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Abstract. A central question in the domain of program semantics and
program verification is the existence of a complete inference system for
assertions of the form π |= ϕ meaning that program π satisfies prop-
erty ϕ. A stronger version of this question asks for an effective (de-
cidable) complete inference system. We investigate these questions for
cryptographic protocols focusing on authentication and confidentiality
properties. While it is not difficult to see that a complete and effective
inference system cannot exist when an unbounded number of sessions are
considered, we prove that such a system exists for bounded protocols.
More, precisely 1.) we provide a complete weakest pre-condition calcu-
lus for bounded cryptographic protocols and 2.) we show that assertions
needed for completeness of the calculus are expressible in a decidable
second order logic on terms.

1 Introduction

A central question in the domain of program semantics and program verification
is the existence of a complete (and sound) inference system for assertions of the
form π |= ϕ meaning that program π satisfies property ϕ. A stronger version of
this question asks for an effective (decidable) complete inference system. This is
the question of the relationship between the truth of formulae of the form π |= ϕ
and their provability. For While-programs (or counter machines), for instance,
it has been proved that it is possible to design an inference system such that
provability implies truth (i.e., soundness) but impossible to have a sound system
that is also complete and effective, i.e., it is impossible to have a decidable infer-
ence system such that truth implies provability (see [9] for a complete survey).
Roughly speaking, the reason is that one can describe transitive closures using
while programs while this is not possible in general in 1st-order logics except
when Peano arithmetic is included. In other words, one has to sacrifice effec-
tiveness (e.g., by including Peano arithmetic in the logic), or completeness and
accept that some valid formulae π |= ϕ cannot be proved or even expressed.
This situation of While-programs led to the what is called Cook’s relative com-
pleteness: is it possible to have a complete inference system for programs, if we
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assume all facts of the underlying logic as axioms, i.e., all facts about the consid-
ered data are given? The main question we address in this paper is the following:
what is the situation for cryptographic protocols?

Beyond the theoretic relevance of this question, it has several practical conse-
quences. Indeed, if one can provide a complete inference system for cryptographic
protocols this can serve as a basis to develop compositional proof theories as well
as refinement theories. The latter would be of great interest as the problem of
composing cryptographic protocols (CP for short), i.e., which properties are pre-
served when CPs are composed, as well as the relationship between the abstract
specification of a CP and its real implementation remain two insufficiently in-
vestigated subjects (cf. [15]). Moreover, a decidable complete inference system
provides a symbolic decision procedure.

In this paper, we introduce a complete and effective inference system for
bounded cryptographic protocols. Let us explain what we mean. A session of a
cryptographic protocol can be specified as a sequence of sending and receiving
messages. One can consider either fixed bounded number of sessions or an un-
bounded one. In the first case, we speak about bounded protocols but in both
cases the size of the messages is unbounded. It is not difficult to encode a counter
machine as an unbounded CP. Hence, we know that it is not possible to have an
effective complete (and sound) inference system. We show that such a system ex-
ists for bounded protocols. This provides an alternative proof of the decidability
of secrecy for bounded CPs and covers more properties than in existing work. We
introduce a logic, called spl for Security Properties Logic, for describing security
properties and develop a calculus for computing the weakest condition that has
to be satisfied by the initial configurations of the protocol in order to guarantee
that a property described by an spl formula is satisfied. We prove soundness
and completeness for the introduced calculus. Then, we study the decidability
of spl and show that although the satisfiability (existence of a model) of spl
formulae is, in general, undecidable, it is decidable for its existential fragment,
i.e., the satisfiability of formulae of the form ∃X.ϕ, where ϕ is quantifier-free
can be decided effectively (Section 6). Now, it turns out that interesting security
properties are expressible in the universal fragment of the logic (see Section 3.3)
and that the weakest precondition of a universal formula is expressible as a uni-
versal formula (Section 5). Hence, given a protocol π and a property ϕ, using
the calculus one can compute a formula wp(π, ϕ) such that there is an attack
starting for an initial state satisfying ψ iff ¬wp(π, ϕ) ∧ ψ is satisfiable. Thus, if
ψ is given in the existential fragment, which is the interesting situation, one can
effectively check whether ¬wp(π, ϕ) ∧ ψ is satisfiable.

Related work. The results of this paper provide an algorithm for checking security
properties (confidentiality and authentication) of cryptographic protocols. It has
several interesting aspects:

1. it covers other properties than confidentiality (secrecy); indeed while other
methods rely on an ad hoc reduction of authentication properties to secrecy,
our method is directly applicable.
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2. as initial configurations are described by formulae of the introduced logic,
it can deal with infinite non-regular sets of messages initially known by the
intruder.

3. we believe that our method is more easily amenable to extended intruder
models: in a full version, we also consider cipher block chaining.

While several methods have been designed for the verification of a fixed
number of sessions [18,1,3,16,12,7,8] to our knowledge it has not been previ-
ously proven that a decidable and complete inference system for cryptographic
protocols exists.

