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Abstract. This paper is concerned with a memory-efficient representa-
tion of reachability graphs. We describe a technique that enables us to
represent each reachable marking in a number of bits close to the the-
oretical minimum needed for explicit state enumeration. The technique
maps each state vector onto a number between zero and the number
of reachable states and uses the sweep-line method to delete the state
vectors themselves. A prototype of the proposed technique has been im-
plemented and experimental results are reported.
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1 Introduction

A central problem in the application of reachability graph (also known as state-
space) methods is the memory usage. Even relatively simple systems can have
an astronomical number of reachable states, and when using basic exhaustive
search [16], all states need to be represented in memory at the same time. Even
methods that explore only parts of the reachability graph [I333,292] or explore
a reduced reachability graph [2TT1],23], often need to store thousands or millions
of states.

When storing states explicitly—as opposed to using a symbolic representa-
tion such as Binary Decision Diagrams [4,5]—the minimal number of bits needed
to distinguish between N states is [logy N'| bits per state. In a system with R
reachable states we should therefore be able to store all reachable states using
only in the order of R-[log, R] bits. The number of reachable states, R, however,
is usually unknown until after the reachability graph exploration; rather than
knowing the number of reachable states we know the number of syntactically
possible states S, where S is usually significantly larger than R. To distinguish
between S possible states [log, S bits are needed, so to store the R reachable
states R - [log, S| bits are needed. Aditional memory will be needed to store
transitions.

In this paper we consider mapping the state vectors of size [log, S] bits (the
full state vectors or markings) to representations of length [log, R] (the con-
densed representations), in such a way that full state vectors can be restored
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when the reachability graph is subsequently analysed. Our approach is the fol-
lowing: We conduct a reachability graph exploration and assign to each new
unprocessed state a new number, starting from zero and incrementing with one
after each assignment. The states are in this way represented by numbers in the
interval 0,..., R — 1. Since the state representation obtained in this way has no
relation to the information stored in the full state vector, the condensed repre-
sentation cannot be used to distinguish between previously processed states and
new states. To get around this problem, we keep the original (full) state vectors
in a table as long as needed to recognise previously seen states. The sweep-line
method [1,25] is used to remove the full state vectors when they are no longer
needed, from memory.

In this paper we will use Place/Transition Petri nets (P/T net) formalism
as example to illustrate the different memory requirements needed to distinguish
between the elements of the set of syntactically possible states and the set of
reachable states. The use of P/T nets is only an example, the presented method
applies to all formalisms where the sweep-line method can be used.

The paper is structured as follows: In Sect.[d we summarise the notation and
terminology for P/T nets and reachability graphs that we will use. In Sect. B
we describe the condensed representation of a reachability graph, how this rep-
resentation can be traversed, and how to restore enough information about the
full state vectors to verify properties about the original system. In Sect. [4] we
consider how the condensed representation can be calculated and in Sect. [5| we
describe how the sweep-line method can be used to keep memory usage low dur-
ing this construction. In Sect. [l we report experimental results and in Sect. [7]
we give our conclusions.

2 Petri Nets and Reachability Graphs

In this section we define reachability graphs of Place/Transition Petri nets.

Definition 1. A Place/Transition Petri net is a tuple N = (P, T, F,my)
where P is a set of places, T is a set of transitions such that PNT = (),
F CPxT UTXP is the flow-relation, and my : P — IN is the initial marking.

