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1 Introduction

The point of departure and the motivation for this paper are the results of
Angluin [T] which has introduced a tool to analyze the election algorithm: the
coverings, Yamashita and Kameda [21] and Mazurkiewicz [T5] which have ob-
tained characterizations of graphs in which election is possible under two dif-
ferent models of distributed computations. Our aim is twofold. First it is to
obtain characterizations of graphs in which election is possible under intermedi-
ate models between the models of Yamashita-Kameda and of Mazurkiewicz. Our
second aim is to understand the implications of the models for the borderline
between positive and negative results for distributed computations. In this work,
characterizations are obtained under three different models.

1.1 The Model

We consider networks of processors with arbitrary topology. A network is rep-
resented as a connected, undirected graph where vertices denote processors and
edges denote direct communication links. Labels are attached to vertices and
edges. The identities of the vertices, a distinguished vertex, the number of pro-
cessors, the diameter of the graph or the topology are examples of labels attached
to vertices; weights, marks that encode a spanning tree or the sense of direction
are examples of labels attached to edges.

At each step of computation labels are modified on exactly one edge and its
endvertices of the given graph, according to certain rules depending on the label
of this edge and the labels of its endvertices only. Thus rules are of the form:

X Y zZ X Yz
o o —_ O o

R :

Such local computations are called local computations on closed edges in this
paper. The relabelling is performed until no more transformation is possible, i.e.,
until a normal form is obtained.
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1.2 The Election Problem

The election problem is one of the paradigms of the theory of distributed com-
puting. It was first posed by LeLann [10]. Considering a network of processors,
the election problem is to arrive at a configuration where exactly one proces-
sor is in the state elected and all other processors are in the state non-elected.
The elected vertex is used to make decisions, to centralize or to broadcast some
information.

Known Results about the Election Problem. Graphs where election is
possible were already studied, the algorithms usually involved some particular
knowledge and some particular basic computation steps. Solving the problem
for different knowledge has been investigated for some particular cases (see [2]
I2J19] for details) including : the network is known to be a tree, the network is
known to be complete, the network is known to be a grid or a torus, the nodes
have different identification numbers, the network is known to be a ring and has
a known prime number of vertices. Characterizations of graphs where election is
possible have been given under two models of computations.

— In [21], Yamashita and Kameda consider the following asynchronous model.
In each step, a vertex, depending on its current label, either changes its label,
sends a message via one of its ports, or receives a message via a port. The
topology of the graph is assumed to be known. They proved that, knowing
the topology or the size of the network, there exists an election algorithm for
G if and only if the symmetricity of G is equal to 1 (where the symmetricity
depends on the number of labelled trees isomorph to a certain tree associated
to G) ([21], Theorem 1 p. 75).

— In [15], Mazurkiewicz considers the following asynchronous model. In each
step, labels are modified on a subgraph consisting of a node and its neigh-
bours, according to certain rules depending on this subgraph only. He proves
that, given a graph G, there exists an election algorithm for G if and only if
G is minimal for the covering relation (a graph H is a covering of a graph
K if there exists a surjective morphism ¢ from H onto K which maps bijec-
tively the neighbours of any vertex v onto the neighbours of ¢(v); a graph H
is minimal if whenever H covers a graph K then H and K are isomorphic.).

1.3 The Main Results

We recall that at each step of computation, labels are modified on exactly two
vertices linked by an edge and on this edge of the given graph, according to
certain rules depending on the labels of this edge and on the labels of the two
vertices only. Under this hypothesis, we give a characterization of graphs for
which there exists an election algorithm. More precisely, we prove that, given
a simple graph G (graph without self-loop or multiple edges) there exists an
election algorithm for G if and only if G is minimal for the covering relation.
Where the notion of covering is a generalization of the previous one. First we
consider multigraphs: graphs having possibly multiple edges without self-loops.
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For this class of graphs, a graph H is a covering of a graph K if there exists
a surjective morphism ¢ from H onto K such that, for every vertex v, the
restriction of ¢ to the set of edges incident to v is a bijection between this set
of edges and the set of edges incident to ¢(v).

This condition is not equivalent to the condition of Mazurkiewicz. If we
consider the ring with 4 vertices, denoted R4, then it is minimal for the first
notion of covering but it is not minimal for the generalization. Indeed, for the
generalization it covers the graph H defined by 2 vertices having a double edge
(see Fig.1).

R4 H <>

Fig. 1. The graph R4 covers the graph H.

