
Resource-Optimal Scheduling Using Priced
Timed Automata

J.I. Rasmussen1, K.G. Larsen1, and K. Subramani�2

1 Department of Computer Science, Aalborg University, Denmark,
{illum,kgl}@cs.auc.dk

2 Department of Computer Science and Electrical Engineering, West Virginia
University, USA, ksmani@csee.wvu.edu

Abstract. In this paper, we show how the simple structure of the linear
programs encountered during symbolic minimum-cost reachability anal-
ysis of priced timed automata can be exploited in order to substantially
improve the performance of the current algorithm. The idea is rooted in
duality of linear programs and we show that each encountered linear pro-
gram can be reduced to the dual problem of an instance of the min-cost
flow problem. Thus, we only need to solve instances of the much sim-
pler min-cost flow problem during minimum-cost reachability analysis.
Experimental results using Uppaal show a 70-80 percent performance
gain. As a main application area, we show how to solve energy-optimal
task graph scheduling problems using the framework of priced timed
automata.

1 Introduction

Recently, solving real-time planning and scheduling problems using verification
tools such as Kronos, [9], and Uppaal, [16], has shown promising results, [1,
6].

For addressing optimality constraints other than time (e.g. cost) priced timed
automata (PTA) have been put forward, independently, as linearly priced timed
automata in [15] and as weighted timed automata in [4]. The necessity for other
optimality constraints is especially important within embedded systems where,
for example, minimizing the overall energy consumption by embedded devices is
imperative for their applicability.

One such problem of minimizing energy consumption is that of energy-
optimal task graph scheduling (TGS). This is the problem of scheduling a number
of interdependent tasks onto a number heterogeneous processors that commu-
nicate through a single bus while minimizing the overall energy requirement
and meeting an overall deadline. The interdependencies state that a task cannot
execute until the results of all predecessors in the graph have been computed.
Moreover, the results should be available in the sense that either each of the
� This research was conducted in part at Aalborg University, where the author was

supported by a CISS Faculty Fellowship.

K. Jensen and A. Podelski (Eds.): TACAS 2004, LNCS 2988, pp. 220–235, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Resource-Optimal Scheduling Using Priced Timed Automata 221

predecessors have been computed on the same processor, or on a different pro-
cessor and the result has been broadcasted on the bus. An example task graph
taken from [12] with three tasks is depicted in Figure 1. The task t3 cannot start
executing until the results of both tasks t1 and t2 are available. The available
resources are two processors, p1 and p2, and a single bus with energy consump-
tions π1 = 4, π2 = 3, and πbus = 10 per time unit when operating and 1 when
idle.1 The nodes in Figure 1 are annotated with their execution times on the
processors, that is, t1 can only execute on p1, t2 only on p2, and t3 can execute
on both p1 and p2.

The energy-optimal schedule is achieved by letting t1 and t2 execute on p1
and p2, respectively, broadcast the result of t2 on the bus, and execute t3 on p1,
which consumes the total of 121 energy units. On the other hand, broadcasting
the result of t1 on the bus and executing t3 on p2 requires 141 energy units. Both
schedules are depicted as Gantt charts in Figure 2.

Legend

i j
κi

(δi1, . . . , δim)

T = {t1, t2, t3}, P = {p1, p2}
pre(t1) = pre(t2) = ∅
pre(t3) = {t1, t2}
π1 = 4, π2 = 3, πbus = 10
τ1 = 1, τ2 = 1, τbus = 1

t1
(1, −)

t2
(−, 2)

t3(10, 7)

8 4

Fig. 1. Example of an energy task graph with three tasks, two processors and a single
bus.

Time-optimal task graph scheduling has received much attention in the re-
search community as it is important in static, optimal scheduling of data inde-
pendent algorithms onto digital signal processing architectures. For an overview
of the proposed algorithms, an extensive comparison, evaluation, and bench-
marks are provided in [13]. Recently, timed automata have in [1] been shown to
be an efficient framework for modeling and solving TGS problems.

0 4 8 12 16

p2

p1

bus

0 4 8 12 16

p2

p1

bus

t3

t2

t1

idle

Fig. 2. a.) optimal schedule. b.) sub-optimal schedule

1 We leave out units in this paper, but for real applications energy-consumption is,
usually, measured in mW and execution times in ms.



222 J.I. Rasmussen, K.G. Larsen, and K. Subramani

For scheduling with cost extensions, timed automata are no longer sufficiently
expressive. For cost-optimization problems, constraint programming, such as
mixed integer linear programming (MILP), has been the preferred framework
in the research community given the existence of efficient branch and bound al-
gorithms for solving performance problems, [5,12]. Previously, the PTA approach
to scheduling has shown to compete favorably with MILP for some problem in-
stances, [15]. In this paper, we show how energy-optimal task graph problems
can be modeled and solved using PTA.