We will use the usual notation for pre- and post-sets of nodes x € PUT, i.e.,
ox ={y € PUT|(y,z) € F} and xe = {y € PUT|(z,y) € F}. The state
of a P/T net is given by a marking of the places, which is formally a multi-
set over the places m : P — IN. Since sets are a special cases of multi-sets,
we will use the notation ex to denote both the set ex as defined above, but
also the multi-set given by y +— 1 when y € ex and y — 0 when y ¢ ex.
We will assume that the relations <, <, >, and >, and operations + and —,
on multi-sets are defined as usual, i.e. for two multi-sets, mi,ms : P — IN,
my; <mg < Vp € Pmi(p) < ma(p), mi < mg < my < mao Amy # ma,
(m1 + m2)(p) = ma(p) + ma(p), and (m1 — m2)(p) = mi(p) — mz(p) when
my < mg and m; — my is undefined when my £ mo.
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Definition 2. A transitiont € T is enabled in marking m : P — IN if m > et.
If t is enabled in m, it can occur and lead to marking m’. This is written
m[t) m’, where m’ is defined by m’ = (m — et) + te.

We will use the common notation m[o)m’ for ¢ = tits...t, € T* to mean
Im;: P — N for i =0,...,n such that m =mg, Vi =0,...,n — L.m; [t;) m;s1,
and m’ = m,,. We will also write m [*) m’ to mean Jo € T* such that m [o) m/.
We say that a marking m/’ is reachable from another marking m if m [*) m’ and
we let [m) = {m’ | m [x) m'} denote the set of markings reachable from m. When
we talk about the set of reachable markings of a P/T net, we usually mean the
set of markings reachable from the initial marking, i.e., [m;). We will use R to
denote the number of reachable markings, i.e., R = |[mp)|.

The reachability graph of a P/T net is a rooted graph that has a vertex
for each reachable marking and an edge for each possible transition from one
reachable marking to another.

Definition 3. A graph is a tuple (V, E,src,trg) where V is a set of vertices,
FE is a set of edges, and src,trg : EE — V are mappings assigning to each edge
a source and a target, respectively. A rooted graph is a tuple (V, E,src, trg,r)
such that (V, E,src,trg) is a graph and r € V is the root.

Definition 4. Let N = (P, T,F,m;) be a P/T net. The reachability graph of
N is the rooted graph (V, E,src,trg,r) defined by:

— V = [my)—the set of nodes is the set of reachable markings.

— FE = {(m,t,m') € VxT xV | m[tym'}—the set of edges is the set of
transitions from one reachable marking to another.

— src is given by src(m,t,m') = m.

— trg is given by trg(m,t,m’) = m/.

— r = my—the root is the initial marking.

We can only represent a finite reachability graph, but the reachability graph
for a P/T net need not be finite, so we put some restrictions on the P/T net
we consider to ensure a finite reachability graph. The first assumption we make
is that the P/T net under consideration, N' = (P, T, F,my), has a finite set of
places, |P| < 00, and a finite set of transitions, |T| < co. The second assumption
is that the net is k-bounded for some k € IN, k& > 0, as defined below, and consider
the set of possible markings to be IK” where IK = {0,1, ..., k}.

Definition 5. A P/T net (P,T,F,m;) is k-bounded if and only if for all
m € [my) and for allp € P: m(p) < k.

Although the assumptions above ensure that the reachability graph is finite, it is
still necessary to distinguish between |IK”| different states when we calculate the
reachability graph. If we let S denote the number of possible states, S = [IK”|, at
least [log, ST bits are needed per state. Most likely more bits will be used since
the naive representation of a state vector assigns [log, (k + 1)] bits per place
using | P|- [logy (k+1)] bits per state. Our goal is to reduce this to [logy R] bits
per state.
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3 Condensed Graph Representation

We now turn to the problem of mapping the full markings to the condensed
representation. Our approach is to assign to each reachable marking a unique
integer between 0 and R — 1, which can be represented by [log, R] bits. In this
section we describe the data structure used to represent the reachability graph
G = (V, E,src,trg,my) in this condensed form, and how to construct it from the
sets V and E as calculated by the reachability graph construction algorithm.
Calculating the full reachability graph and then reducing it, defeats the purpose
of using a condensed representation. We only describe the algorithm in this way
to present the condensed representation in an uncomplicated setting, and we will
later discuss how to construct the condensed representation on-the-fly.

