoke(ρ3, ρ4)Revoke(ρ1, ρ2)ϕ
R5. From ρ3 ⇒ ρ1 and ρ4 ⇒ ρ2 infer

Revoke(ρ1, ρ2)Revoke(ρ3, ρ4)ϕ ⇔ Revoke(ρ1, ρ2)ϕ
R6. Revoke(false, ρ)ϕ ⇔ ϕ
R7. Revoke(ρ, false)ϕ ⇔ ϕ
R8. Revoke(ρ1, ρ2)p ⇔ p for primitive propositions p
R9. Revoke(ρ1 ∨ ρ2, ρ3)ϕ ⇔ Revoke(ρ1, ρ3)Revoke(ρ2, ρ3)ϕ
R10. Revoke(ρ1, ρ2 ∨ ρ3)ϕ ⇔ Revoke(ρ1, ρ2)Revoke(ρ1, ρ3)ϕ
R11. Revoke(ρ1, ρ2)(ρ1 ∧ [a]ρ2) ⇒ Revoke(ρ1, ρ2)(¬Perm(a)ρ2)

for primitive actions a
R12. Revoke(ρ1, ρ2)Perm(α)ϕ ⇔ Revoke(ρ1, ρ2)Perm(α)Revoke(ρ1, ρ2)ϕ
R13. Revoke(ρ1, ρ2)FreePerm(α)ϕ ⇔ Revoke(ρ1, ρ2)FreePerm(α)Revoke(ρ1, ρ2)ϕ
R14. From ϕ infer Revoke(ρ1, ρ2)ϕ

These axioms are essentially G1–G14, with Grant replaced by Revoke. The only ex-
ception is R11, which says that an action corresponding to a revoked transition is not
permitted.

Finally, the last set of axioms capture the interaction between permission grants and
permission revocations.

Reasoning about Dynamic Policies 463

Interaction Axioms for Grant and Revoke:

I1. Grant(ρ1, ρ2)Revoke(ρ3, ρ4)ϕ ⇔
Revoke(ρ3, ρ4)Grant(ρ1, ρ2 ∧ ¬ρ4)Grant(ρ1 ∧ ¬ρ3, ρ2)ϕ

I2. Revoke(ρ1, ρ2)Grant(ρ3, ρ4)ϕ ⇔
Grant(ρ3, ρ4)Revoke(ρ1, ρ2 ∧ ¬ρ4)Revoke(ρ1 ∧ ¬ρ3, ρ2)ϕ

Roughly speaking, axiom I1 says that granting some permissions P1 and then revoking
other permissionsP2 is equivalent to first revoking the permissionsP2, and then granting
the permissions in P1 that would not have been revoked by P2. A similar explanation
applies to I2. Note that it follows from I1 and G6–G7 that if ρ1 ⇒ ρ3 and ρ2 ⇒ ρ4
are tautologies, then Grant(ρ1, ρ2)Revoke(ρ3, ρ4)ϕ is equivalent to Revoke(ρ3, ρ4)ϕ.
In other words, granting permissions that are immediately revoked is equivalent to never
granting the permissions at all. Again, a similar argument holds for axiom I2.

As discussed at the end of Section 2, a prerequisite for the soundness of these ax-
ioms is that a primitive action must be mapped to single transition. More specifically, the
soundness of Axioms G11 and R11 depend on this restriction. To see why, consider the
(violating) structure M that has three states s1, s2, s3, with π(p) = {s1}, π(q) = {s3},
τ(a) = {s1s2}, τ(b) = {s2s3}, τ(c) = {s1s3}, and τ(d) = {s1s2s3}. Clearly,
(M, s1,∅) |= Grant(p, q)(p ∧ 〈d〉q) holds. However, we do not have (M, s1,∅) |=
Grant(p, q)Perm(d)q, since under the policy set ∅

p,q, the sequence s1s2s3 is red. There-
fore, axiom G11 cannot be sound, unless every primitive action is mapped to a single
transition. A similar argument holds for axiom R11.

Theorem 3.1. The axiomatization AX is sound and complete for DLPdyn with respect
to Kripke structures.