Thus there exists an election algorithm for R4 in the model of Mazurkiewicz
and there does not exist an election algorithm for R4 in the model studied in
this paper.

In fact, the Mazurkiewicz algorithm is a distributed enumeration algorithm:
it is a distributed algorithm such that the result of any computation, in a graph G
minimal for the covering relation, is a labelling of the vertices that is a bijection
from V(G) to {1,2,...,|V(G)|}. For a given graph G, the election problem and
the enumeration problem with termination detection are equivalent in the model
of Mazurkiewicz; we prove that under the same hypothesis the two problems are
also equivalent in the model studied in this paper. This property is no more true
if we have no information on the graph like the size or the topology.

In the second part of this paper, we consider the following model of com-
putation: at each step of computation labels are modified on exactly one edge
and one endvertex of this edge of the given graph, according to certain rules
depending on the label of this edge and the labels of its endvertices only (local
computations on open edges). Thus the form of the rules is:

X Y Z X Y z
R :o o — o o

We prove that this model is equivalent to the model studied in the first part
by using a simulation algorithm. Thus we obtain also a characterization of graphs
where election is possible. This result is not immediate: for example, using the
first model, it is easy to give a name to each edge of a given graph such that
for a given vertex v, all the edges incident to v have a different name; if we do
not use the simulation algorithm this result is not trivial in the context of the
second model. Finally, we extend the characterization concerning the election to
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the model where at each step of computation labels are modified on a subgraph
consisting of a node and the incident edges, according to certain rules depending
on the vertex, the incident edges and the endvertices (local computations on
open star graphs). The end of the paper proves that models using labels on
edges are strictly stronger than models without labels on edges.

1.4 Related Works and Results

In [21] the election problem is studied under other initial knowledges: the size of
the graph, an upper bound of the number of vertices; in some cases multigraphs
are necessary. In addition of the works of [I[TH2T22] and [200123], one can cite
the results of Boldi and Vigna who use directed graphs [4J3l5]6]. They consider
directed graphs coloured on their arcs. Each vertex changes its state depending
on its previous state and on the states of its in-neighbours; activation of pro-
cessors may be synchronous, asynchronous or interleaved. A generalization of
coverings, called fibrations, is studied and properties which found applications
in the distributed computing setting are emphasized. In [ZUT6J98] the model of
Mazurkiewicz is considered and a characterization of families of graphs in which
election is possible is given; in [8] characterizations of recognizable classes of
graphs by means of local computations are given.

2 Basic Notions and Notation

2.1 Graphs, Labelled Graphs, and Coverings

The notations used here are essentially standard [18]. We consider finite, undi-
rected, connected graphs without self-loop having possibly multiple edges. If
G = (V(G), E(G),Ends) is a graph, then V(G) denotes the set of vertices, E(G)
denotes the set of edges and Ends denotes a map assigning to every edge two
vertices: its ends. Two vertices u and v are said to be adjacent or neighbours
if there exists an edge e such that Ends(e) = {u,v}. In this paper, graphs may
have several edges between the same two vertices; such edges are called multiple
edges. A simple graph G = (V(G), E(G)) is a graph with no self-loop or multi-
ple edges: E(G) can be seen as a set of pairs of V(G). Let e be an edge, if the
vertex v belongs to Ends(e) then we say that e is incident to v. The set of all
the edges of G incident with v is denoted Ig(v). The set of neighbours of v in
G, denoted Ng(v), is the set of all vertices of G adjacent to v. For a vertex v,
we denote by Bg(v) the ball of radius 1 with center v, that is the graph with
vertices Ng(v)U{v} and edges I(v). For an edge e, we denote Ag(e) the single
edge graph (Ends(e), {e}); we call closed edge an edge with the two endvertices,
if we consider the edge with only one endvertex it is an open edge.

Throughout the paper we will consider graphs where vertices and edges are
labelled with labels from a recursive alphabet L. A graph labelled over L will be
denoted by (G, ), where G is a graph and A: V(G) U E(G) — L is the labelling
function. The graph G is called the underlying graph and the mapping A is a
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labelling of G. For a labelled graph (G, \), lab((G, \)) is the set of labels that
occur in (G, A). The class of labelled graphs over some fixed alphabet L will be
denoted by Gr.. Let (G, ) and (G’, X’) be two labelled graphs. Then (G, )) is a
subgraph of (G’, '), denoted by (G,\) C (G', ), if G is a subgraph of G’ and
A is the restriction of the labelling A’ to V(G) U E(QG).

Labelled graphs will be designated by bold letters like G, H,... If G is a
labelled graph, then G denotes the underlying graph.

