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Abstract. In addition to behavioral properties, spatial logics can talk
about other key properties of concurrent systems such as secrecy, fresh-
ness, usage of resources, and distribution. We study an expressive spatial
logic for systems specified in the synchronous m-calculus with recursion,
based on a small set of behavioral and spatial observations. We give coin-
ductive and equational characterizations of the equivalence induced on
processes by the logic, and conclude that it strictly lies between structural
congruence and strong bisimulation. We then show that model-checking
is decidable for a useful class of processes that includes the finite-control
fragment of the m-calculus.

Introduction

Spatial logics support the specification not only of behavioral properties but
also of structural properties of concurrent systems, in a fairly integrated way.
Spatial properties arise naturally in the specification of distributed systems, for
instance connectivity, stating that there is always an access route between two
different sites, unique handling, stating that there is at most one server process
listening on a given channel name, or resource availability, stating that a bound
exists on the number of channels that can be allocated at a given location. Even
secrecy can also be sometimes understood in spatial terms, since a secret is a
piece of data whose knowledge of is restricted to some parts of a system, and
unforgeable by other parts [4[3]. Essentially, spatial logics are modal logics that
can talk about the internal structure of each world. The interpretation of each
world as a structured space, and moreover as a space seen as a certain kind
of resource [23], distinguishes spatial logics among modal logics. Spatial logics
have been recently used in the definition of several core languages, calculi, and
data models [2J6IT8/405]. In this paper, we study a logic for systems modeled
in the synchronous m-calculus with spatial and temporal operators, freshness
quantifiers, and recursive formulas.

Spatial and Behavioral Observations. In behavioral models of concur-
rency, a process is identified with its observable behavior, roughly, the sequence
of interactions it can perform in the course of time. Modalities of a purely be-
havioral logic support the specification of processes by allowing us to talk about
their actions; logics of this kind [2T/TTT2] are extensions of those introduced by
Hennessy and Milner [19]. Although there is a traditional distinction between
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static and dynamic operations in process algebras [19], a purely behavioral se-
mantics blurs the distinction between these two kinds of operations, to the extent
that all process operators end up interpreted as purely behavioral, abstracting
away from all structural information. The equivalence induced on the set of all
processes by such logics is then expected to match some notion of behavioral
equivalence (e.g., strong bisimulation).

Spatial logics offer an enhanced power of observation, when compared with
purely behavioral logics, because they can distinguish between systems that differ
on their distributed structure, but not on their behavior. Spatial observations
may then appear perhaps too much intensional. However, while certainly more
intensional than purely behavioral observations, spatial observations are of a
semantic nature, and should be actually extensional with respect to some well-
defined model of space. Therefore, a spatial logic for concurrent processes should
separate processes according to such well-defined spatial / behavioral semantic
model.

A spatial logic may then add to a given set of behavioral modalities a set of
spatial operators, closely related to the static operators of the process calculus, as
in [2]. For nominal process calculi, the static operators are the composition P|Q,
its identity element O (denoting the empty system), and the name restriction
(vn)P. These process constructors give rise to the composition formula A|B,
that holds of a process that can be separated into a process that satisfies formula
A and a process that satisfies formula B, to the void formula 0, that holds of the
void process, and to the hidden name quantifier Hx. A that allows us to quantify
over locally restricted channels.

Alternatively, a spatial logic can put a stronger emphasis on structure, and
allow the observation of a process behavior in a more indirect way, using spatial
adjuncts together with a minimal “next step” (cf., the formula (7)A) or “even-
tually” behavioral modality. The first proposal in this vein is the ambient logic
of [6], also adopted in the m-calculus logic of [4J3]. An advantage of this approach
is its generality, moreover, it is easily adaptable to any process calculus whose
operational semantics can be presented by means of a simple unlabeled reduc-
tion relation. Adjuncts are very expressive: composition adjunct A B supports
an internal definition of validity, and makes it possible to express quite general
context /system specifications. However, model-checking of logics with composi-
tion adjunct, and including either quantification over names [9] or revelation [15]
turns out to be undecidable even for the simplest process languages.

Overview and Contributions. In this work, we study a mw-calculus logic
which is based on purely structural spatial and behavioral observations. By
“purely structural” we mean observations that can be determined by inspec-
tion of the local structure of the processes; therefore the logic does not include
adjuncts operators. As a consequence, we obtain decidability of model-checking
on interesting classes of processes, and preserve the ability to express context-
dependent behavioral and spatial properties.

For the spatial fragment we consider the connectives of composition, void,
and revelation. For the behavioral fragment we pick a few simple modalities,
defined either from the label 7, that denotes an internal communication, or from
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one of the labels n(m) and n(m), denoting respectively the action of sending
name m on channel n, and the action of receiving name m on channel n. To this
basic set of connectives, we add propositional operators, first-order and freshness
quantifiers, and recursive definitions, along the lines of [4].