To establish completeness, it is possible, although not at all immediate, to use an approach
similar to that used by Kozen and Parikh [15] to prove completeness of the axiomatization
for PDL. (This approach was also used by van der Meyden [21] to prove completeness
of DLP.) We first note that completeness is equivalent to the statement that all consistent
formulas are satisfiable. Recall that a formula ϕ is consistent if the formula ¬ϕ is not
provable and a formula ϕ is satisfiable if there exists a Kripke structure M , a state s of
that structure, and a policy P such that (M, s, P) |= ϕ. So, we can prove completeness
if for any consistent formula ϕ, we can construct a model that satisfies it. We construct
this model for an arbitrary, consistent formula ϕ, by taking sets of subformulas of ϕ to
be states. Details are given in the full paper.

4 Complexity

Having described a sound and complete axiomatization for our logic, we now turn to the
complexity of the satisfiability problem. (Recall that the satisfiability problem asks if
there is a a Kripke structureM , a state s inM , and a policy P such that (M, s, P) |= ϕ,
for a given formula ϕ.) Because our logic extends PDL, our decision problem is at least
as difficult as PDL’s. Therefore, our decision problem has an EXPTIME lowerbound
[5].

464 R. Pucella and V. Weissman

To find an upperbound, we first prove a small model theorem that intuitively says that
if a formulaϕ is satisfiable, then it is satisfiable in a Kripke structure with a comparatively
small number of states. Define the length |ϕ| of a formula to be the number of symbols
required to write ϕ.

Theorem 4.1. If ϕ is satisfiable, then (M, s, P) |= ϕ for a Kripke structure M =
(S, π, τ) with |S| ≤ 2|ϕ|2 .

The following theorem shows that checking that a formula is satisfied in a particular
finite model can be done efficiently.

Theorem 4.2. There is an algorithm that decides (M, s, P) |= ϕ in time polynomial in
|M |, |P | and |ϕ|.
Using Theorems 4.1 and 4.2, we can establish the following upperbound.

Theorem 4.3. The decision problem for DLPdyn is in NEXPTIME.

Theorem 4.3 establishes that DLPdyn is decidable. The theorem also implies a (pre-
viously unknown) bound on the decision problem of DLP. This result is not immediately
apparent, because the DLP models are more general than ours; they allow primitive ac-
tions to be mapped to sequences of transitions. However, it is a consequence of van der
Meyden’s completeness proof that any satisfiable DLP formula is satisfiable in a model
where primitive actions are mapped to single transitions. It follows from Theorem 4.3
that DLP is in NEXPTIME. We conjecture that the decision problem for DLPdyn is in
fact EXPTIME-complete, just like PDL [9]. It should be possible to adapt the deter-
ministic single exponential time algorithm given by Pratt [26], but this is left as future
work.

5 Related Work

To the best of our knowledge, DLPdyn is the first language explicitly designed to answer
the kind of questions we discussed in the introduction. There is, however, a significant
body of work on reasoning about permissions. There are fundamentally two approaches,
propositional modal logics and first-order logics.

Building on the work of vonWright [30], many people have based logics for reasoning
about permissions on propositional modal logic [10]. These logics, which are typically
called deontic logics, interpret permission via an operator Pϕ, which can be read ‘ϕ
is permitted’, or ‘it is permitted to make ϕ true’. Unfortunately, a naive treatment of
permission as a modality leads to a number of counterintuitive results. Von Wright [31]
recognized that many paradoxes arise because the logics do not distinguish between
propositions and actions. More precisely, many paradoxes are a consequence of applying
permissions to formulas, instead of just actions.

One of the first languages to restrict permissions to actions is due to Meyer [22].
Meyer’s logic is PDL with additional modalities to reason about permissions. To interpret
permissions, he essentially divides the states in the model of the system into good states
and bad states; an action is permitted if it leads to a good state. Most of the paradoxes
of deontic logic disappear in this setting.

Reasoning about Dynamic Policies 465

As discussed by van der Meyden [21], however, some paradoxes remain. In particular,
reasoning about the permission of sequential actions is problematic, because the logic
assigns permissions only to states. For example, suppose that no one is allowed to murder
the president and, if someone does, then that person goes to jail. If the state in which
the murderer goes to jail is a good state, which intuitively it should be, then Meyer’s
logic says that anyone may murder the president, providing that he or she then goes to
jail. But no one may murder the president, so this is a paradoxical situation. Another
consequence of assigning permissions to states is that the logic cannot capture subtle
distinctions in the use of the term ‘permission’. In particular, the logic cannot distinguish
between the two types of permissions captured in our logic by the DLP operators Perm
and FreePerm. To address these issues, van der Meyden designed the logic DLP.