2.2 Coverings

We say that a graph G is a covering of a graph H via v if 7y is a surjective homo-
morphism from G onto H such that for every vertex v of V(G) the restriction of
v to Ig(v) is a bijection onto Iy (v(v)). The covering is proper if G and H are
not isomorphic.

The notion of covering extends to labelled graphs in an obvious way. The
labelled graph (H,\') is covered by (G, \) via ~, if v is a homomorphism from
(G, \) to (H, \') such that for every vertex v of V(G) the restriction of 7y to I (v)
is a bijection onto Iy (y(v)). Note that a graph covering is exactly a covering in
the classical sense of algebraic topology, see [13].

Remark 1. We use a different definition for coverings than Angluin’s one. In
fact, if we consider only simple graphs these two definitions are equivalent. For
Angluin, (H, ') is covered by (G, \) via 7, if v is a homomorphism from (G, \)
to (H, ') such that for every vertex v of V(@) the restriction of v to Ng(v) is
a bijection onto Ny (y(v)). Given a simple graph G, for each vertex u € V(G),
there is a natural bijection between I (u) and Ng(u) and therefore it is easy to
see the equivalence.

We work with graphs that can have multiple edges and in this case the two
definitions are not equivalent. Consider the graphs G' and H from Fig. [, if we
consider the morphism ¢ defined from G to H by the letters a, b, o, 3, we easily
see that G is a covering of H. But if we use Angluin’s definition of covering, G is
not a covering of H since for each u € G, |[Ng(u)| = 2, whereas for each v € H,
[Nt (v)] = 1.

A graph G is called minimal if every covering from G to some H is a bijection.
A simple graph G is called S-minimal if every covering G to some simple graph
H is a bijection. The graphs G’ and H from Fig. ] are minimal graphs, whereas
G is a proper covering of H and therefore G is not minimal. Moreover, G or G’
are not a proper covering of any simple graph: G and G’ are S-minimal.

We have the following basic property of coverings [17]:

Lemma 1. For every covering v from G to H there exists an integer q such
that card(y~1(v)) = q, for allv € V(H).

The integer ¢ in the previous lemma is called the number of sheets of the
covering. We also refer to v as a g-sheeted covering.
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Fig. 2. First Examples.

Lemma 2. Let G be a covering of H wvia v and let e1,es € E(G) be such
that e # ey. If v(e1) = 7(ea) then Ag(er) N Agles) = 0, i.e., Ends(er)N
Ends(es) = 0.

3 Local Computations on Closed Edges

In this section we give the definition of local computations on closed edges and
their relation with coverings. They model networks of processors of arbitrary
topology. The network is represented as a connected, undirected graph where
vertices denote processors and edges denote direct communication links. Labels
(or states) are attached to vertices and edges. Local computations as consid-
ered here can be described in the following general framework. Let G;, be the
class of L-labelled graphs and let R C G;, x Gy, be a binary relation on G .
Then R is called a graph rewriting relation. We assume that R is closed un-
der isomorphism, i.e., if G R G’ and H ~ G then H R H’ for some labelled
graph H ~ G’. In the remainder of the paper R* stands for the reflexive-
transitive closure of R . The labelled graph G is R-irreducible (or just ir-
reducible if R is fixed) if there is no G’ such that G R G’. For G € Gy,
Trredg (G) denotes the set of R-irreducible graphs obtained from G using R,
ie., Irredg (G) = {H | GR"H and H is R-irreducible}.

Definition 1. Let R C G1, X G, be a graph rewriting relation.
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1. R is a relabelling relation if whenever two labelled graphs are in relation
then the underlying graphs are equal, i.e.:

G R H implies that G = H.

2. R is local on closed edges if it can only modify an edge and its endvertices,
i.e., (G,A\) R (G, \') implies that there exists an edge e € E(G) such that

Az) = N (x) for every x ¢ Ends(e) U {e}.
The labelled single edge graph (Ag(e), A) is a support of the relabelling relation.

The next definition states that a local relabelling relation R is locally gener-
ated on closed edges if the applicability of any relabelling depends only on the
single edge subgraphs.

