
Vooduu: Verification of Object-Oriented Designs
Using UPPAAL

Karsten Diethers� and Michaela Huhn

Technical University of Braunschweig, D-38106 Braunschweig, Germany
{diethers,huhn}@ips.cs.tu-bs.de,

http://www.cs.tu-bs.de/ips

Abstract. The Unified Modeling Language (UML) provides sequence
diagrams to specify inter-object communication in terms of scenarios.
The intra-object behavior is modelled by statechart diagrams. Our tool
Vooduu performs an automated consistency check on both views, i.e., it
verifies automatically whether a family of UML statecharts modelling
a system satisfies a set of communication and timing constraints given
as UML sequence diagrams. The front-end of the tool is implemented
as a plug-in for a commercial UML tool. For verifying, statecharts and
sequence diagrams are translated to the formalism of timed automata.
The tool generates temporal logic queries, which depend on an interpre-
tation status for each sequence diagram. The verification is performed by
the model checker UPPAAL. The results are retranslated into sequence
diagrams. Thus the formal verification machinery is mainly hidden from
the user. The tool was applied to a model of the control software of a
robot prototype.

1 Introduction

Model checking has been proved to be a useful technique for the verification
of complex system behavior. In a variety of case studies relevant errors were
discovered and safety and correctness were improved. A number of advanced
model checking tools, optimized for different tasks like the analysis of timing
constraints, allow to verify systems of size and complexity that are far out of
scope of manual exploration. For all success, model checking is not integrated
in many system development processes so far, because it is based on a formal
description for the system and the requirements, which is proprietary to the
employed model checker. Although many verification tools like UPPAAL1 pro-
vide a user friendly graphical interface, the development and maintenance of two
different sets of models, one for system design and one for the verification, are
considered not practicable in many industrial projects. Thus we will consequently
hide the application of formal verification from the user behind a well accepted,
standardized modelling language like the UML (Unified Modeling Language)2.
� The work of this author was funded by the DFG
1 http://www.uppaal.com
2 http://www.omg.org/technology/documents/formal/uml.htm

K. Jensen and A. Podelski (Eds.): TACAS 2004, LNCS 2988, pp. 139–143, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



140 K. Diethers and M. Huhn

U
M

L-
In

te
rf

ac
e

F
or

m
al

S
pe

ci
fic

at
io

n

Requirements
UML Sequence

Diagrams

Dynamic
System Model

UML State
Diagrams

Error Trace
UML Sequence

Diagram

Requirements
Temporal Logic

Dynamic
System Model

Timed Automata

Model Checker
(Uppaal)

Error Trace
regarding the

formal
specification

OK

Fig. 1. Tool overview

Our tool Vooduu enhances a commercial UML tool by verification function-
ality. Within the UML, we concentrate on the dynamic view on software because
unexpected error configurations caused by complex dynamic runs with timing
constraints are one of the most serious problems in the field of real-time appli-
cations. These errors are not likely to be found by testing or manual exploration
but can be detected by automated exhaustive search of the state space. We use
UML sequence diagrams, extended by timing constraints [1], to model require-
ments and statecharts to model the system behavior.

We support time related constructs in sequence diagrams as well as in stat-
echarts because the timing is crucial in our application domain, which is high
speed control processes as used in robotics3. Consequently, we employ UPPAAL
as model checker because it is tailored to the verification of time dependent
systems and supports as well clock as integer variables.

The key functionalities of our tool are the proper transformation of a set
of statecharts forming the system model and a set of sequence diagrams as
requirements to a model checker and the reinterpretation of the verification
results to the UML level in terms of sequence diagrams (Fig. 1).

Related work: Similar to us, [3] uses UPPAAL, too, to verify dynamic UML
models but the semantic interpretation of several model elements (e.g. triggerless
transitions) differs. In [4], an efficient transformation of statecharts to UPPAAL
is implemented but it does not treat the specification of requirements by sequence
diagrams. Objects do not communicate via the UML statechart event mechanism
but synchronize on actions.

3 SFB562 Robotic systems for handling and assembly
(http://www.tu-braunschweig.de/sfb562/)



Vooduu: Verification of Object-Oriented Designs Using UPPAAL 141

2 Tool Overview

We implemented our tool as a plug-in for the UML tool Poseidon for UML4

called Vooduu5 (Fig. 2). As a back-end, the model checker UPPAAL is employed.
Poseidon provides a graphical user interface for all UML diagrams. UPPAAL is a
model checker that provides timed automata for modelling systems and temporal
logic expressions for queries [5]. Vooduu builds the interface between them.
Figure 1 gives an overview over the tool chain which consists of four components:

– A set of UML statecharts, imported as XML-files, is interpreted as a system
model. It is translated independently from the rest of the UML model into
a network of timed automata [2].

– Requirements can either be added directly in the UPPAAL environment
or - if one prefers to stay on the UML level - in terms of UML sequence
diagrams. In the second case, a set of observer automata is generated, which
register if and when relevant communication takes place. Erroneous messages
and timing violations cause a transition to an error state of an observer
automaton. Then the reachability of error states is checked by corresponding
automatically generated queries.