3.1 Representing the Reachability Graph

We want to represent V' by the numbers 0 to R — 1. For a marking m € V we
will let idxps(m) € {0,1,..., R—1} denote the (unique) index of m in this range.
We will represent the initial marking m; by index 0, idxas(my) = 0. With this
representation of V', we can represent the set of edges as an array, E, with R
entries, where each entry, E[i], points to an array containing the edges out of
the vertex v with index i. The array pointed to by E[i] consists of a header—a
number, indicating the length of the array, so we can later decode the array—and
the edges {(m,t,m’) € E|idxp;(m) = i}. Each edge (m,t,m’) is represented as
a pair (idxp(t),idxas(m’)) where the first element is the index of the transition—
we assume some statically defined mapping idxp : T — {0, ..., |T| —1} assigning
a number to each transition—and the second element is the index of the target
node of the edge. An example of this representation is shown in Fig. [l
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(a) Graph. (b) Condensed representation.

Fig. 1. Representation of the reachability graph. The condensed representation of the
graph in (a) is shown in (b). The edge array E[idxas(v)] for vertex v is written in the
form n# (idxr(to),idxar(ve) 5 ... ; (idxr(tn),idxar(vn)) where n 4 1 is the length of
the array and the pairs represent the edges out of v. To save memory we represent a
pointer to the empty array as a grounded pointer.



Obtaining Memory-Efficient Reachability Graph Representations 181

Each of the pairs in the edge arrays can be represented with [log, |T|] +
[logy R] bits. In addition there is an overhead of one pointer and one num-
ber for each state in V. We assume that all edge arrays can be represented in
main memory and thus that we can represent both the pointer and the num-
ber in a computer word each[]l With this encoding, we can represent the graph
G = (V, E,src,trg, my) using just 2wR + |E| ([logy |T|] 4 [logy R]) bits, where
w denotes the number of bits in a computer word. Notice that this efficient rep-
resentation is only possible because of our mapping idxy; : V- — {0,..., R — 1},
which saves us from storing any of the R markings explicitly.

From the sets V and F of G, the translation of the reachability graph to the
condensed representation is as one would expect: We build the mapping idx,; as
a table mapping nodes to numbers, allocate the array E and the individual edge
arrays, and insert the data in the arrays.

3.2 Exploring the Condensed Reachability Graph

The condensed representation for the reachability graph explicitly contains the
transition structure but does not store any information about the markings. For
some applications, such as protocol consistency using language equivalence [3],
this suffices; for other applications, however, we are interested in both marking
and transition information. For such applications we need a method of recreating
the markings from the transition information, without significant blowup in the
memory requirements. The property that we will exploit for this is the marking
equation, m’ = m — et + te, from Def. [

When we follow an edge (i,t,4") in the condensed representation, where we
know the marking of 4, we calculate the marking of i’ using the marking equation.
If we explore the reachability graph in a depth-first manner, we can even use
the rewriting of the marking equation, m = m’ —t e + e ¢, to obtain the marking
of 7 from the marking of ¢ when we return along the edge. Exploiting this, it is
possible to do a depth-first graph exploration, storing only one single marking
explicitly at any one time, while still having the full state vector available at
each visited state. An algorithm for this is shown in Fig. Bl

By extending the algorithm in Fig.[2 with a table of sub-expressions indexed
by 1,...,R—1, it can be used to check Computation Tree Logic (CTL) as in
Sect. 4.1], and by extending the algorithm to use nested depth-first search [17],
it can be adapted to check Linear Temporal Logic (LTL).

4 Creating the Condensed Representation On-the-Fly

To calculate the condensed representation on-the-fly we want to construct the
idxp; mapping as new markings are calculated, and create the edge array at
Elidxps(m)] as soon as the successors of m have been calculated.