2 Preliminaries

Let X be a countable set of variables and let F i be a countable set of function
symbols of arity i, for every i ∈ N. Let F =

⋃
i∈N F i. The set of terms over X

and F is denoted by T (X,F ). We denote by ≤ the subterm relation on T (X,F ).
As usual, function symbols of arity 0 are called constant symbols. Ground terms
are terms with no variables. We denote by T (F ) the set of ground terms over
F . For any t1, t2 ∈ T (X,F ), we denote with µ(t1, t2) the most general unifier
(shortly mgu) of t1 and t2, if it exists. More precisely, by µ(t1, t2) we denote the
representation of the mgu of t1 and t2 as a conjunction of equalities of the form
x = t, if it exists. If it does not exist then µ(t1, t2) should be the constant false
(falsum). We write t1 ∼ t2, if t1 and t2 can be unified. Also, for any substitution
σ : X → T (X,F ), we denote by tσ the application to t of the homomorphic
extension of σ to terms. Given a set x̃ of variables, we denote by Γ (x̃) the set
consisting of ground substitutions with domain x̃. We also write Γ (x) instead of
Γ ({x}).

Henceforth, we tacitly identify the term t with its tree representation Tr(t).
The elements of dom(t) are called positions in t. We use ≺ to denote the prefix
relation on ω∗. We write t(p) to denote the symbol at position p in t and t|p to
denote the subterm of t at position p, which corresponds to the tree t|p(x) =
t(p · x) with x ∈ dom(t|p) iff p · x ∈ dom(t). Given a term t and positions p and
q, we say that t|p dominates t|q if p ≺ q.

If w1, w2 ∈ Σ∗ are words over an alphabet Σ, then we denote by w−1
2 w1 the

word obtained from w1 after removing the prefix w2, when possible. Otherwise,
w−1

2 w1 is undefined.

3 The Protocol and Intruder Model

We describe in this section the model of cryptographic protocols used in this
work. We mention that this model is by now a standard one used, for instance,
in [4]. We begin by describing the messages involved in a protocol model.
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3.1 Messages

The set of messages is denoted by M and contains ground terms constructed
from constant symbols and the function symbols encr : M × K → M and
pair : M × M → M, where K is a set of keys. Constant symbols are also called
atomic messages and are defined as follows:

1. Principal names are used to refer to the principals in a protocol. The set of
all principals is P.

2. Nonces can be thought as randomly generated numbers. As their values are
unpredictable, they are used to witness the freshness of a message. We denote
by N the set of nonces.

3. Keys are used to encrypt messages. If k is a key then we use k−1 to denote
its inverse. Moreover, we use pbk(A) to denote the public key of A.

For the sake of simplicity we leave out signature and hash functions but we can
easily handle them in our model.

Let A = P∪N ∪K and F = A∪{encr,pair}. As usual, we write (m1,m2) for
pair(m1,m2) and {m}k instead of encr(m, k). Message terms are the elements
of T (X ,F), that is, terms over the atoms A, a set of variables X and the binary
function symbols encr and pair. Messages are ground terms in T (X ,F), i.e,
M = T (F). For conciseness, we write T instead of T (X ,F).

We assume the Dolev-Yao model [10]. For obvious reasons, we refrain from
recalling the model here. We use the by now standard notation E 	 m to denote
the fact that the intruder can derive the message m from the set E of messages.
A derivation of a message that does not decompose any message is denoted by
E 	c m. We write E 	 M , if E 	 m holds for every m ∈ M .

For a term t, we use the notation E 
	 t to denote that no instance of t is
derivable from E, that is, for no substitution σ : X → M, we have E 	 tσ.

We now define critical and non-critical positions in a message. The idea is
that since there is no way to deduce from an encrypted message the key with
which it has been encrypted, the key position in messages of the form encr(m, k)
is not critical1. Formally, given a term t, a position p in t is called non-critical,
if there is a position q such that p = q · 2 and t(q) = encr; otherwise it is called
critical. We will also use the notation s ∈c m to denote that s appears in m at a
critical position, i.e., there exists p ∈ dom(m) such that p is critical and m|p = s.

3.2 Process Model

Actions are defined by:

α ::= l
!t→ l′ | l ?t(x̃)→ l′ | l x:=t→ l′ | l x=t→ l′

where t ∈ T is a term, l, l′ are labels and x̃ ⊆ var is a set of variables. An action
is an output, an input, an assignment or just an equality test. In the case of an
1 For the insider, the critical position corresponds, for instance, to the subterm relation

in the strand space model [11,20].
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input, x̃ denotes the variables that are instantiated by the action. The set of ac-
tions is denoted by Act. A protocol is represented by a set of sequences of actions.

More precisely, a protocol Π is given by
∑n

i=1 α
i
1 · · ·αi

ni
, where αi

j = 
ij
βi

j→ 
ij+1
for some βi

j with j ∈ {1, . . . , ni}. Here, the labels 
 represent control points and∑
is the usual non-deterministic choice. This corresponds to the representation

of a fixed set of sessions put in parallel by their possible interleavings. Usually,
we use the more intuitive notation:

∑n
i=1 


i
0β

i
0 · · · 
ini

βi
ni

ini+1.