Clearly, our work is an extension of DLP. One way to view the relationship between
DLPdyn and DLP is that it is akin to the relationship between propositional logic and
PDL. Propositional logic is used to reason about a single state, while PDL extends the
logic to reason about multiple states and the transition between them. Similarly, DLP
is used to reason about a single set of allowed transitions, while DLPdyn extends DLP
to reason about multiple sets of allowed transitions, using the operators Grant(ρ1, ρ2)ϕ
and Revoke(ρ1, ρ2)ϕ to move from set to set.

Although we base our logic on DLP, there is a difference between our models and the
ones used by DLP. Specifically, DLP allows primitive actions to be assigned to sequences
of transitions; we impose the restriction that each primitive action is mapped to a single
transition. This restriction is necessary for the axiomatization that we give in Section 3.

The second class of languages for reasoning about permissions are first-order log-
ics. In the Computer Science community, these languages are typically an extension
of Datalog [6], which is a tractable fragment of first-order logic. Approaches based
on Datalog include [4,17,14,16,18]. In these languages, the environment, which essen-
tially corresponds to our application models, is a conjunction of formulas of the form
∀x1, . . . , xn.(l1 ∧ . . . ∧ lk ⇒ lk+1), where each li is a literal, lk+1 is a positive (i.e.,
non-negated) literal, and depending on the particular language, other restrictions might
apply. It is not clear whether or not our models can be encoded in their environments,
because of the restrictions on negation. (This also holds for approaches that are not based
on Datalog, such as [8].)

Although the first-order approaches might not be able to capture our models, they do
support variables. This allows their specifications to be more concise. It is interesting to
note, however, that XrML [2], which is a language that has recieved widespread support
in industry, assumes the domain of interest is finite. 1 In other words, for any formula in
the logic, there is an admittedly longer formula that is variable-free. Thus, in practice, it
seems likely that variable-free languages are sufficiently expressive.

Finally, we should note that both the modal approaches and the first-order languages
typically assume that any action that is not permitted is forbidden. However, there are
exceptions [12,1,13,8]. By allowing actions to be neither permitted nor forbidden, we
can sensibly merge policies that govern the same system. In future work, we would like
to explore these possibilities within our framework.

1 The XrML authorization algorithm, which determines if a permission follows from a set of
XrML policies, terminates only for finite domains.

466 R. Pucella and V. Weissman

6 Conclusion

In this paper, we identify a class of problems that are of practical interest and that have
not been addressed previously in the literature. Essentially, these problems arise when
there is not a single, fixed set of policies. Examples include comparing different policy
sets and understanding the consequences of an evolving policy set.

Not only have we found an interesting class of problems, our work shows that the
approaches for reasoning about single sets can be adapted to handle the new issues. We
were able to extend DLP to create a logic in which to compare policy sets and reason
about changing policies. To the best of our knowledge, ours is the first logic designed
explicitly for this purpose. By modifying existing proof techniques, we were able to
obtain a sound and complete axiomatization for the logic. Moreover, despite the added
expressiveness, the decision problem remains decidable.

As illustrated by Examples 2.1, 2.2, and 2.3, a key problem is verifying that a model
satisfies a given formula. Theorem 4.2 provides a general bound on the complexity of
the model checking problem. It would be interesting to investigate efficient techniques
to perform this verification.

Acknowledgments. Thanks to Joe Halpern for comments on an early draft of this paper.
This work was partially supported by NSF under grant CTC-0208535, by ONR under
grant N00014-02-1-0455, by the DoD Multidisciplinary University Research Initiative
(MURI) program administered by the ONR under grant N00014-01-1-0795, and by
AFOSR under grant F49620-02-1-0101.

References

1. J. Chomicki, J. Lobo, and S. Naqvi. A logic programming approach to conflict resolution in
policy management. In Principles of Knowledge Representation and Reasoning: Proc. Ninth
International Conference (KR ’00), pages 121–132, 2000.

2. ContentGuard. XrML: Extensible rights Markup Language. Available from
http://www.xrml.org, 2001.

3. L. Csirmaz. Multi-level permission. Technical Report 90-25, DIMACS, 1990.
4. J. DeTreville. Binder, a logic-based security language. In Proceedings of the 2002 IEEE

Symposium on Research in Security and Privacy, pages 95–103. IEEE Computer Society
Press, 2002.