! Tt is possible to represent both number and pointer in [log, | E|] bits, but representing
both in a computer word of a fixed size independent of | E| simplifies the constructions
for creating the representation on-the-fly.
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1 visited := 0

2 m = mjy

3 DFS(0)

4

5 where proc DFS(i) is

6 if ¢ €visited return

7 /* analyse m here */

8 visited := visited U {i}
9 for each (t,i') in E[i] do
10 m = m — et te

11 DFS (4')

12 m = m -+ et —te

13 end for

14 end proc DFS

Fig. 2. Depth-first traversal of the reachability graph. A global variable m contains
the current marking during the exploration. This marking is updated before and after
each recursive call. The set visited keeps track of the visited nodes, can efficiently be
implemented as a bit vector.

A few subtleties complicate the construction: we do not know the number R,
and therefore we cannot immediately allocate the array E, nor can we allocate
the individual edge arrays. There is also a problem with storing the numbers in
the representation of the idxy; mapping, since we do not know how many bits
are needed to store the numbers {0,..., R — 1}. We will assume, however, that
R < 2%, and we can therefore represent the numbers in the table using computer
words. This is potentially a waste of memory, when log, R < w, but it is not
likely to be a bottleneck; the majority of the memory used by the idxy; mapping
(represented as a table mapping full state vectors to numbers) will be for storing
the full state vectors, which will end up using R - [log, ST bits. Reduction of
the memory needed for storing the full state vectors in the representation of the
idxy; mapping is addressed in Sect.

For managing the array E note that the entries in E are all of size w bits
and do not depend on the total size of [my). We can work on the entries of E
without knowing the full size of E. For handling E itself one possibility is using
a dynamically extensible array [9], expanding and relocating as needed with an
amortised constant time complexity. The dynamic array approach potentially
allocates an array that is too large, but will not allocate more than twice the
required storage, that is, the dynamic array will use between R - w + w and
2 R-w + w bits of memory (where the +w is a word needed to keep track of
the size of the array). To be able to relocate the dynamic array, an additional
R - w bits of memory might be needed.

After calculating all the successors of a marking m, we can construct the edge
array for m. At this point we have added all successors of m to the representation
of idxps, and since we know the number of successors, we know the size of the
edge array. In the edge array we can represent each successor, m’, as idxys(m’),
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using w bits. Since we have added all successors of m to the representation of
idxps, we know the maximal index, M, used in the edge array for m, so we can
actually represent each successor using only [log, M| bits. With this encoding,
the bits allocated per marking will now vary between the different edge arrays.
To decode the arrays we must store this number with the arrays. We therefore
extend the header of the edge arrays, such that it now contains both the number
of edges in the array and also the number of bits allocated per marking.

5 Reducing Peak Memory Usage

When creating the condensed representation of the reachability graph as de-
scribed in Sect. @] memory is wasted because, when the algorithm terminates,
the memory holds both the graph, the set of reachable markings, and the idxy,
mapping. In this section we use the sweep-line method [25/[7] to keep peak mem-
ory usage small by deleting entries in the idx;; mapping.

5.1 The Sweep-Line Method

When constructing the reachability graph, it is neccesary to distinguish between
new states and already visited states. For this we need to store the already
visited states in memory. However, there is no need to store any states that are
not reachable from the unprocessed states. Once a state is no longer reachable
from the unprocessed states, it can be safely removed from memory.

The sweep-line method exploits this observation to delete states, using an ap-
proximation of the reachability relation, called a progress measure. The progress
measure provides an ordering of the markings; states ordered less than the un-
processed states are assumed to be unreachable from the unprocessed states,
and can therefore be deleted.

Definition 6 (Def. 3 in [25]). For a P/T net (P,T,F,m;) a progress mea-
sure is a tuple P = (V,C,4¢) where V is a set of progress values, C is a partial
order of V, and v : IN¥ — V is a mapping assigning a progress value to each
marking. We say that P is monotone if m [x)m’ implies ¥ (m) C p(m').