A configuration of a protocol run is given by a triple (σ,E, 
ij) consisting of
a substitution σ, a set of messages E and a control point 
ij . The operational se-
mantics is defined as a labelled transitional system over the set of configurations
Conf . The transition relation (σ,E, 
ij)

α−→ (σ′, E′, 
ij+1) is defined as follows:

– (σ,E, 
ij)
α−→ (σ,E ∪{tσ}, 
ij+1), if j ≤ ni and α = 
ij

!t→ 
ij+1. That is, send-
ing the message tσ amounts to adding tσ to the knowledge of the intruder.

– for ρ ∈ Γ (x̃) with Eσ 	 t(σ ⊕ ρ), we have (σ,E, 
ij)
α−→ (σ ⊕ ρ,E, 
ij+1)

, if j ≤ ni and α = 
ij
?t(x̃)→ 
ij+1. That is, ?t corresponds to receiving any

message that matches with ?tσ and is known by the intruder.
– (σ,E, 
ij)

α−→ (σ ⊕ [x 
→ tσ], E, 
ij+1), if j ≤ ni and α is the assignment


ij
x:=t→ 
ij+1. The effect of an assignment is as usual.

– (σ,E, 
ij)
α−→ (σ,E, 
ij+1), if σ(x) = tσ, j ≤ ni, and α is the test 
ij

x=t→ 
ij+1.
The action x = t behaves as a filter.

The initial configuration is given by a substitution σ0, a set of terms E0 such
that the variables in E0 do not appear in the protocol description and a control
point 
0 ∈ {
10, · · · , 
nn0

}.

3.3 Expressing Security Properties

In this subsection, we introduce an intuitive logic, which allows us to express
security properties about cryptographic protocols. The purpose is to recall these
properties and show how they can be described. The set of formulas F0, is defined
in Table 1, x is a meta-variable that ranges over the set V of first-order variables.
First-order variables range over messages; t is a meta-variable over terms. The
proposition Secret(t) expresses secrecy in the following (usual) sense: is true in
a configuration (σ,E, 
), if tσ cannot be derived by the intruder from Eσ. The
proposition pc = 
 is true, if the program counter equals 
.

Table 1. The set of formulas F0

F0 � ϕ,ψ ::= Secret(t) | x = t | pc = � | � | ⊥ | ϕ ∧ ψ | ¬ϕ | ∀xϕ
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Definition 1 (Semantics). The interpretation of a formula is given by the set
of its models, i.e., the set Conf of configurations that satisfy the formula. The
definition is standard except for the following clauses:

[[Secret(t)]] =
{
(σ,E, 
) | Eσ 
	 tσ

}
; [[x = t]] =

{
(σ,E, 
) | σ(x) = σ(t)

}
;

and [[pc = 
]] =
{
(σ,E, 
) | (σ,E, 
) is a configuration}.

There are many definitions of authentication that we can find in the literature [5,
21,14,19,17]. In the full paper, we show how these properties can be expressed
in our logic.

4 The spl Logic

In this section, we present a more expressive logic, the spl logic, that embeds
the logic introduced in the previous section. spl is used in Section 5 as the
underlying logic for the weakest precondition calculus.

Henceforth, let K ⊆ K be a fixed but arbitrary set of keys, such that ∅ 
=
K 
= K.

4.1 A Syntactic Characterization of Secrecy

A major problem we face for developing a complete inference system for cryp-
tographic protocols is that secrecy. i.e., E 
	 m, is not expressive enough. For
instance, consider the protocol ?{x}k; !x and the property E 
	 (s1, s2). What
should be the weakest precondition that ensures this property at the end of this
protocol? In this section, we introduce a modality that allows to express weakest
preconditions and provides a syntactic characterization of secrecy.

Intuitively, this modality is a predicate that asserts that given the intruder’s
knowledge E, a term s is protected by a key in K in any message the intruder
can derive from E.

A pair ({t}k, r), where t is a term, k ∈ K and r a critical position in {t}k is
called a term transducer (TT for short). Intuitively, the pair ({t}k, r) can be seen
as function that takes as argument a term that matches with {t}k and returns
as result the term {t}k|r. As will become clear later, a run of a CP provides the
intruder with new term transducer she (he) can apply to learn new terms.

We are now ready to introduce the main modality of the logic:

Definition 2. Let m and s be two messages and let w ∈ (M × Pos)∗ be a
sequence of term transducers.

We define the predicate m〈w〉s, which we read ”s is w-protected in m”, re-
cursively on the structure of m and length of w:

– m is atomic and m 
= s, or
– m = pair(m1,m2), m 
= s and both m1〈w〉s and m2〈w〉s are true, or
– m = encr(m1, k), m 
= s, k 
∈ K and m1〈w〉s is true, or
– m = encr(m1, k), m 
= s, k ∈ K and w = ε, or
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– m = encr(m1, k), w = (b, r).w1, m 
= s, k ∈ K, and m 
= b or m|r〈w1〉s is
true.

This definition is easily generalized to sets of messages: Let M and S be sets of
messages, w a sequence of term transducers and K a set of keys. We say that the
secrets S are w - protected in M denoted by M〈w〉S, if it holds

∧
m∈M,s∈S m〈w〉s.

Example 1. Let m = ({A, {N}k1}k2 , A) and K = {k1, k2}. Then, m〈ε〉N is true
since {A, {N}k1}k2〈ε〉N and A〈ε〉N are true.