– The result of the verification is visualized in the context of UML because
the error traces on the UPPAAL level are hardly readable for the designer
working on the UML level. If sequence diagrams are used we mark the first
position at which a violation of the expected behavior occurs. Additional
information for error diagnosis is provided.

– Control of the tool chain, execution of programs and translation of the in-
ternal model representation of Poseidon into XML-files are integrated as a
plug-in in Poseidon.

Vooduu can handle a restricted subset of UML statecharts modelling ob-
ject behavior as input: Concurrency is only permitted on the object level. A
statechart consists of a hierarchy of composite and basic states with arbitrary
transitions. Transitions can be triggered by explicit or timed events or they can
be triggerless. For timed events, an interval for the emission can be specified.
This construct is useful to model bounded execution time, e.g. if for an action
not the exact but a worst case execution time is given. The statechart semantics
implemented in Vooduu conforms to the UML standard. Most relevant for the
translation to UPPAAL is the time model: time may only pass if all event queues
of the statecharts, which have to be modelled explicitly at the UPPAAL level,
are empty. If an event6 occurs, it is put in the corresponding queue and the
statechart reacts, possibly by emitting some additional events. As long as the
system is instable, i.e. some event queues are still not empty, no time elapses. The
details on the subset of UML statecharts, its semantics and the transformation
to UPPAAL can be found in [2].
4 For more information see http://www.gentleware.de
5 Verification of object-oriented designs using UPPAAL
6 which may be a time event if some timeout is reached



142 K. Diethers and M. Huhn

Fig. 2. Vooduu as plug-in for Poseidon for UML

To model requirements, we use UML sequence diagrams with some extensions
necessary to specify the desired behavior precisely: each sequence diagram has a
status, namely obligatory, which means that messages have to obey to the given
interaction pattern. If the status is set to optional the system should allow a
run, which is consistent to the sequence diagram. Moreover, a pre-chart (if ) can
be specified. If the pre-chart occurs the post-chart (then) becomes obligatory.
Within a sequence diagram, loops can be used. A loop condition describes a
set of possible iterations [1]. For messages, different modes are possible: Using
synchronous messages, sending and receiving a message happen immediately.
Using the asynchronous mode, the message is enqueued.

The mapping from the objects of the system model to instances in sequence
diagrams can be defined in a flexible way: A set of statecharts can be mapped
to one instance. The treatment of internal communication and messages not
occurring in the sequence diagrams can be specified by parameters. The sending
and receiving of messages can be labelled by time stamps. These time stamps
can be used in timing expressions, e.g. to bound the maximal sending time of a
message or the reaction time to a request. We use UML stereotypes and tagged
values to model these constructs. Mainly, we verify violations of the requirements
specification like:

– Incorrect message, sender, receiver
– Violation of timing conditions
– Violation of loop conditions

After modelling the dynamics of a software design using Poseidon, invoking
Vooduu generates the necessary XML-files, starts the tool chain, performs the
verification by UPPAAL and reveals the verification results.



Vooduu: Verification of Object-Oriented Designs Using UPPAAL 143

Practical results: Our approach is limited due to the state explosion prob-
lem. In the evaluation of the tool we found that e.g. the number of states or
messages in the UML diagrams does not give a good guess for the size of the
state space, but crucial are the number and the interdependencies of clocks and
variables and the degree of nondeterminism within the model. I.e. we could
handle a medium sized rather detailed and deterministic model containing 6
processes but failed a much smaller but highly nondeterministic example.

3 Future Work

We implemented a tool that verifies whether requirements defined in terms of
UML sequence diagrams are consistent with a system model in terms of UML
statecharts. For future work, we intend to specialize our approach to certain ap-
plication areas. E.g. for a given real-time operation system it would be useful to
define a set of stereotypes which refer to its particular elements like processes,
threads, channels, scheduling and communication mechanisms. This will support
a more specific use of the modelling language, facilitates modelling and optimiza-
tion of the translation to a model checker because non-relevant elements of the
general UML can be omitted. We will integrate structural UML diagrams in the
approach to support views on communication structures of software systems.

References

1. Firley, Th., Huhn, M., Diethers, K., Gehrke, Th., Goltz, U.: Timed Sequence Dia-
grams and Tool-Based Analysis - A Case Study. In Proc. of UML’99 - Beyond the
Standard, USA, Springer, (1999) 645–660

2. Diethers, K., Goltz, U., Huhn, M.: Model Checking UML Statecharts with Time. In
Proc. of UML’02, Workshop on Critical Systems Development with UML, Septem-
ber 2002

3. Knapp, A., Merz, S., Rauh, Ch.: Model Checking Timed UML State Machines and
Collaborations. 7th Int. Symp. Formal Techniques in Real-Time and Fault Tolerant
Systems (FTRTFT 2002), pp. 395–414, 2002, LNCS 2469, Springer

4. David, A., Möller, O, Yi, W.: Formal Verification of UML Statecharts with Real-
Time Extensions. Fundamental Approaches to Software Engineering (FASE’2002),
2002, LNCS 2306, pp. 218–232, Springer

5. Behrman, G., David, A., Larsen, K., Möller, O., Petterson, P., Yi, W.: Uppaal -
Present and Future, Proc. of the 40th IEEE Conference on Decision and Control,
2001, 2281–2286


	Introduction
	Tool Overview
	Future Work