To illustrate in an informal way the expressiveness of the logic, we go through
a few examples. First, we show that by combining the fresh and hidden name
quantifiers with the behavioral operators we can define modalities for name
extrusion and intrusion (cf., [21]).

n{vz).A £ Hr.n(z).A (Bound Output) n(vz).A 2 Vz.n(z).A (Bound Input)

The definition of bound output uses the hidden name quantifier [2/4]. The hidden
name quantifier is derivable [7] from the fresh name quantifier and the revela-
tion operator: Hz.A £ Mz.2®A. Using these two operators we can define the
following formula Comm.

m(va). Alm(va)B = 7.Hx.(A|B)
Pair = ((vn)m(n).n(m).0)|m(q).q(q).0

Comm

The formula Comm talks about name extrusion: it says that two separate parts
of a system can become “connected” by a shared secret, after interacting. For
example, the process Pair defined above satisfies the formula Comm. It also
satisfies the formula (—0]|—=0) A 7.=(—0|=0): this formula says that the process
has two separate threads initially, that become tied by a private shared channel
after a reduction step. This illustrates the fact that the logic has the power to
count resources (e.g., threads, restricted channels). Combining spatial operators
and recursive formulas we can define other useful operators, e.g., H*A 2 uX.(AV
Hz.X); the formula H* A means that A holds under a (finite) number of restricted
names [4]. Then, the formula —H*3y.(Jz.y(x).T|Fz.y(z).T) expresses a unique
handling property [20], it is satisfied by systems that do no contain separate
processes listening on the same (public or private) channel name.

The first contribution of this work is thus the proposal of the logic and the
characterization of its expressive power, in terms of the equivalence relation
(written =p,) it induces on processes, aiming at a better understanding of its
intended spatial model. We give coinductive and equational characterisation of
=1, showing that it is a decidable congruence, even for the full process language
with recursion. The equational presentation turns out to be the extension of the
standard axiomatization of structural congruence with two natural principles:
an axiom expressing absorption of identical choices (cf., the axiom P + P = P
for bisimulation), and a coinduction principle, asserting uniqueness of solutions
to equations. This shows that =y, lies strictly “in between” structural congru-
ence and strong bisimulation, the gap towards strong bisimulation seems to be
essentially justified by the failure of the expansion law in the spatial model. As
a second contribution, we present a model-checker for the full logic and calcu-
lus, and show that model-checking is decidable for a class of bounded processes
that includes the finite-control m-calculus. The algorithm builds on the decidable
characterization of =, and its presentation is surprisingly compact: we believe
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this to be a consequence of adopting a Pset-based semantic foundation [4], and
permutation-based techniques [T422].

1 The Process Model

In this section, we briefly introduce the syntax and operational semantics of the
synchronous 7-calculus. We adopt a version with guarded choice [20], but with
recursion replacing replication.

Definition 1.1 (Actions and Processes). Given infinite sets A of pure
names (m,n,p) and x of process variables (X, ), Z), the sets A of actions (a, 3),
N of normal processes (N, T,U), P of processes (P, Q, R), and A of abstractions
(F,G) are defined by

a,f z=m(n) | m(n) N,T:=aP | N+T
F,G:=m)P P,Q =0 | N | P|IQ |(vn)P | X[n]| (rec X7.P[p)

Each component of a choice N 4+ T is a guarded process, that is, either an input
process m(n).P or an output process m(n).P. In restriction (vn)P and input
m(n).P the distinguished occurrence of the name n is binding, with scope the
process P. The bound names bn(a) of an action a are given by bn(m(n)) £ {n}
and bn(m(n)) £ 0. In a recursive process (rec X (7).P)[p], the distinguished
occurrences of the variable X and names 7 are binding, with scope the process
P. As usual, we require all free occurrences of X' in P to be guarded, that is,
they may only occur inside the continuation part @ of a guarded process «.Q in
P. For any process P, we assume defined as usual the set fn(P) of free names
of P, and the set fpu(P) of free process variables of P. A process is closed if it
does not contain free occurrences of process variables, in general by “process”
we mean “closed process”.

Abstractions denote functions from names to processes, our basic use for ab-
stractions is in the definition of substitutions for process variables. A substitution
0 is a mapping assigning a name to each name in its finite domain (), and an
abstraction of the appropriate arity to each process variable in D(6). We write
{n < m} (respectively {X < F'}) for the singleton substitution of domain {n}
(respectively {X'}) that assigns m to n (respectively F' to X).

We assume defined the relation of a-congruence =, that identifies processes
up to the safe renaming of bound names and bound process variables. For any
process P and substitution 6 we denote by 6(P) the result of the safe ap-
plication of # to P (using a-conversion as needed to avoid illegal capture of
free variables). The action of substitutions on process variables is defined as
expected, e.g., if 0(X) = (q)P then 0(X[m]) = P{q < m}. We abbreviate
{X « (§)(recX(n).P)[q]} by {X «(recX(n).P)}, and write P8 or P for
0(P).
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Definition 1.2 (Observable Names). For every closed process P and i > 0
we define

ofn;(0) =0 ofni(m(n).P) = {m} U (ofn;(P) \ {n})
ofn;(P|Q) = ofn;(P) U ofn;(Q)  ofn;(N +T) = ofn;(N) U ofn;(T)
ofmi((vn)P) = ofni(P) \{n}  ofng((rec X(m).P[p]) =0
(m(n).P) = {m,n} U ofn;(P) ofn;,((rec X(m).P)[p]) =
ofn;(P{m < p}{X <« (rec X(n).P}

The set ofn(P) of observable names of P is defined by ofn(P) £ Uiso ofn;(P).

N.B. For any P, the set ofn(P) is computable because the set of processes that,
according to the definition of ofn;(—), are relevant to determine ofn(P) is finite
up to =, and renaming of revealed bound names (arising in the cases for (vn)P
and m(n).P).