Let now w = ({A, {N}k1}k2 , 12).({N}k1 , 1). Then, m〈w〉N is false since ap-
plying the term transducer ({A, {N}k1}k2 , 12) yields {N}k1 on which an appli-
cation of ({N}k1 , 1) yields N .

Closure of sets of secrets. In this section, we define when a set of messages
is closed. Closed sets of secrets enjoy the property that they are not derivable
by composition. Intuitively, a set of messages is closed if it contains all messages
along every path of the tree representing a message in the set.

Let M be a set of sets of messages and let m be a message. We use the
notation: m�M = {Mi ∪ {m}|Mi ∈ M}.

We define when a set of messages is closed. The closure of a set S ensures
that the intruder cannot derive a message in S by composition rules:

wc(m) = m�






wc(m1) ∪ wc(m2) if m = (m1,m2)
wc(m′) ∪ wc(k) if m = {m′}k

{K−1} if m is atomic

where K−1 = {k−1 | k ∈ K}. A set M of messages is called closed, if for any
m ∈ M there exists M ′ ∈ wc(m) such that M ′ ⊆ M .

Example 2. Consider the message m = ({A,N}k, B). Then wc(m) consists of
the following sets:

K−1 ∪ {({A,N}k, B), {A,N}k, (A,N), A} K−1 ∪ {({A,N}k, B), {A,N}k, k}
K−1 ∪ {({A,N}k, B), {A,N}k, (A,N), N} K−1 ∪ {({A,N}k, B), B}.
We can prove the following:

Lemma 1. Let S be a closed set of messages. And let E be a set of messages
such that S ∩ E = ∅. Then, E 
	c S. In other words, if S is closed then no
message in S can be derived uniquely by the composition rules.

We use the notation E〈wi, Si〉I for
∧

i∈I E〈wi〉Si. Our purpose now is to define
conditions on wi and Si such that for any set E of messages, if E〈wi, Si〉I then
m〈wi, Si〉I , for any message m derivable from E. In other words, such conditions
ensure that E〈wi, Si〉I is stable under the derivations rules defining the intruder.
Remember that closure guarantees stability only under composition rules.

Example 3. Let E = {s1, s2} be a set of messages. Then we have E〈w〉(s1, s2).
But we have both E 	 (s1, s2) and ¬(s1, s2)〈w〉(s1, s2).
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This example shows that we need to consider only closed sets of secrets. But this
is not sufficient, as showed by the following example.

Example 4. Let E = {{s}k1 , k2} be a set of messages. E〈({{s}k1}k2 , 11)〉s is
satisfied, but we have both E 	 {{s}k1}k2 and ¬{{s}k1}k2〈({{s}k1}k2 , 11)〉s.

Hence, we need to deal also with the interior term transducers. To do so, let
(b, p) be a term transducer. Then, we denote by lpt(b, p) the next term transducer
in b from above that dominates b|p, if it exists. For lack of space we omit to give
the formal definition, and we prefer to illustrate it by an example.

Example 5. Let b be the term {({N}k′ , A)}k with k, k′ ∈ K. Then, lpt(b, 111) =
({N}k′ , 1). But lpt(b, 12) does not exist neither lpt(b, 11) does.

We have now everything we need to express the conditions that guarantee sta-
bility under the intruder’s derivations:

Definition 3. (wi, Si)i∈I is called well-formed, if the following conditions are
satisfied for every i ∈ I:

– Si is closed,
– if wi = (b, r).w and if there exists a term transducer (b1, r1) = lpt(b, r), then

there exists j ∈ I such that one of the following is true:
• b ∈ Sj

• wj = (b1, r1).w and Si ⊆ Sj.

The main property of E〈wi, Si〉I is that it is stable under the intruder’s deduction
rules. Indeed, we have:

Proposition 1. Let E be a set of messages and let (wi, Si)i∈I be well-formed
such that E〈wi, Si〉I . Let m be a message with E 	 m. Then, m〈wi, Si〉I .

The modality E〈w〉S has another interesting property with respect to intruder’s
derivations:

Proposition 2. Let m be a message and E a set of messages such that K \
K−1 ⊆ E. Then, E 
	 m iff there exists a set of messages A ∈ wc(m) s.t.
E〈ε〉A.

4.2 SPL: A Logic for Security Properties

The syntax of spl is the same as F0 except that secret(t) is replaced by the
following modalities: X〈w〉S and x〈w〉S. Here X is a fixed second-order variable,
S is a finite set of terms and w is a finite sequence of term transducers that
can contain free variables. The formulae are interpreted over a restricted set of
configurations Conf0 = {(σ,E, l)|(σ,E, l) ∈ Conf,K \K−1 ⊆ E}.

Definition 4 (semantics). The semantics of spl is defined as in Definition 1
except that we also have the following clauses:

[[X〈w〉S]] =
{
(σ,E, 
) | Eσ〈wσ〉Sσ

}
; [[x〈w〉S]] =

{
(σ,E, 
) | {σ(x)}〈wσ〉Sσ

}
.
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For convenience of notations, we extend the set of formulae spl as follows:

spl+ � ϕ,ψ ::= . . . | (X,x)〈w〉S | t〈w〉S

The semantics of the newly introduced formulae is: [[t〈w〉S]] =
{
(σ,E, 
) | tσ〈wσ〉

Sσ
}
; [[(X,x)〈w〉S]] = [[X〈w〉S]] ∩ [[x〈w〉S]].