For monotone progress measures, the assumption that states with lower
progress values are unreachable from the unprocessed states, is correct. For non-
monotone progress measures, it is no longer safe just to delete states. To address
this problem, we save the target nodes of edges that are not monotonic—so-
called regress edges: (m,t,m’) such that ¢¥)(m) [Z ¢»(m')—as persistent markings
and never delete persistent markings. The states saved as persistent in a sweep
of the state space are either previously seen states or new states; there is no
way for the algorithm to know which. When we see regress edges, we therefore
perform another sweep, using the new persistent states as roots for the sweep.
We repeat this until we no longer find new persistent states. For details of this
algorithm, see [25]. A detailed example of the construction and optimisation of
a progress measure can also be found in [25].



184 T. Mailund and M. Westergaard

The observation used in the sweep-line method to delete states can also be
used to clean up the idxy; mapping. When constructing the condensed graph
representation, we only need to store the index mapping of markings we can reach
from the currently unprocessed states. Using the sweep-line method for exploring
the reachability graph, we can reduce the peak memory usage by deleting states
in the set V' and the idxy; mapping. Deleting states is only safe if the progress
measure is monotone; otherwise, the condensed graph may be an unfolding of
the full graph. This is treated in Sect. B2l

The algorithm combining the sweep-line method and the construction of the
condensed graph representation is shown in Fig.[Bl Like the sweep-line algorithm,
this algorithm performs a number of sweeps until it no longer finds new persistent
states (lines 7-9). Each sweep (lines 11-35) consists of processing unprocessed
states in order of their progress measure (lines 15-18), assigning indices to their
previously unseen successors (lines 21-22), and either adding the new successors
to the set of unprocessed states (line 24) or to the set of persistent states and
roots for the next sweep (lines 26-27). When all successors of a state are pro-
cessed, the edge array is updated (line 31) using the method CREATE_EDGE_ARRAY
(lines 37-43) as described in Sect. H] and states behind the sweep-line are re-
moved from the set V and the index mapping idxy, (lines 32-33).

By using this algorithm we only store a subset of the reachable markings
explicitly while creating the condensed graph. This enables us to construct the
reachability graph, in the condensed representation, in cases where storing all
reachable markings in memory is impossible.

5.2 An Unfolding of the Reachability Graphs

When using a non-monotone progress measure, the reachability graph obtained
from the algorithm in Fig. [ is not the reachability graph from Def. @, rather
it is an wunfolding of this graph [26] Chap. 13]. For poor choices of progress
measures, this unfolded graph can be much larger than the original reachabil-
ity graph, completely eliminating the benefits of reduction. For good choices of
the progress measures, the blowup in size will be manageable and the condensed
representation of nodes more than compensates for the graph unfolding. It is im-
portant to consider the relationship between the unfolded graph and the original
reachability graph, to know which properties are preserved by the unfolding.

The unfolding is due to regress edges—edges along which the progress mea-
sure decreases. When following a regress edge we may reach a state which has
previously been explored and since the actual marking has been deleted, we do
not recognise it and explore its successor states again.

One can easily define the unfolded graph, G*, and show that it is bisimilar
to the full reachability graph [26l Chap. 13]. This result is especially interesting
in the context of model checking, since bisimulation is known to preserve CTL*
in the sense of Theorem [l which in turn implies that both CTL and LTL, the
most commonly used temporal logics for model checking, are preserved.