The notion of “observable name” is less syntactical than the one of “free
name”, and more consistent with our intended structural model, where recur-
sively defined processes are seen as certain infinite trees. For example, given P £
(rec X(n).a{a).X[n])[p], the name p is free in (the syntax of) P, but certainly
not observable in the infinite process a(a).a{a).--- that P denotes. The set of
observable names of a process is preserved by unfolding of recursive processes,
and thus also by structural congruence. This point is important, because struc-
tural congruence plays a central role in the semantic of spatial formulas, and the
logic should not distinguish processes that just differ on free but non-observable
names. We can also verify that for all processes P, ofn(P) C fn(P).

Structural congruence expresses basic identities on the structure of processes:

Definition 1.3 (Structural congruence). Structural congruence = is the
least congruence relation on processes such that

P=,Q=P=Q (Struct Alpha)
Plo=P (Struct Par Void)
PlQ=Q|P (Struct Par Comm)
Pl(Q|R) = (P|Q)|R (Struct Par Assoc)
N+T=T+N (Struct Cho Comm)
N+ (T+U)=(N+T)+U (Struct Cho Assoc)
n & ofn(P) = P|(vn)Q = (vn)(P|Q) (Struct Res Par)
(vn)0=0 (Struct Res Void)
(vn)(vm)P = (vm)(vn)P (Struct Res Comm)
(recX(m).P[p] = P{n + p}{X + (rec X (n).P} (Struct Rec Unfold)

The behavior of processes is defined by a relation of reduction that captures the
computations that a process may perform by itself. To observe the communica-
tion flow between a process and its environment, we then introduce a relation
of commitment.
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A
T (True) [Tl N 1)
n=n' (Equality) [n=m], N if n.=m then P else 0
-A (Negation) [-AD f P\ [A]v
AAB  (Conjunction) [AAB], = [AlyN[B]»
0 (Void) [0, ={p|P=0}
A|B  (Composition) [A|B], £2{P|3Q,R.P=Q|R

and Q € [A], and R € [B],}

N®A  (Revelation) [n®A], £ {P|3Q.P=(vn)Q and Q € [A],}

VxA  (Name quantification) [Vx.AJ, 2 NpealA{x<n}]y

WxA  (Fresh quantification)  [Ux.Aly £ Upgpe (a)([A{xn}]y \{P | n € f(P)})
oA (Action) [oA], 2 {P|30.P% Qand 0 € [A],}

X (Propositional variable) X v(X)

vX.A  (Greatest fixpoint) [vX.A], A U{¥eP|¥C[ A]]v[X<—‘P]}

lI> 11>

Fig. 1. Syntax and Semantics of the Logic

Definition 1.4 (Reduction). Reduction (P — Q ) is defined as follows:

m(n).Q + N|im(p).P+T — Q|P{p < n} (Red React)
Q—Q = P|lQ— P|Q (Red Par)
P— Q= (vn)P — (vn)Q (Red Res)
P=P P —-Q,Q=Q=P—Q (Red Struct)

Commitment coincides with the standard relation of labeled transition for the
m-calculus ([25]), except that “bound output” and “bound input” labels are
omitted. It turns out that bound output and bound input can be expressed in
the logic from more primitive observations. Thus, a labelling action is either 7,
an input m(n), or an output m(n).

Definition 1.5 (Commitment). Commitment (P % Q) is defined as follows:

P-Q=P 5Q Com Red)

(
m,n &= (p)(mn).Q + N|P) "3 wp)(Q|P) (Com Output)
m,n &= (vp)(m(q).Q + N|P)" Y (vp)(Q{g < n}|P) (Com Input)
P=P.P35Q.,Q=Q=P3Q (Com Struct)

2 Logic

In this section, we present the syntax and semantics of the logic, following closely
the scheme of []; essentially, adjuncts are removed, and behavioral modalities
added. Formulas (A, B, C) are built from pure names in A, name variables in V
(z,v, 2), and propositional variables in X' (X,Y, Z) as defined in Fig. [ (we use
the metavariable 7 to denote a name or name variable).
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The set of logical operators includes propositional, spatial, and temporal
operators, first-order quantification, freshness quantification, and recursive for-
mulas. Boolean connectives and name equality are interpreted in the standard
way. The basic spatial connectives correspond to the static operators of the
m-calculus. The formula Vz.A denotes quantification over all names in A. The
formula Ux.A expresses fresh name quantification: a process satisfies Nz. A if
for some fresh (in the process and formula) name n, it satisfies A{x + n}. The
formula «. A is satisfied by all processes that after performing action « can evolve
to a process that satisfy A.

In the formulas Vz.A, Nx.A, and v X.A the distinguished occurrences of x
and X are binding, with scope the formula A. In a formula vX.A, we require A
to be monotonic in X, that is, every free occurrence of the propositional variable
X in A occurs under an even number of negations. The connectives V, 3, =,
and pX.A are definable as usual.

The relation of a-congruence =, is defined on formulas in the standard way
(safe renaming of bound variables). Given a formula A, the sets fn(A) of free
names of A, fu(A) of free variables of A, and fpu(A) of free propositional vari-
ables of A are defined also as expected. We assume defined on formulas the
capture avoiding substitution of names/variables for names/variables, and of
propositional variables for formulas (written as usual, e.g., A{zx < n}, 0(A),
A{X « B}).