We prove that any formulae of the form t〈w〉S is definable in spl.

Proposition 3. Let s, t be terms, let w be a sequence of term transducers and
let J (t, w, s) be defined as follows:

J (t, w, s) =






x〈w〉s if t = x ∈ V
¬µ(a, s) if t = a ∈ A
J (t1, w, s) ∧ J (t2, w, s) ∧ ¬µ(t, s) if t = (t1, t2)
J (t1, w, s) ∧ ¬µ(t, s) if t = {t1}k ∧ k 
∈ K
¬µ(t, s) if t = {t1}k ∧ k ∈ K ∧ w = ε
((J (b|r, w1, s) ∧ µ(b, t)) ∨ ¬µ(b, t))
∧¬µ(t, s) if t = {t1}k ∧ k ∈ K ∧ w = (b, r).w1

Then, t〈w〉s ≡ J (t, w, s), i.e., both formulae are equivalent.

From now on, we will tacitly identify t〈w〉S and J (t, w, s). We also use the
notations (σ,E, 
) |= ϕ for (σ,E, 
) ∈ [[ϕ]], t〈
 w〉S for ¬t〈w〉S, and X〈
 w〉S for
¬X〈w〉S. Also, given s a term, we write X〈w〉s instead of X〈w〉{s} and t〈w〉s
instead of t〈w〉{s}. We identify formulae modulo the usual properties of boolean
connectives such as associativity and commutativity of ∧, ∨, distributivity etc...
and use ⇒ as the classical logical implication (it can be easily defined in spl
logic using set inclusion).

The predicate Secret(t) can be expressed in spl, and hence, the specification
language of Section 3.3 can be embedded into spl.

Given a term t, let F (t) denote the formula
∨

S′∈wc(t)X〈ε〉S′. Then we have:

Proposition 4. Let t be a term. Then, [[Secret(t)]] = [[F (t)]].

Well-formed formulae. In Definition 3, we introduced when (wi, Si)i∈I is well-
formed. As now we are dealing with formulae, we have to define when a formula
is well-formed in the same sense.

Definition 5. A formula Φ is well-formed, if for any sequence of term trans-
ducers w and closed set of terms S, whenever Φ ⇒ X〈w〉S, there exist (wi, Si)i∈I

well-formed, such that Φ ⇒
∧

i∈I X〈wi〉Si and (w, S) ∈ (wi, Si)i∈I .

The main property satisfied by well-formed formulae is a parallel to Proposition 1
and given by the following corollary, which is a direct consequence of Definitions 3
and 5.

Corollary 1. Let Φ be a well-formed formula such that Φ ⇒ X〈w〉S and let
(σ,E, l) ∈ [[Φ]]. If m is a message such that Eσ 	 m, then m〈wσ〉Sσ.
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Now, the property of Corollary 1 turns out to be crucial for developing a complete
weakest precondition calculus and well-formedness has to be preserved. There-
fore, we introduce the function H. It takes as arguments a formula X〈b.w〉S and
computes the weakest (the largest w.r.t. set inclusion) well-formed formula (see
Definition 5) H(X〈b.w〉S), such that H(X〈b.w〉S) ⇒ X〈b.w〉S:

H(X〈b.w〉S) =






X〈b.w〉S if lpt(b) is undefined
X〈b.w〉S∧(
H(X〈b1.w〉S) ∨ ∨

S′∈wc(t)X〈ε〉S′) if b = (t, p) ∧ b1 = lpt(b)

Proposition 5. Let Φ be a well-formed formula. Let b.w be a sequence of term
transducers and S a closed set of terms such that Φ ⇒ X〈b.w〉S. Then Φ ⇒
H(X〈b.w〉S).

5 Weakest Precondition Calculus

We are interested in proving partial correctness of bounded cryptographic proto-
cols w.r.t. pre- and post-condition given by universally quantified splformulae.
Thus, using the usual notation, we are interested in proving validity of Hoare
triples {ϕ}π{ψ}. As our formalization of bounded CP consists of the actions,
sequential composition and non-deterministic choice, the Hoare logic contains
axioms for the actions and the usual inference rules for composition and choice,
and the Consequence rule. The rules are standard. Therefore, we focus on the
axioms for the actions. That is, for each action we show that we can express the
weakest liberal precondition in spl.

Let us now precisely define the fragment of spl for which we develop a com-
plete Hoare Logic. As shown in Section 3.3 most security properties (authenti-
cation and secrecy at least) can be expressed by such formulae. We denote this
fragment by spl∀.