Theorem 1 (From [8, Chap. 12]). If G and G’ are bisimilar then for every
CTL* formula ¢ we have G = ¢ < G’ |= ¢.
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V = {m]}
Roots := {ms
Persistent :
idxasr (mp)
n =1

}
0
0

while Roots # () do
SWEEP (Roots, V', Persistent,idxar ,n)
end while

where proc SWEEP(Roots, V', Persistent,idxa,n) is
U := Roots
Roots := ()
while U # 0 do
select me U s.t. Am' € U :y(m') C¥(m)
U :=U—-{m}
X = {t,m)|m[tym'}
for all (t,m') € X do
if m' € V then
V=V U {m'}
idxar (m’) = n
n =n+1
if ¥(m) E¢(m’) then
U:=U U {m'}

else
Persistent := Persistent U {m’}
Roots := Roots U {m'}
end if
end if
end for

Elidxar (m)] := CREATE_EDGE_ARRAY (X ,idxar)
Vi={me V|Im eU:(m') C(m)} U Persistent
idxar := {m—i|m e V ANidxar(m) =i}
end while
end proc SWEEP

where proc CREATE_EDGE_ARRAY (X, idxys) is
M := max{idxy (m') | (t,m') € X|}
A := allocate 2w+ |X|- ([log, |T|] + [log, M) bits
A.header := (|X|, [log, M)
A.edges := (idxr(t), idxa (m')) for each (t,m') € X
return A

end proc CREATE_EDGE_ARRAY

185

Fig. 3. The sweep-line method for obtaining a condensed graph representation.



186 T. Mailund and M. Westergaard

6 Experimental Results

In order to validate and evaluate the performance of the new algorithm a proof-
of-concept implementation has been developed. For the theoretical presentation
in the previous sections we used Place/Transition Petri nets; the techniques
introduced, however, generalise to higher level net classes, such as coloured Petri
nets (CPN) [22], in a straightforward manner. The prototype is build on top of
the Design/CPN tool [1], a tool for the construction and analysis of CPNs. The
prototype is implemented in the Standard ML (SML) programming language [32]
and the progress measure is provided by the user as an SML function.

Since the Design/CPN tool is used for analysing CPN models the markings
of the nets are not multi-sets over places but multi-sets over more complex data
types. Consequently the markings are not integer vectors of length |P|, but
variable-length encodings of the more complex markings. On the edges of the
reachability graph it is no longer sufficient to store transitions, also the bindings
are needed.

The prototype implementation of the new algorithm is slightly simpler than
the algorithm described in this paper. We do not implement the variable-length
numbers for node indices, but represent each index as a four byte computer
word. This greatly simplifies the implementation but uses slightly more memory
for smaller systems and limits the prototype to models with less than 232 states,
which is no serious limitation.

All experiments were conducted on a 500Mhz Pentium III Linux PC with
128 Mb of RAM.

Database Replication Protocol. The first example we consider is a database repli-
cation protocol [22, Sect. 1.3]. The protocol describes the communication be-
tween a set of database managers for maintaining consistent copies of a dis-
tributed database. When a database manager updates its local copy of the
database it broadcasts an update request to all other database managers who
then perform the update on their local copies and then acknowledge that the
update has been performed. The progress measure for the protocol is based
on the control flow of the database managers and an ordering on the database
managers. See [25] for details.

Tableshows the performance of full reachability graph generation compared
with the new algorithm. The | D| column shows the number of database managers
in the different configurations, the following four columns show the values for
the full reachability graph, and the last four columns show the values for the
new algorithm. In the full reachability graph columns the States column shows
the number of states for each configuration, the Avg column shows the average
number of bytes in the state vector in the different configurations, the Memory
column shows the total memory usage in bytes for storing all states, and the Time
column shows the time used for calculating the reachability graph in seconds. In
the sweep-line columns the States column shows the number of states explored
by the sweep-line algorithm, the Peak column shows the peak number of states
stored during the exploration, the Memory column shows the number of bytes
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Table 1. Database Replication Protocol.

Full Reachability Graph Sweep-Line based Algorithm
|D| States Avg Memory Time States Peak Memory (%) Time (%)

4 110 122 13,420 0 219 14 2,584 (19 0 (-
407 146 59,422 0 813 33 8,070 ( 0 (-
1,460 169 246,740 0 2919 88 26,548 ( 2 (-

17,498 214 3,744,572 23 34,995 738 297,912

5 14
6 11
7 5105 191 975,055 4 10,209 251 88,777 (9
8 (8
9 59,051 237 13,995,087 105 118,101 2,197 993,093 (7

used for storing the states in the condensed representation plus the states in
Peak, the number in the parentheses indicates the memory consumption of the
condensed representation as a percentage of the full representation, the Time
column shows the time used for calculating the condensed graph, and the number
in parentheses shows the amount of time used for calculating the condensed
representation as a percentage of the amount of time used to generate the full
representation.