Definition 2. Let R be a relabelling relation. Then R is locally generated on
closed edges if it is local on closed edges and the following is satisfied: For all
labelled graphs (G, \), (G, X)), (H,n), (H,n') and all edges e € E(GQ), f € E(H)
such that the Ag(e) and Ap(f) are isomorphic via p: V(Ag(e))UE(Ag(e)) —
V(Au(f))UE(A(f)), the following three conditions:

1. Ma) =n(p(x)) and N (x) =1 (p(z)) for all z € V(Ag(e)) U E(Ag(e))
2. Mx) = XN(x), for all v & V(Ag(e)) U E(Ac(e))
3. n(z) =n'(z), for all x ¢ V(Au(f)) U E(Au(f))

imply that (G,\) R (G, X') if and only if (H,n) R (H,n').

By definition, local computations on closed edges on graphs are computa-
tions on graphs corresponding to locally generated relabelling relations on closed
edges.

We now present the fundamental lemma connecting coverings and locally
generated relabelling relations on closed edges [1]. It states that, whenever G is
a covering of H, every relabelling step in H can be lifted to a relabelling sequence
in G, which is compatible with the covering relation.

Lemma 3 (Lifting Lemma). Let R be a locally generated relabelling relation
on closed edges and let G be a covering of H via . If H R* H' then there exists
G’ such that G R* G’ and G’ is a covering of H' wvia 7.

4 Election and Enumeration

The main result of this part is that for every graph G, there exists an election al-
gorithm using local computations on closed edges on G if and only if there exists
an enumeration algorithm with termination detection using local computations
on closed edges on G.
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4.1 Definitions

A distributed election algorithm on a graph G is a distributed algorithm such
that the result of any computation is a labelling of the vertices such that exactly
one vertex has the label elected and all other vertices have the label non-elected.
The labels elected and non-elected are terminal, i.e., when they appear on a
vertex they remain until the end of the computation. A distributed enumera-
tion algorithm on a graph G is a distributed algorithm such that the result of
any computation is a labelling of the vertices that is a bijection from V(G) to
{1,2,...,|V(G)|}. It is easy to see that if we have an enumeration algorithm on
a graph G where vertices can detect whether the algorithm has terminated, we
have an election algorithm on G by electing the vertex labelled by 1.

4.2 Impossibility Results
Using the same method as in the Lifting Lemma [I], we obtain:

Proposition 1. Let G be a labelled graph which is not minimal, there is no
enumeration algorithm for G.

Consequently, there is no election algorithm for a graph G, if G is not minimal.
Otherwise, we could find an enumeration algorithm for G, as it will be shown
in the next section. Furthermore, we can prove that:

Proposition 2. Given a graph G, there is an algorithm using local computa-
tions on closed edges that solves the election problem on G if and only if there
18 an algorithm using local computations on closed edges that solves the enumer-
ation problem with detection termination on G.

5 An Enumeration Algorithm

In this section, we describe an algorithm M using local computations on closed
edges that solve the enumeration problem on a minimal graph G. This algorithm
uses some ideas developed in [I5]. Each vertex v attempts to get its own number
between 1 and |V(G)|. A vertex chooses a number and broadcasts it with its label
and its labelled neighbourhood all over the network. If a vertex u discovers the
existence of another vertex v with the same number, then it compares its local
view, i.e., the labels and numbers of its neighbours, with the local view of v. If
the label of u or the local view of u is “weaker”, then u chooses another number
and broadcasts it again with its local view. At the end of the computation, every
vertex will have a unique number if the graph is covering-minimal.

5.1 Labels

Let G = (G, ) and consider a vertex vg € G, and the set {eq,...,eq} of edges
that are incident to vyg.
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For each edge e € E(QG) such that Ends(e) = {v1, v2}, a number p(e) will be
associated to e such that for each ¢’ € Ig(vy) U Ig(va), p(e) # p(e’). The label
of an edge e is the pair (A(e),p(e)) and the initial labelling is (A(e),0).

For each vertex v € V(G), the label of v is the pair (A(v), c(v)) where ¢(v)
is a triple (n(v), N(v), M(v)) representing the following information obtained
during the computation (formal definitions are given below):

— n(v) € N is the number of the vertex v computed by the algorithm;
— N(v) € NV is the local view of v, and it is a set defined by:

{(p(e), AMe), n(v'), A(v")) | e € I(v), Ends(e) = {v, v} and p(e) # 0};
— M(v) € L x N x N is the mailbox of v and contains the whole information
received by v at any step of the computation.

The initial labelling of any vertex v is (A(v), (0,0, 0)).