ϕ,ψ ::= X〈w〉S | (X,x)〈w〉S |x = t | pc = 
 |x 
= t | � | ⊥ |ϕ ∧ ψ |ϕ ∨ ψ | ∀x̃ϕ

The weakest precondition of a set of configurations C ⊆ Conf with respect to
an action α, denoted wlp(α, C) is defined to be the set of configurations s, such
that whenever action α is allowed in s, it leads to a configuration in C. More
formally

wlp(α, C) ::=
{
(σ,E, l) | (σ,E, l) α−→ (σ′, E′, l′) ⇒ (σ′, E′, l′) ∈ C

}
.

Given a formula ϕ, we use wlp(α,ϕ) instead of wlp(α, [[ϕ]]) to denote the weakest
precondition of a formula ϕ ∈ spl.

Let t be a term and p a valid position in t. Then, we denote by lpp(t, p)
the position of the first term transducer in t from above that dominates p if it
exists. For lack of space we omit to give the formal definition, and we prefer to
illustrate it by an example.
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Example 6. Consider the term t = ({A, {N}k1}k2 , N), where k1, k2 ∈ K. Let
p = 1121 and p′ = 2. Thus, t|p = t|p′ = N . Then, we have lpp(t, p) = 1, which
corresponds to the key k2; lpp(t, p′) is, however, undefined.

We remind from section 4, that given a term t, F (t) ::=
∨

S′∈wc(t)X〈ε〉S′. The
intuitive explanation of the lemma is the following: being in a state (σ,E, l), in
order to be able to make an input t(x̃), such that x̃ are instantiated by ρ, it must
be that (σ,E, l) 
∈ [[F (tρ)]].

Lemma 2. Let E be a set of terms, l be a label and let ρ and σ be ground
substitutions such that dom(ρ) = x̃ and (dom(σ) ∪ var (E)) ∩ x̃ = ∅. Then it
holds (σ,E, l) ∈ [[F (tρ)]] iff Eσ 
	 t(σ ⊕ ρ).

Let t be a term, w a sequence of term transducers and S a set of terms. We
denote by G(t, w, S) the formula obtained from

∧
s∈S J (t, w, s) as follows:

– First, use distributivity of ∧ and ∨ to push “inside”
∧

s∈S as much as possible.
– Then, replace any occurrence of

∧
s∈S x〈w〉s by (X,x)〈w〉S.

It is easy to prove by induction on the structure of t that G(t, w, S) ∈ SPL∀, and
similar to Proposition 3, we can prove that X〈w〉S∧G(t, w, S) ≡ X〈w〉S∧t〈w〉S.

Lemma 3 gives the weakest condition that has to be satisfied in a configu-
ration s, such that if in the next step x is instantiated by an input ?t(x̃), the
reached configuration s′ satisfies x〈w〉S. The key idea can be explained by con-
sidering the sequence of actions ?t(x̃); !x. That is, if a secret s that appears in x
has to be protected then it has to appear in x under an encryption. Thus, before
executing ?t(x̃); !x, it should be the case that even if we provide the intruder
with the term transducer that takes as input t(x̃) and yields x, it is not possible
to derive s.

Lemma 3. Let t be a term, S a set of terms, w a sequence of term transducers,
x a variable and Px,t the set of critical positions of x in t. Let

K(t, x, w, S) = X〈w〉S ∧
∧

p=lpp(t,px),px∈Px,t

H(X〈(t|p, p−1px).w〉S).

Let E be a set of terms, l and l′ labels, and ρ, σ ground substitutions such that
dom(ρ) = x̃, x ∈ x̃, (dom(σ) ∪ var (E)) ∩ x̃ = ∅. Let Φ a well-formed formula
such that whenever Eσ 	 t(σ ⊕ ρ), it holds

(σ ⊕ ρ,E, l′) ∈ [[(X,x)〈w〉S]] iff (σ,E, l) ∈ [[Φ]]

Then [[Φ]] = [[ρ(K(t, x, w, S))]].

Now we are ready to introduce the weakest preconditions for all formulae in
spl∀. Remark that in the case of input, F (t) is used for partial correctness: if
an input ?t(x̃) is not allowed in a configuration s (i.e. it holds s ∈ [[F (t)]]), then
for any ϕ, we have that s ∈ wlp(?t(x̃), ϕ).
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Definition 6 (definition of ŵlp). The function ŵlp, which gives the weakest
preconditions for spl∀, is defined below:

1. ŵlp(l !t→ l′, ϕ)
def
= pc = 
 ⇒ ϕ∧G(t, w, S) if ϕ ∈ {X〈w〉S, (X,x)〈w〉S}

2. ŵlp(l !t→ l′, ϕ)
def
= pc = 
 ⇒ ϕ if ϕ ∈ {x 
= t′, x = t′,�,⊥}

3. ŵlp(l
?t(x̃)→ l′, (X,x)〈w〉S)

def
= pc = 
 ⇒ (F (t) ∨ K(t, x, w, S)) if x ∈ x̃

4. ŵlp(l
?t(x̃)→ l′, ϕ)

def
= pc = 
 ⇒ (F (t)∨ϕ) if ϕ ∈ {X〈w〉S, (X, y)〈w〉S, x 
=

t′, x = t′,�,⊥} and y 
∈ x̃

5. ŵlp(l x:=t→ l′, ϕ)
def
= pc = 
 ⇒ ϕ[tσ/x] if ϕ ∈ {X〈w〉S, (X,x)〈w〉S, x 
=

t′, x = t′,�,⊥}
6. ŵlp(l x=t→ l′, ϕ)

def
= pc = 
 ⇒ (σ(x) = tσ ⇒ ϕ) if

ϕ ∈ {X〈w〉S, (X,x)〈w〉S, x 
= t′, x = t′,�,⊥}
7. ŵlp(l

β→ l′, pc = l′′)
def
= pc = 
 ⇒ 
′ = 
′′

8. ŵlp(α,ϕ ∨ ψ)
def
= ŵlp(α,ϕ) ∨ ŵlp(α, ψ)