The semantics of formulas is given in a domain of Psets, following closely
the approach of [4]. A Pset is a set of processes that is closed under = and has
finite support. The support of a Pset is a finite set of names; intuitively, the set
of names that are relevant for the property (cf., the free names of a formula).
So a Pset is closed under transposition of names out of its support. Recall that
a name permutation (p) is a bijective name substitution. As a special case, we
consider name transpositions (7), writing {m<sn} for the transposition of m and
n, that is, for the substitution that assigns m to n and n to m. For any finite
set of names N, we say that a name permutation p fizes N if p(n) = n for all
n € N. We denote by Ry the set of all name permutations that fix N.

Definition 2.1 (PSet [4]). A property set is a set of processes ¥ such that

1. For all processes Q, if P €W and P =(Q then Q € ¥.
2. Euxists a finite set of names N such that, for all n,m ¢ N, if P € & then
P{n<m} € &.

We denote by P the collection of all Psets. The denotation of a formula A is given
by a Pset {(A)),, with respect to a valuation v that assigns to each propositional
variable free in the formula A a Pset in P, defined in Fig.[Il Every Pset @ € P has
a least support [14/4], denoted by supp(®). If A is a formula, and v a valuation
for A, we define the set fn”(A) of free names of A under v by

fn” (A) £ fn(A) U J{supp(v(X)) | X € for(A)}

Hence fn"”(A) is almost fn(A), except that we take fn(X) = supp(v(X)) for
any X € fpu(A), so that fn”(A) = fn(A) for any closed formula A. fn"(A) is
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used in the semantic clause for the fresh name quantifier, where the selected
quantification witness must be fresh for the property set denoted by a formula
that may contain free occurrences of propositional variables.

The denotation mapping [—], satisfies certain fundamental properties, col-
lected in the next Proposition 222 and Proposition 2231 In Proposition 22l we refer
to transposition of Psets and valuations: if @ is a Pset (supported by N), then
7(®) £ {7(P) | P € &} is also a Pset (supported by 7(N)). We can also define
the action of transpositions on valuations as follows: when v is a valuation, 7(v)
is the valuation with the same domain as v and defined by 7(v)(X) £ 7(v(X)),
for all X € X in the domain of v.

Proposition 2.2. Let A be a closed formula, and v a valuation for A. Then

1. [A], € P with supp([A],) C fn"”(A).

2. For all transpositions 7, T([A],) = [T(A)])+w)-

3. (Gabbay-Pitts) Let M be a finite set of names such that fn” (A)Ufn(P) C M.
If P € [A{z < p}], for some p & M, then P € [A{x < p}], for allp & M.

Proposition 2.3. Let A be a formula monotonic in X and v a valuation for
the formula vX.A. Let ¢ be the mapping P — P defined by ¢(s) = [A]o[x s

1. ¢ is monotonic.

2. ¢ has a greatest fizpoint (written vs.¢(s) or Gfixz(p)) and [vX.A], =
GFix(9).

3. For every @ € P, & Cvs.¢(s) if and only if & C p(vs.(PU ¢(s))).

Proposition 22 is proved as Theorem 4.2.1 in [4]. Proposition 23] collects some
results about fixpoints that carry over to the domain of Psets; (3) is the “reduc-
tion lemma” .

3 Expressiveness

We have already discussed how spatial properties reflect an enhanced observa-
tional power when compared with behavioral properties. However, spatial prop-
erties are expected to be invariant under a natural notion of structural identity;
in turn, structural identity is expected to be close to structural congruence
24]. For example, the processes m(n)|p(n) and m(n).p(n)+ p(n).m(n) are equiv-
alent with respect to the standard strong bisimulation semantics, but are distin-
guished by the formula —0|—-0, which holds of systems constructed from at least
two separate non-void parallel components. Hence, these processes, although
strongly bisimilar, are not logically equivalent: the logical equivalence relation
=, induced by a logic on a set of processes is given by defining P =) whenever
for any closed formula A, P € [4] if and only if @ € [A].

Conversely, the processes (recX.n(m).X) and (recX.n{(m).n(m).X) are
strongly bisimilar, and in fact cannot be distinguished by any formula of the
logic: both processes denote the same single-threaded behavior. However, they
are not structurally congruent. In this section, we discuss the relation between
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the equivalence induced by the logic and some process equivalences, and con-
clude that logical equivalence is strictly coarser than structural congruence, and
strictly finer that strong bisimulation. Logical equivalence can be equationally
characterized by modularly extending structural congruence as defined in Def-
inition with two natural principles: we call extended structural congruence
to the resulting congruence. Extended structural congruence is decidable, and
plays a useful role in the model-checker presented in Section [l

Definition 3.1. Extended structural congruence =° is the least congruence re-
lation on processes generated by the axioms of structural congruence in Defini-
tion[I-3 and the following two axioms

Xguarded in Q, P =° Q{X + (Q)P} = P =° (rec X(3).Q)[g] (Struct Rec Solve)
a.P+a.P=°aP (Struct Cho Abs)

Our results about =°¢ build on a characterization of =¢ in terms of structural
bisimulations. Natural notions of structural bisimulation have been defined [24]
[16], following the usual coinductive pattern of progressive observation of process
commitments. For our purposes we find it more convenient to define structural
bisimulations on representations of processes based on finite systems of equa-
tions. This choice supports a compact representation for structural bisimulations,
and brings several technical simplifications.