5.2 An Order on Local Views

The fundamental property of the algorithm is based on a total order on local
views, as defined in [T5], such that the local view of any vertex cannot decrease
during the computation. We assume for the rest of this paper that the set of
labels L is totally ordered by < . Consider a vertex v such that the local view
N(v) is the set {(p(e1), A(e1), n(v1), A(v1)), (p(ez2), Ae2), n(ve), A(va)), ...,
(p(eq), Aea), n(vq), A(vq))}, we assume that:

— ple1) = ple2) > ... = pleq),

— if p(ei) = p(€it1) then A(e;) 2L Aeiy),

— if p(e;) = p(eir1) and A(e;) = A(e;x1) then n(v;) > n(virq)

— if p(e;) = pleir1), Mei) = Aeip1) and n(v;)) = n(vipr) then A(v;) >

(Uz-i-l)
Let N> be the set of all such ordered tuples. We define a total order < on N~

by comparing the numbers, then the vertex labels and finally the edge labels.
Formally, for two elements

((p1,e1,n1,11)s s (Pay €dy nas la)) and (P}, €1, 0, 1) s oo (Plyrs €yl 1)
of N~ we define

((pla €1,MN1, ll)a ceey (pd7 €d,Nd, ld)) < ((p/17 8/1,77,/1, l/1)7 ceey (p:j’aeélHn:j’v l(/;l’)

if there exists i such that (p1,e1,n1,11) =
(pllﬂe/hn/hlll)a"'7(piflaeiflunifhlifl) = (p;_l,eg_l, n;_l,l;_l) and such
that one of the following holds

L. pi <,

2. p;i = pl and e; < e},

3. p; = pl, e; = €} and n; < mnj,

4. p;=1p}, e;=¢, and n; =n} and I; = I,

5. i:d+1andd<d’

If N(u) < N(v), then we say that the local view N(v) of v is stronger than
the one of u and that N(u) is weaker than N(v). The order < is a total order
on N = N- U {0}, with, by definition, ) < N for every N € N-.
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5.3 Relabelling Rules

We now describe the five relabelling rules; the rules My and M3 are very close
from the rules of the Mazurkiewicz algorithm. The first rule gives a name to each
edge : two neighbours v and v’ incident to a common edge e such that p(e) =0
choose a value for p(e) such that each node does not have two incident edges
with the same label. This rule can only be applied once to each edge, since once
an edge e has a number p(e), this number does not change any more.

Mll

(11,(7117N1,M1)()) (l.,0) (()l2,(n2,N27M2))
! A l’ ! !
(11,(n17N1,M1)) (le,p) (l2a(n27N27M2))

[¢] o

with p = 1+ max{p’; (p/,IL,n',l') € Ny U Ny}
Ni = NiUA{(ple,0,12)}
Né:NéU{(palevovll)}
M{ = M1 @] {(ll,nl,N{)}

M} = My U {(l2, m2, N3)}

The second rule enables two neighbours v and v" having different mailboxes
to share the information they have about the labels present in the graphs.
Mz .

(l, (n1, N1, My)) (I2, (n2, Na, Mz))

S lep)
(I1, (n1, Ny, M")) (lip) (I2, (n2, No, M'))

if  p>0and My # M>
with M/ :M1 UM2

The third rule enables a vertex v to change its number if n(v) = 0 or if there
exists a vertex v’ such that n(v) = n(v') and v has a weaker local view than v’.

M3 .

!

(L(?’L,iV,M)) N (l’(kJ:?M))

if  n=0or3(n,ly, No) € M such that I <, Iy or I =1y and N < Ny

with k = 1 4+ max{ny; (l1,n1,N1) € M}

M' =MU{(,k,N)}

The fourth rule enables a node having a neighbour with exactly the same
label to change its number. If this rule can be applied, it means that the two
vertices have never exchange their number along this edge.



100 J. Chalopin and Y. Métivier

My
GENM) gy 6N
/ \L ’
(lv(kavaM )C)) (le,P) gl’(naNQaM ))

if p>0andn>0

with & = 1 4+ max{ny; (l1,n1, N1) € M}
N1 =N\{(p,le,0, 1)} U{(p.le,n, 1)}
No =N\ {(p,le,0,0)} U{(p,le, k, 1)}
M = MU{(l,k,Ny),(l,n,Na)}

The fifth rule enables a vertex v to get information about the number of a
neighbour v, either because v has no information about n(v’), or because n(v’)
has changed since v got information about n(v’).