9. ŵlp(α,ϕ ∧ ψ)
def
= ŵlp(α,ϕ) ∧ ŵlp(α, ψ)

10. ŵlp(α,∀x̃ϕ)
def
= ∀x̃ · ŵlp(α,ϕ) if var (α) ∩ x̃ = ∅

It is easy to see that for any formula ϕ ∈ SPL∀ and any action α, ŵlp(α,ϕ) ∈
SPL∀. Then, we define the formula wlp(α,ϕ) as follows: wlp(α,ϕ) = ŵlp(α,ϕ),

if α 
= l
?t(x̃)→ l′ and wlp(l

?t(x̃)→ l′, ϕ) = ∀x̃ · ŵlp(l ?t(x̃)→ l′, ϕ).
Then, we have the following theorem:

Theorem 1. The wp-calculus of Definition 6 is sound and complete. I.e., let α
be any action and ϕ any formula in spl∀. Then, wlp(α, [[ϕ]]) = [[wlp(α,ϕ)]].

Hence, following the usual completeness proof for Hoare logic, we can prove:

Corollary 2. The Hoare logic consisting of the inference rules for composition,
choice and consequence and the axiom schema {wlp(α,ϕ)}α{ϕ}, for each ac-
tion, is sound and complete.

6 Decidability of spl

In this section, we study the decidability of the existence of a model (the satis-
fiability problem) of an spl formula. We prove decidability of this problem for
existential formulae (i.e., formulae in Σ0) and undecidability in the general case.
Notice that since we showed in Section 5 that given a formula ϕ in spl∀ and
a bounded CP π, one can compute wlp(π, ϕ), decidability of the satisfiability
of existential formulae yields a decision procedure. Indeed, assume that we are
given an existential formula ψ and ϕ in spl∀, assume also that we are given a
bounded CP π then {ψ}π{ϕ} is true iff ψ ∧ ¬wlp(π, ϕ) is not satisfiable. No-
tice also that undecidability of spl entails the non-existence of a complete and
effective Hoare logic for bounded CP and spl.

To prove decidability for existential formulae we follow a rule based approach
(e.g., [13,6] for two nice surveys) i.e.:
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1. We introduce a set of formulae in solved form. For these formulae it is easy
to decide whether a model exists.

2. We introduce a set of rewriting rules to transform any formula in the exis-
tential fragment into a solved form.

3. We prove soundness of these rules.
4. We also prove their completeness, i.e, termination for a given control that

normal forms are indeed in solved form.

We will encounter two sorts of rewriting rules:

– Deterministic rules are of the form ϕ → ϕ′. They transform a given problem
into a single problem. A deterministic rule is sound, if [[ϕ]] = [[ϕ′]].

– Non-deterministic rules of the form ϕ → ϕ1, · · · , ϕn. They transform a given
problem into a set of problems. A non-deterministic rule is sound, if [[ϕ]] =
n⋃

i=1
[[ϕi]].

In this section, we do not consider formulae of the from pc = 
. It will be
clear that adding these formulae does not add any technical difficulty; it is only
cumbersome to consider them here.

Thus, given a formulae ϕ with x1, · · · , xn as free variables, a model of ϕ is
pair (σ,E) consisting of a ground substitution σ over x1, · · · , xn and a set E of
messages.

6.1 Decidability of Σ0 Formulae

Let ψ be a formula in spl of the form ∃x1, · · · , xn · ϕ, where ϕ is a conjunction
of literals, i.e., X〈w〉S | x〈w〉S | x = t | � | X〈
w〉S | x〈
w〉S | x 
= t | ⊥, with
x1, · · · , xn as first-order free variables.

Notice that the satisfiability of any formula ∃x1, · · · , xn · ϕ, where ϕ is
quantifier-free can be reduced to a finite set of satisfiability problems of for-
mulae in the form above.

Solved form. A formula is called in solved form if is syntactically equal to �,
⊥ or ∃x1, · · · , xn · ϕ and ϕ is of the form:

n∧

i=1

[
mi∧

j=1

xi〈ε〉tji ∧
li∧

j=1

xi〈
ε〉uj
i ∧

oi∧

j=1

xi 
= vj
i ] such that:

1.) For any i = 1, · · · , n, xi 
∈ var (tji ), xi 
∈ var (uj
i ), and xi 
∈ var (vj

i ) and
2.) There is an ordering xi1 , · · · , xin

of x1, · · · , xn such that the intersection of
lik⋃

k=1
var (uk

ik
) with {xik+1 , · · · , xin

} is empty.