Definition 3.2. An equation (defining X' ) has the form X[n] = P where X is
a process variable, and P is a process. A system is a pair S = (X[m],S) where
X is a process variable (the root of S), and S is a finite set of equations, such

that every process variable appearing in S is uniquely defined by some equation
mnS.

The domain ©(S) of a system S is the set of all process variables defined in
S. We write na(S) for the set of names that occur in the equations of S. If S is a
set of equations and X[g] = Q € S, we denote by S(X)[p] the process Q{7 < p}.
A system S is expanded if all of its equations have the general form
X[m] = (vi)(Zi, o, A [, ]| - | 250, A [3,])
Since choice is associative and commutative, we denote by X;«;.P; a choice
o1.Py 4+ -+ al,.P.. We can now define:

Definition 3.3. Let Sp = (Xy, Sp) and Sq = (Mo, Sq) be two expanded sys-

tems, where M £ na(Sp) Una(Sg). A structural bisimulation for Sp and Sg is
a relation =~ such that

1. = C{(X[n],Y[m]) | X € D(Sp),Y € D(Sg),m,n names } and Xy ~ Yo;

2. If X[p] =~ Y[q] then there are m, N, T with mN M = 0 and #N = #T, such
that Sp(X)[p] = (vm)N, Sq(V)[ql = (vm)T, and for alli=1,... ,#N and
a such that bn(a) € mU M:
If Ny S X' [B] for some X', P then exists V' such that Ty->Y'[q'] and X'[p] ~
Y'al;
IfT;5Y'[q] for some V', G then exists X' such that N;->X'[p'] and X'[p'] ~
Vi)
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o3 2 (X[g, {x[g=0})
|(vn) P £ (X[g],{X[q] = (vnm)R} U Sp)
[Pl = (V[gn], Sp)
Sp(Y)[gn] = (vm)R, n € ofn(P)
‘(VTL)P%V £ (y[q],Sp)7 |P‘]§V = (y[z],fp)7 n Q Ofn(P)
|PIQIY 2 (X[g),{X[g) = (vam)(R[S)} U Sp U Sq)
|Pl7 = (YV[al, Sp), Sp(W)[@ = (vA)R_
1Rl7 = (2@, Sq), Sq(2)[g) = (vm)S
| Lo PlY £ (X[g], {X[q] = Zici. Vi[qp,]} U U, Spy)
|Pi|25, = (Vilapi], Sk,), s = bn(ai)
[(recY(@)-P)[PllF £ (X[F],{X[F] = SQYV)[FpI}US 1Y)
|P{Y < (@)X [rq)}ry = (VIFg), S)
VI 2 (V)0

Fig. 2. Systems from processes.

In clause 2, N and T denote sequences of guarded processes, so that each N;
and T} denotes a (possibly singleton) choice process, and we write #N for the
length of the sequence N. We write S ~ S’ to state that there is a structural
bisimulation for S and S’.

Definition 3.4. For any process P such that fn(P) C U N we define a system
|P|§[ as specified in Fig. A

We denote by |P| the system |P|£n(P) = (Z,S). When constructing |P|Y we
require N N g = () and, more generally, that the bound names introduced in
the cases for restriction and input are distinct, and different from free names,
using =, on P if needed. In the case for the recursive process, by S | )V we
denote the set of equations obtained from S by applying the substitution {) +
(7q)S(Y)[q]} to every equation where ) appears unguarded. We can then verify
that, for any P, the system | P| is expanded, and unique up to the choice of bound
names and process variables.

Ezample 3.5. Let P = (rec).a(m).(Y|b(m).0). Then fn(P) = {a, b}, and:

(1) [2'[b(m)- Ol = (Z1[m], {Z1[m] = Z'|b(m).Z5, Z[m] = O;
éﬁ))'\a(m)-(?flmm%o)l@ = (2',{2" = a(m).21[m], Z1[m] = Z'|b{m).Z3, Z2[m] =
E)?S) 1P| = (Zo. {20 = a(m).Zi[m]. Za[m] = a(m').2: [']|b{m) Zslm], Za[m] =

A solution for the system S is an assignment of an abstraction (g,;)Q; of ap-

=€

propriate arity to each process variable X; in ©(S) such that Q; =°¢ P{X; +
(@)Q1}.. . {Xy + (Gn)Qn} for every equation X;[g;] = P; of S. We can prove

Lemma 3.6. There is a solution s for |P|§[ = (X[q], S) with s(X) =° (q)P.

Lemma 3.7. For all processes P and Q, if P =¢ Q then |P| ~|Q]|.
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Proof. By induction on the derivation of P =¢ @, and construction of appropriate
structural bisimulations.

Lemma 3.8. For all processes P and Q, if |P| = |Q| then P =€ Q.

Proof. From |P| ~ |Q| we build another system Z = (2, Z) such that |P| ~
Z ~ |Q|. Then we show that any solution s for Z gives rise to solutions for |P|
and |Q], such that P =° s(Zp) =°¢ @, and conclude by transitivity of =¢. The
proof follows the pattern of completeness proofs for equational characterizations
of “rational trees” (e.g. [1]); but the need to cope with binding operators (with
scope extrusion) and structural congruence raise some additional challenges.
We thus conclude:

Proposition 3.9. For all processes P and Q, |P| = |Q| if and only if P =° Q.