In the database replication protocol all states but the initial state are explored
twice by the sweep-line algorithm, and consequently the condensed graph has
twice as many nodes as the full graph and the time for calculating the condensed
graph is roughly twice as long as the time for calculating the full reachability
graph. The Memory in the sweep-line columns is calculated as 4 - States + Avg -
Peak since one computer word (4 bytes) is used for representing each condensed
state and Awvg - Peak bytes are used for representing the states on the sweep-
line. We only compare the memory usage for storing the states, as the memory
usage for storing the remaining graph structure would be comparable for the
two methods. Although the unfolded graph generated by the sweep-line method
contains twice as many nodes as the original reachability graph the memory
usage—as seen in the two Memory columns—is significantly improved. For four
database managers the reduction is down to around 20%, while for nine database
managers the reduction is further improved, down to around 7% of the full
representation.

Stop and Wait Communication Protocol. The second example is a stop-and-wait
communication protocol [24]. The protocol is parameterised with the number of
packets to be sent. We use the number of packets successfully received as a
monotone progress measure [7]. The performance is shown in Table Pl Here the
# packets column shows the number of packets to be transmitted in the different
configurations; the remaining columns have the same meaning as in Table[dl.
For this model the peak number of states fully stored in the sweep-line
method does not increase for larger configurations. As the number of packets
increases the total number of states increases, but the number of states with the
same progress measure does not. As for the database replication protocol, the
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Table 2. Stop and Wait Communication Protocol.

Full Reachability Graph Sweep-Line based Algorithm

# packets States Avg Memory Time States Peak Memory (%) Time (%

~

20 5,286 145 766,470 17 5,286 287 62,759 (8) 24 (141)
40 10,706 146 1,563,076 35 10,706 287 84,726 (5) 50 (143)
60 16,126 146 2,354,396 53 16,126 287 106,406 (5) 77 (145)
80 21,546 146 3,145,716 71 21,546 287 128,086 (4) 103 (145)
100 26,966 146 3,937,036 89 26,966 287 149,766 (4) 129 (145)

experiments shows significant memory reduction—from around 8% for 20 pack-
ets to around 4% for 100 packets—at the cost of a slight increase in runtime—an
increase about 45%-50% of the runtime of the full reachability graph algorithm
in all configurations.

7 Conclusion

In this paper we have presented a condensed representation of the reachability
graph of P/T nets. The condensed graph represents each marking with a num-
ber in {0,1,...,R — 1}, where R = |[my)|, and avoids representing markings
explicitly. We have developed an algorithm that constructs this representation
exploiting local information about successor markings only to represent edges
efficiently without knowing R, and dynamic arrays for storing edge information
for each node. Using the sweep-line method we are able to reduce peak memory
usage during the construction of the graph representation. When the progress
measure used is monotone, the graph is isomorphic to the original reachability
graph, and when the progress measure is non-monotone the graph is bi-similar
to the original graph.