We now show how one can ”easily” check whether a formula in solved form
has a model. We only consider the third type of solved formulae. So, let ϕ a
conjunction as above. We define a particular substitution σ such that ϕ has a
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model iff it is satisfied by σ. To do so, let k ∈ K be a fixed key. Let F (n), for
n ≥ 1, denote n concatenations of k, i.e., F (1) = k and F (n+1) = pair(k, F (n)).
Let now N be a natural number strictly bigger than the size of the formula ϕ.
We then define the substitution σ recursively as follows:

1.) If n = 1, i.e., there is only one variable then σ(xi1) = (u1
i1
, (· · · , (uli1

i1
,

{F (N + i1)}k) · · ·)). In case li1 = 0 this term is understood as {F (N + i1)}k.
2.) If n > 1 then replace xi1 by σ(xi1) in ϕ. This yields a new formula

ϕ′ and the ordering xi2 , · · · , xin , and by recursion, a substitution σ′. Then, let
σ = [xi1 
→ (u1

i1
σ′, (· · · , (uli1

i1
σ′, {F (N + i1))}k) · · ·))] ⊕ σ′.

Theorem 2. Let ϕ be a formula in solved form syntactically different from �
and ⊥. Let σ be the substitution as defined above. Then, ϕ has a model iff σ
satisfies ϕ.

Table 2. Rules for transformations into a solved form

Table 3. Eliminate trivial sub-formulae

x = x �→ � x〈w〉x �→ ⊥ ⊥ ∧ Φ �→ ⊥ � ∧ Φ �→ Φ
x = t �→ ⊥ if x ∈ Var(t) ∧ x 
 ≡st x〈w〉t �→ � if x ∈ Var(t) ∧ x 
 ≡st

Table 4. Replacement

x = t ∧ Φ �→ Φ[t/x] if x 
∈ Var(t)
Table 5. Decompose

t〈w〉s �→ J (t, w, s), if t 
∈ X D1
x〈(b, p).w〉s �→ x〈ε〉s ∧ x〈ε〉b, x〈ε〉s ∧ b|p〈w〉s D2
s = t �→ µ(s, t) if s, t 
∈ X D3

Table 6. Elimination X
∧

i∈I
X〈wi〉si ∧ ∧

j∈J
X〈
wj〉s′

j �→ ∧
j∈J

[∧
i∈I

zj〈wi〉si ∧ zj〈
wj〉s′
j

]

where zj with j ∈ J are new variables

Table 7. Occur-check

ϕ �→ ϕ[y/x]
if x and y are syntactically different and x ≤ y and y ≤ x, where ≤ is the reflexive
transitive closure of < with “x < y iff there there is a sub-formula of ϕ of the
form y〈
w〉t with x ∈ var (t)”.

Theorem 3. Application of the rules of Table 2 terminates in a solved form.
In this table, for the rules of the form ϕ −→ ψ, where ϕ is an atomic formula

(s = t or ss〈w〉s), we tacitly assume a rule ¬ϕ −→ ¬ψ. Even more, we suppose
that ¬ψ is represented a set of formulae in conjunctive normal form.
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If we allow both existential and universal quantifiers, then the decision prob-
lem becomes undecidable. Indeed, we can show that Post’s correspondence prob-
lem is reducible to the decision problem in our logic.

Theorem 4. Post’s correspondence problem is reducible to the decision problem
for the spl logic.

7 Conclusions

We showed that it is possible to have a complete and effective Hoare Logic
for bounded cryptographic protocols and an expressive assertion language. This
assertion language allows to specify secrecy as well as authentication and other
properties. As a consequence of this result, we have a decision procedure for
bounded cryptographic protocols and a large class of security properties allowing
an infinite set of messages initially known by the intruder. The latter point
might seem minor but is not. Indeed, if we are interested in composing protocols
we have to take into account that we have no bound on how many sessions
have taken place before, and hence, we should allow infinite sets of messages.
Thus, in this paper, besides developing (to our knowledge) for the first time a
result concerning the existence of an effective and complete Hoare Logic for CP,
we significantly extend existing decidability results in two directions: 1.) larger
class of properties and 2.) more general initial conditions. We also believe that
this paper presents a general framework for a uniform presentation of different
decidability results for bounded CP with weaker cryptographic hypothesis, e.g.,
considering equational theories. In the full paper, we develop this point of view
for Cipher Block Chaining and for the xor-theory.

The method presented in this paper is a basis for analyzing unbounded pro-
tocols using approximations as those used in [4], where widening is used to
guarantee termination. The interesting results of [2] can be used to restrict the
use of the widening operator, and hence, obtain more precise analysis.

References

1. R. M. Amadio and D. Lugiez. On the reachability problem in cryptographic proto-
cols. In International Conference on Concurrency Theory, volume 1877 of LNCS,
pages 380–394, 2000.

2. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging
enforces termination. In Andrew D. Gordon, editor, FoSSaCS’03: Foundations of
Software Science and Computation Structures, volume 2620 of LNCS, pages 136–
152. Springer, 2003.

3. M. Boreale. Symbolic trace analysis of cryptographic protocols. In ICALP: Annual
International Colloquium on Automata, Languages and Programming, 2001.
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