Moreover, since the existence of a structural bisimulation for |P| and |Q] just
depends on the inspection of a number of pairs that is finite up to name permu-
tations fixing na(|P|) U na(|Q|), we have:

Lemma 3.10. For all processes P and @, it is decidable to check P =° ().
A main result of this section is then the following property.
Proposition 3.11. For all processes P and Q, P =1,Q if and only if P =€ Q.

The proof makes essential use of the characterization of extended structural con-
gruence in terms of structural bisimulation, and requires some build up, namely,
the definition of (bounded) characteristic formulas. These formulas characterize
processes up to a certain “depth”, modulo extended structural congruence.

Definition 3.12 (Characteristic Formulas). Given a process P and k > 0,
we define a formula [P), as specified in Fig.[3

N.B. When G is a multiset of guarded processes, we use the notation XG to
denote the choice of the elements of G, e.g., X{a(p).P,a(q).Q,b(r).P} denotes
the process a(p).P + a(q).Q + b(r).P.

Notice that [—], is well-defined by induction on the pairs (k, s(P)) (ordered
lexicographically), where s(P) is the number of process operators in P that do
not occur behind a prefix. Intuitively, the formula 1 is satisfied precisely by non-
void processes that cannot be split in two non-void parts, that is P satisfies 1 if
and only if P is single-threaded. The formula NR is satisfied by those processes
that do not contain a “true” restricted name at the toplevel, that is P satisfies
NR if and only if for all n and P’ such that P = (vn)P’ it is always the case
that n ¢ ofn(P’). Recall that P satisfies ©n if and only if n € ofn(P). So,
a process P satisfies GG if and only if P is structurally congruent to a choice
process. The intent of the formula ActOg (respectively Actl) is to characterize
what output (respectively input) actions a choice process offers, while Out% and

Out’; e (resp. T n% and T nié) characterize the effects of output (resp. input)

actions.
We can also define a notion of finite approximations to structural bisimula-

tions, along standard lines, and write S &, S’ if there is a structural bisimulation
of depth k for § and &’. We then have
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[Pl % T
[0]41 =0 1 2-(-0]-0)A-0
[P | Qlit f (Plitr | Qs NR 2 —Hx.©x
[(V@)Pls1 = Hx.(©x A [Pliy {g¢x}) ifg€ofn(P) GG 2= 1ANR
[(V@)Plisr = [Pliy if g & ofn(P) ©n & -n®T
[£G] £ GG\ Ows NIn NActl NActOg [0].A £ 0.4
[(rec X(g).P)[Pl] 2 [P{q+PHX+(rec X(q)-P)}];

Ouls 2 Ny gm0 A fm(n)]. Ot )

Out i & = Vi 061l

It 2 Auig).ocaMrm(x)-(1Ql{gex}) AVIx[m(x)].(Tr  ~{ge=a}))

l”ﬁ,(q),g 2 Viuig).0e5 Qe

Aclz = Vx.Vy. x)]-V, ().0eGx ="

ActOg 2 VxVy.[x(y)]. Vn<m>.Q€5(x =nAy=m)

Fig. 3. Construction of Bounded Characteristic Formulas

Lemma 3.13. If S ~;, S’ for all k >0, then S = S'.

We can then show that our definition of bounded characteristic formulas is cor-
rect, in the sense of the following Lemma:

Lemma 3.14. For all k > 0 and processes P, Q) we have

2. If Q € [[P]x] then |P| =~ |Q|.

Proof. Induction on k.
Lemma 3.15. For all processes P and Q, if P =1, Q then P =° Q.

Proof. Consider the formulas [P], for all & > 0. By Lemma [314(1), we have
P € [[P]i], for all k£ > 0. Since P =@, we have @ € [[P]s], for all k¥ > 0. By
Lemma BT4(2), we have |P| = |Q|, for all k¥ > 0. By Lemma B3 |P| ~ |Q].
By Lemma [3.8] P =€ Q.

Lemma 3.16. For all processes P and Q, if P =° Q then P =1Q.

Proof. We first prove, by induction on the structure of formulas, that satisfaction
is closed under =, (cf., Proposition [22[1)). The statement then follows.

This concludes the proof of Proposition BI1l. Since the modalities introduced
for early strong bisimulation in are expressible in the logic, we also have

Proposition 3.17. The equivalence relation induced by the logic on the set of
all processes is strictly included in early strong bisimulation.



Pv,T) £ true
P,v,n=m) = Test(m=n)

Pv,—A) £ notC(Pv,A)
Pv,AAB) 2 C(P,v,A) and C(P,v,B)
2 Test(P=0)

A

Exists Q,R.(Q,R) € Comp(P) and C(Q,v,A) and C(R,v,B)
Pv,n®A) 2 Exists Q. Q € Res(n,P) and C(Q,v,A)
Pv,0.A) 2 Exists Q. Q € Red(o, P) and C(Q,v,A)
Pv,Vx.A) 2 C(Pyv,A{x¢new(fn(P)Ufs"(A))}) and
Alln € fu(P)Ufs"(A).C(P,v,A{x+n})
C(P,v,Vx.A) 2 C(Pv,A{xnew(fn(P)Ufs"(A))})
C(Pv,X) 2 Jet (S,vX.A) = v(X) inif In(P,v,X) then true else C(P,v(X +P),A)
C(P,v,vX.A) £ C(Pv[X+({P},vX.A)],A)
In(Pv,X) 2 let(S,A) =v(X)in Exists Q € S and Test(P =) Q)

Fig. 4. Model-checking algorithm

4 Model Checking

In this section, we present a model-checking algorithm for the logic of Section
It is interesting to notice that the choice of a small set of logical primitives and
the adoption of the Pset-based semantic foundation allows us to present in a
rather succinct way a complete model-checker for a quite expressive m-calculus
and logic.