We have demostrated the performance of the new algorithm using two exam-
ples. The chosen examples have a quite clear notion of progress, so the sweep-line
method performs well, and the amount memory used to store the reduced graphs
is significaltly less than the amount of memory used to store the full graphs. The
presented algorithm will not perform well on systems with little or no progress.
An example of a system with little progress is the Dining Philosophers prob-
lem. If we use the number of eating philosophers as progress measure, we will at
some time during the construction store nearly all states, and the memory used
for storing the compact representation is overhead. Compared to the amount
of memory used for storing the full state vectors, this amount is not significant,
however, and the only real disadvantage is that we still use extra time for the con-
struction. If the number of reachable states is close to the number of syntactically
possible states, the amount of memory used for the condensed representation is
comparable to the amount of memory used for the full representation, and little
is gained from using the new algorithm.
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By exploiting the marking equation of P/T nets, the ability to calculate the
predecessor or successor of a state given a transition, we are able to reconstruct
the markings of the reduced nodes while exploring the graph. In general, when
the predecessors and successors can be deterministically determined, this ap-
proach can be used. If only successors can be calculated deterministically, the
reachability graph can still be traversed and states reconstructed, by saving the
current state on the depth-first stack before processing successors.

The algorithm presented here resembles the approach used in [I4], where
the basic sweep-line method (applicable to monotone progress measures only)
was used to translate the reachability graph of a CPN model to a finite state
automaton, which in turn was used to check language equivalence between a
protocol specification and its service specification. In this approach the automa-
ton is constructed by writing edge-information onto a disk before the sweep-line
method garbage collects the edges, and this edge-information is the processed
by another tool to translate it to an automaton. On the disk the states are rep-
resented as numbers, thus reducing memory consumption when the automaton
is constructed from the file.

Using the graph construction algorithm presented in this paper, the poten-
tially expensive step of going through a disk-representation can be avoided when
constructing the language automaton. Furthermore, with the algorithm in Fig.
it is possible to traverse the graph reconstructing state information after the
graph is constructed. The results from Sect. B2 relating the reachability graph
to the unfolded graph, can also be used to generalise the method from [14] to
non-monotone progress measures. In [I4] the basic sweep-line method from [7]
is used, guaranteeing that the automaton generated represents the language of
the protocol being analysed. The results in Sect. ensure that, when using
non-monotone progress measures, the unfolded graph is language equivalent to
the original reachability graph.

The new algorithm is designed for explicit state reachability graph analysis.
For condensed state representation, such as finite automata [20], or for symbolic
model checking [28,[5], where states are represented as e.g., Binary Decision
Diagrams [4], the memory used for storing a set of states does not depend directly
on the number of states in the set, but on regularity in the state information.
Deleting states during the graph construction, as the sweep-line method does,
will not necessarily reduce memory usage. On the contrary, deleting states can
actually increase the memory needed to store the set of states. Combining the
new algorithm with symbolic model checking, therefore, does not appear to be
immediately possible.

The new technique reduces the memory usage using knowledge about the
number of reachable states, and complements techniques that are aimed at effi-
ciently representing arbitrary states from the set of syntactically possible states.
The state representation in SPIN [I8], Design/CPN [6], and MARIA [27], for
example, exploit modularity of the system being analysed to share parts of the
state vector between different states. LoLA [30] exploits invariants to avoid stor-
ing information that can be derfived from the invariant. Using one or more of
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these approaches one can represent sets of arbitrary states efficiently, though at
least [log, S| bits are still needed per state to distinguish between S syntacti-
cally possible states. considers storing sets of markings efficiently using very
tight hash tables, which allows storing sets of states using less than [log, S]
bits per state, but using the knowledge about the number of reachable states is
not considered. Representing arbitrary states efficiently benefits the algorithm
presented here as well, by reducing the memory needed for the table mapping
states to indices. The reduction differs from probabilistic methods such as bit-
state hashing [T9[5] and hash-compaction [3T,34], where all possible states are,
in a sense, mapped onto a range {0,1,...,n}, for some n, but with a mapping
that may not be injective on [my). The states are in this way also represented
in a condensed form, but since hash collisions can occur, full coverage of the
reachability graph cannot be guaranteed.

With the algorithm presented here, the sweep-line method can be used for
checking more general properties than just state properties as in [25]. In particu-
lar, checking CTL* formulae, and thereby CTL and LTL formulae, now becomes
possible. Future work includes using this in case studies.
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