5. M. J. Fisher and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences, 18(2):194–211, 1979.

6. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete Book.
Prentice Hall, 2002.

7. J. Glasgow, G. MacEwen, and P. Panangaden. A logic for reasoning about security. ACM
Transactions on Computer Systems, 10(3):226–264, 1992.

8. J.Y. Halpern andV. Weissman. Using first-order logic to reason about policies. In Proceedings
of the 16th IEEE Computer Security Foundations Workshop, pages 187–201. IEEE Computer
Society Press, 2003.

9. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.
10. G. Hughes and M. Cresswell. An Introduction to Modal Logic. Methuen, 1972.

http://www.xrml.org

Reasoning about Dynamic Policies 467

11. R. Iannella. Open Digital Rights Language (ODRL) version 1.1. Available from
http://www.w3.org/TR/odrl, 2002.

12. Y. Ioannidis and T. Sellis. Supporting inconsistent rules in database systems. Journal of
Intelligent Information Systems, 1(3/4):243–270, 1992.

13. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support for multiple
access control policies. ACM Transactions on Database Systems, 26(2):214–260, 2001.

14. T. Jim. SD3: A trust management system with certified evaluation. In Proceedings of the
2001 IEEE Symposium on Research in Security and Privacy, pages 106–115. IEEE Computer
Society Press, 2001.

15. D. Kozen and R. Parikh. An elementary proof of the completeness of PDL. Theoretical
Computer Science, 14:113–118, 1981.

16. N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic: A logic-based approach to
distributed authorization. ACM Transaction on Information and System Security (TISSEC),
6(1):128–171, 2003.

17. N. Li and J. C. Mitchell. Datalog with constraints: A foundation for trust management
languages. In Proceedings of the Fifth International Symposium on Practical Aspects of
Declarative Languages, volume 2562 of Lecture Notes in Computer Science, pages 58–73,
2003.

18. N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust-management
framework. In Proceedings of the 2002 IEEE Symposium on Research on Security and
Privacy, pages 114–130, 2002.

19. L. T. McCarty. Permissions and obligations. In Proceedings of IJCAI-83, pages 287–294,
1983.

20. E. Mendelson. Introduction to Mathematical Logic. Van Nostrand, New York, 1964.
21. R. van der Meyden. The dynamic logic of permission. Journal of Logic and Computation,

6(3):465–479, 1996.
22. J.-J. C. Meyer. A different approach to deontic logic: Deontic logic viewed as a variant of

dynamic logic. Notre Dame Journal of Formal Logic, 29(1):109–136, 1988.
23. J.-J. C. Meyer, H. Weigand, and R. Wieringa. A specification language for static, dynamic

and deontic integrity constraints. In J. Demetrovics and B. Thalheim, editors, Mathematical
Fundamentals of Database Systems, volume 346 of Lecture Notes in Computer Science, 1989.

24. C. Pfleeger. Security in Computing. Prentice-Hall, second edition, 1997.
25. V. Pratt. Process logic. In Conference Record of the Sixth Annual ACM Symposium on

Principles of Programming Languages, pages 93–100. ACM Press, 1979.
26. V. R. Pratt. A practical decision method for propositional dynamic logic. In Proceedings of

the 10th Symposium on Theory of Computing, pages 326–337. ACM Press, 1978.
27. R. Pucella and V. Weissman. A logic for reasoning about digital rights. In Proceedings of

the 15th IEEE Computer Security Foundations Workshop, pages 282–294. IEEE Computer
Society Press, 2002.

28. K. Segerberg. A completeness theorem in the modal logic of programs. Notices AMS,
24(6):A–552, 1977.

29. R. J. Wieringa and J.-J. C. Meyer. Applications of deontic logic in computer science: A
concise overview. In J.-J. C. Meyer and R. J. Wieringa, editors, Deontic Logic in Computer
Science: Normative System Specification, chapter 2, pages 17–40. John Wiley & Sons, 1993.

30. G. H. von Wright. Deontic logic. Mind, 60:1–15, 1951.
31. G. H. von Wright. An essay in deontic logic and the general theory of action. In Acta

Phiiosophica Fennica, volume 21. North Holland, 1968.

http://www.w3.org/TR/odrl

	Introduction
	A Logic for Reasoning about Dynamic Policies
	A Sound and Complete Axiomatization
	Complexity
	Related Work
	Conclusion