The algorithm is specified by the boolean-valued procedure C(P,v, A) de-
fined in Figure @ In every procedure call C(P,v, A), P is a process, A is a
formula, and v is a syntactic valuation, whose role is fully explained below. The
boolean connectives are handled by the model-checker as expected. Spatial and
behavioral connectives are handled by the set of auxiliary procedures Comp(—),
Res(—,—) and Red(—, —) introduced in Lemma ] The purpose of these algo-
rithms is to decompose processes up to structural congruence, and compute the
set of commitments a given process may present.

Lemma 4.1. For any process P we have

1. A finite set Comp(P) C P X P can be constructed such that:
a) For all Q, R such that P = Q|R, there is (Q', R') € Comp(P) such that
Q=Q and R=R'.
b) For all (Q',R') € Comp(P) we have P = Q'|R’.
2. For any name n a finite set Res(n, P) C A X P can be constructed such that:
a) For all Q such that P = (vn)Q, there is Q' € Res(n, P) such that
!/

b) If Q' € Res(n, P) then P = (vn)Q'.

3. For any action «, a finite set Red(c, P) C P can be constructed such that:
a) For all Q such that P % Q, there is Q' € Red(a, P) such that Q = Q’.
b) If Q € Red(a, P) then P % Q.
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N.B. We have Res(n, P) = ) if and only if n € ofn(P). Similar results for
calculi with replication (the 7m-calculus and the ambient calculus) have been
presented in [I3IT0JS]. However, the property stated in Lemma [FLT(1a) does not
hold for process calculi with replication where the principle !P = P|!P holds
(cf.. IT3).

The cases for the freshness quantifier and the universal quantifier requires
the generation of fresh names. Instead of attempting to determine in advance a
bound to the set of freshness witnesses for every process and formula to submit to
the model-checker (cf., the bound output modality in the model-checker of [I1]),
we rely on Proposition 222/(3), and in each case pick an arbitrary name out of the
support (in the sense of Definition 1)) of the denotation of the formula to be
checked. By Proposition[2Z2(1), we know that such support can be approximated
by the set of free names of the formula to be checked, where we consider for the
free names of a propositional variable the free names of the recursive formula
that introduces its binding occurrence. To that end, we introduce the auxiliary
function fs”(A), that computes (an approximation to) a support, given a formula
A and a syntactic valuation v (defined below). Generation of fresh names can
then be implemented by a choice function that assigns to every finite set of
names M a name new(M) & M: any choice function meeting this specification is
acceptable. In fact, no property of the model-checker (e.g., termination) requires
fresh names to be generated according to some fixed strategy.

Syntactic valuations are finitary counterparts to the (semantic) valuations
defined in Section[2. A syntactic valuation is essentially a mapping that assigns
to each propositional variable in its domain a pair (S, A), where S is a finite set
of processes and A is a recursive formula. Intuitively, if v is a syntactic valuation
and v(X) = (5,A) then S is a finite approximation to the denotation of the
recursive formula A.

Definition 4.2. A syntactic valuation v is a mapping from a finite sequence X,
of propositional variables such that v(X;) = (S;,vX;.A;) for alli =1,... n,
where each S; is a finite set of processes, and each vX;.A; is a formula with
Jou(As) C{X1,..., Xi1}.

We say that v is a syntactic valuation for A if v is a syntactic valuation and
D(v) C fpu(A). We define for any syntactic valuation v for A the set

fs"(A) £ f(A) UU{fs"(B) | X € fpu(A) and v(X) = (S, B)}

of free names of A under v. When v is a valuation, X € ©(v), S is a finite set
of processes, and fpu(A) C D(v) we write v[X+«+ (S, A)] for the extension (not
the update) of v with the additional binding [X <+ (S, A)]. We use the notation
v(X + P) to denote the valuation that results from v by adding the process P
to the set-valued component of v(X), e.g., if v is the valuation w[X<(95, A)]w’
then (X + P) is the valuation w[X <+ (S U {P}, A)]w’.

The algorithm handles fixpoint formulas by appealing to Winskel-Kozen’s
reduction lemma (Proposition B-3]3)). The reduction lemma suggests a progres-
sive unfolding strategy for recursive formulas used in many model-checkers for
p-calculus based process logics. However, a main technical difference between
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the treatment of fixpoints in our algorithm and other proposals concerns the
interaction of spatial decomposition of restricted processes, fresh name genera-
tion, and recursion. Here, we compute an approximation to the finite support of
the denotation of a fixpoint formula (given by fs”(A)), and use this information
to stop unfolding it, relying on the fact that if a process P belongs to a Pset
VU with supp(¥) C M, then p(P) € ¥ for all permutations p that fix M. This
approach seem conceptually simpler than other proposals for coping with fresh
name generation in model-checkers for m-calculus logics (e.g. [I1]), and allows
us to keep the description of the algorithm more abstract, and the correctness
proofs simpler.