M5 :
(l1,(n1,N1,M)C)> (le,p) ilg,(ng,NQ,M))
(ll>(n17N{7Ml)c)) (lj,p) £>127(7’LQ,N£,M/))

it p>0,n >0,n2>0,n1 #ng
(pv leai7l2) € va (pa levjvll) € N2
and i # ng or j # ny

with N{ = Nl \ {(p7 leai7l2)} U {(pa l67n2>l2)}
Né = N2 \ {(pa l€7j7l1)} U {(p7 leynlyll)}
M" = MU {(l1,n1, N7), (I2,n2, N3) }

For each run of this algorithm on a minimal graph G each vertex has a unique
number. Finally:

Theorem 1. For every graph G, there exists an enumeration algorithm with
termination detection on G and an election algorithm on G wusing local compu-
tations on closed edges if and only if G is a minimal graph.

6 Two Other Models of Local Computations

We consider now a different kind of local computations: we still consider locally
generated relabelling relations, but during a relabelling step, the label of only
one vertex and an incident edge can be modified, i.e., the form of the rules is :

X Y Z X' Y Zz
R :o o — o o

To make a distinction between this model and the former one, we will say that
model describe local computations on open edges. Since local computations on
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open edges are also local computations on closed edges, each algorithm using
local computations on open edges is also an algorithm using local computations
on closed edges. We wonder if the power of computation of this new model is
weaker or is the same as the precedent one. In fact, by a non trivial proof we
have:

Proposition 3. Given a problem P and a graph G, there exists an algorithm
using local computations on closed edges on G with termination detection if and
only if there exists an algorithm using local computations on open edges that
solves P on G with termination detection.

We have already given a characterization of graphs in which we can solve the
election problem and the enumeration problem with termination detection and
we can therefore give the following corollary:

Corollary 1. For every graph G, there exists an enumeration algorithm with
termination detection on G and an election algorithm on G using local compu-
tations on open edges if and only if G is a minimal graph.

We now consider a model of local computations such that at each computa-
tion step, a vertex looks at the labels of its neighbours and its incident edges
and modify its label and the labels of its incident edges. We say that at each
step a star graph is relabelled and we talk about local computations on open
star graphs. The relabelling rule are therefore triples (S, A, \’) such that S is a
star graph whose center is a node vg and A, \" are two labellings of S such that
for every node v € V(G) \ {vo}, A(v) = N (v).

Theorem 2. For every graph G, there exists an enumeration algorithm with
termination detection on G and an election algorithm on G using local compu-
tations on open star graphs if and only if G is a minimal graph.

7 Is It Important to Have Labels on Edges ?

The power of the model of Mazurkiewicz does not change if we consider edges
with or without labels.

In our models, we have considered labelled graphs such that the edges can
have labels and this property has been used to describe the different algorithms
we present. We wonder if the results remain true when we consider models where
the edges cannot be labelled. We will present a minimal graph in which we cannot
find an election algorithm using local computations on closed edges when the
edges are not labelled and another minimal graph in which there does not exist
any election algorithm using local computations on open star graphs if the edges
cannot be labelled.

Local Computations on Closed Edges

Consider the graph G described in Figure B which is a minimal graph and

therefore we can solve the election problem with local computations on closed
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U1 v2 V3 Va
o—o—0—0
A B A B

Fig. 3. A graph in which we cannot find an election algorithm using local computations
on closed edges without labelling edges.

v V2 v3 V4
*—o —0 0o
A B A B

Fig. 4. Application of a relabelling rule

Fig. 5. A graph in which we cannot find an election algorithm using local computations
on open star graphs without labelling edges.

edges. Consider a noetherian relabelling relation R associated to an algorithm
involving local computations on closed edges such that there is not any rule that
labels the edges.

We prove by induction that there exist an execution of R such that the
vertices v; and vz (resp. vo and vy) have the same labels. Initially, the result is
true and if at a step i + 1, a rule R is applied, this rule has the following form:

A B A’ B’
R :o o — o o .

As described in Figure Bl the rule R can be applied to the nodes v; and v, and
then to the nodes v3 and vy: the property holds.



Election and Local Computations on Edges 103

Local Computations on Open Star Graphs

Consider the graph G described in Figure[§ which is a minimal graph and for
which there exists an election algorithm using local computations on open star
graphs. Suppose now that we can find an enumeration algorithm A using local
computations on open star graphs such that the rules involved do not label the
edges, i.e., the only label that changes in a relabelling step is the label of the
center of the star graph involved.

Each time a rule is applied to vy or vs, the same rule can also be applied to
the other one and each time a rule is applied to vs3, v4 or vs, the same rule can be
applied to the other ones. Therefore, we can find an execution of A such that the
vertices v1 and vy (resp. vs,vs and vs) have the same labels and consequently,
we cannot find an election algorithm on G.
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