Definition 4.3. Given a finite set of names M C A, we define the relation
=, on processes by letting P =5, Q if and only if there is p € Ry such that

p(P) = Q.

Since for given P and ), the number of permutations to test is finite, by
Lemma we conclude that checking P =§, @ is decidable. The purpose
of the boolean procedure In(P,v, X) at the bottom of Fig. Hlis then to check for
the presence of a representative of the equivalence class of P in P/ =5, in the
current approximation to the denotation of the fixpoint formula that introduced
the propositional variable X. By Propositions 222(2) and B9 and our character-
isation of =, in terms of =° (Proposition BITl), we know that Q) =5, P implies
that @ € [vX.A] if and only if P € [vX.A]. Notice also that fs”(A) is only used
in the procedure In(—,—, —), in the test for P =% (a) Q.

In the remainder of this section we establish correctness results for our model-
checker. We start by introducing some auxiliary concepts. For any set of pro-
cesses S and finite set of names N, we can define a Pset Close(S,N) € P by
Close(S,N) £ {Q | Q =° 7(P), 7 € Ry and P € S}. Notice that Close(S, N)
contains S and is supported by N. Now, for every syntactic valuation v, we
define a (semantic) valuation v* as follows:

Definition 4.4. Given a syntactic valuation v, we define a valuation v* as fol-

lows:
0* £ where & £ Gfiz(As.5* U [Alyr(xs))
w[X (S, vX.A)* & w[X <] S* 2 Close(S, fs" (vX.A))

Proposition 4.5 (Soundness). For every P, formula A and syntactic val-
uation v for A we have: (a) If C(P,v,A) = true then P € (A),-. (b) If
C(P,v, A) = false then P & [A],~.

We now show completeness of the model-checking algorithm. To obtain decid-
ability we need to impose some finiteness conditions: we restrict model-checking
to a class of bounded processes. Intuitively, a process is bounded if the set of pro-
cesses reachable after an arbitrary sequence of spatial or behavioral observations
if finite up to finitely supported name permutations. Completeness then results
from the fact that our model-checker always terminates on bounded processes.
We first define reachability:
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Definition 4.6 (Reachability). For every P we define the set Reach(P) as
follows:

P € Reach(P)

P’ € Reach(P), (Q,R) € Comp(P") = Q € Reach(P), R € Reach(P)
P’ € Reach(P), Ezists n. Q € Res(n, P') = Q € Reach(P)

P’ € Reach(P), Exists a. Q € Red(a, P') = Q € Reach(P)

Definition 4.7 (Bounded process). A process P is bounded if for every finite
set of names M the set (of equivalence classes) Reach(P)/=r is finite.

Proposition 4.8 (Completeness). If Q is bounded and Q € [A] then
c(Q,0,A) = true.

Therefore, after noticing that all tests in the model-checking procedure are decid-
able, and that the number and structure of recursive calls associated to each call
of the model-checking algorithm is finite and decidable in all cases, we conclude

Corollary 4.9. Model-checking of bounded processes is decidable.

Due to spatial reachability, the fact that a process always terminates is not
enough to ensure its boundedness: a deadlocked process may contain compo-
nents which are not bounded when considered in isolation, e.g., the process
(vn)(recX .n{n).(X|X)) is not bounded in the sense of Definition £l However,
we can verify that the class of bounded processes includes the class of finite-
control processes as defined in [11].

Proposition 4.10. Any finite-control process is bounded.

5 Related Work and Conclusions

We have proposed and studied a logic for the synchronous m-calculus, organized
around a small set of spatial and behavioral observations, and including freshness
quantifiers and recursive formulas. This logic subsumes existing behavioral logics
for m-calculi [2IU12], and can be seen as a fragment of the spatial logic of [4]
(in the sense that action modalities can be expressed with the composition
adjunct [17]). The semantic foundation for the logic and model-checker presented
here builds on the approach developed by Cardelli and the present author in [4],
which is in turn based on domains of finitely supported sets of processes and the
theory of freshness by Gabbay and Pitts [14].

We have investigated the separation power of the logic, providing sound and
complete characterizations of the equivalence (actually the congruence) induced
by the logic on processes. These results build on the definition of bounded char-
acteristic formulas for processes, and on some technical results about solutions of
equations on 7w-calculus processes up to extended structural congruence. Expres-
siveness and separation results for spatial logics for the public ambient calculus
have already been investigated by Sangiorgi, Lozes and Hirshckoff [24]16].
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We have also presented a model-checker for the logic, and have shown that
model-checking is decidable on a class of bounded processes, that includes the
finite-control fragment of the w-calculus. Model-checking the m-calculus against
behavioral logics was studied extensively by Dam [11J12]. Most of the existing
work on model-checking for spatial logics focus on the ambient logic, after the
first proposal of [6]. The work of Charatonik, Gordon and Talbot on model-
checking the Ambient logic against finite-control mobile ambients [§] (where,
like done here for the m-calculus, replication is replaced by recursion) seems to
be the most related to ours, although it does not address a spatial logic with
recursive formulas and with freshness quantifiers.
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