The core of solving scheduling problems with PTA is symbolic minimum-
cost reachability analysis. Within the reachability algorithm we frequently solve
small, simple structured linear programs (LPs). As hinted in [15], reachability
analysis might benefit significantly from exploiting the simple structure of these
LPs since experimental results indicate that the current implementation in Up-
paal, using the simplex method [8,11] spends 50-80 percent of the time during
minimum-cost reachability, solving these LP problems.

In this paper, we show how to exploit the simple structure of the LPs in
order to achieve an optimized algorithm. The idea comes from duality of linear
programs and we show that each encountered LP can be reduced to the dual
problem of an instance of the well-known min-cost flow problem, [2]. Thus, for
each LP we can instead solve a min-cost flow problem using the much faster
network simplex algorithm, [10]. Experimental results using a network simplex
algorithm implementation [17] within Uppaal reduces the overall running-time
of minimum-cost reachability analysis by 70-80 percent.

The rest of this paper is organized as follows. Section 2 gives a short intro-
duction to the theory of PTA. The model for expressing energy-optimal TGS
problems as PTA is covered in Section 3. Section 4 provides symbolic seman-
tics for PTA and gives a branch and bound algorithm for performing symbolic
minimum-cost reachability analysis. In Section 5 we show how the LP encoun-
tered during minimum-cost reachability analysis are reduced to dual min-cost
flow problems. Section 6 provides experimental results. Finally, we conclude the
paper and reflect on future work in Section 7.

2 Priced Timed Automata

Priced timed automata, [15,7,6,4], are extensions of timed automata, [3], with
prices added to edges and locations. The interpretation of the price label is, that
we associate a fixed price with taking transitions and a fixed price rate per time
unit while delaying in locations. Intuitively, PTA are timed automata where each
finite trace has an overall accumulated price.

Formally, let C be a set of real-valued clocks with power set 2C. Then B(C)
is the set of formulae obtained as conjunctions of atomic constraints of the form
xi �� n and xi − xj �� m, where xi, xj ∈ C, n ∈ IN, m ∈ ZZ and ��∈ {<,≤,=,≥,
>}. We refer to the elements of B(C) as clock constraints.

Definition 1 (Priced Timed Automata). A priced timed automaton over
clocks C and actions Act is a 5-tuple (L, l0, E, I,P) where L is a finite set of



Resource-Optimal Scheduling Using Priced Timed Automata 223

locations, l0 is the initial location, E ⊆ L × B(C) × Act × 2C × L is the set of
edges, I : L → B(C) assigns invariants to locations, and P : (L ∪ E) → IN
assigns prices to edges and locations. When (l, g, a, r, l′) ∈ E we write l

g,a,r−−−→ l′.

Actual clock values are represented as functions from C to the set of non-negative
reals, IR≥0, called clock valuations. The set of all clock valuations is denoted by
IRC, and single clock valuations are ranged over by u, u′ etc.

For a clock valuation, u ∈ IRC, and a clock constraint, g ∈ B(C), we write
u ∈ g when u satisfies all the constraints of g. For d ∈ IR≥0, we define the
operation u + d to be the clock valuation that assigns u(x) + d to all clocks, and
the operation u[r → 0] to be the clock valuation that agrees with u for all clocks
in C\r and assigns zero to all clocks in r. Furthermore, u0 is defined to be the
clock valuation that assigns zero to all clocks.

The semantics of a PTA A = (L, l0, E, I,P) is given in terms of a labeled
transition system with state set L × IRC, initial state (l0, u0), and label set
(E ∪ {δ}) × IR≥0, with the transition relation defined as:

– (l, u)
δ,p−−→ (l, u + d) if ∀ 0 ≤ d′ ≤ d . u + d′ ∈ I(l), and p = d · P(l),

– (l, u)
e,p−−→ (l′, u′) if e = (l, g, a, r, l′) ∈ E, u ∈ g, u′ = u[r → 0], and p = P(e).

In other words, δ-transitions correspond to delays, and e-transition correspond
to edges of the automaton. The associated value, p, gives the price of the action.
When performing minimum-cost reachability analysis of PTA, we are interested
in finite executions of the form α = (l0, u0)

a1,p1−−−→ (l1, u1)
a2,p2−−−→ · · · an,pn−−−→

(ln, pn), where ln is some goal location. The cost of the execution α is the sum
of all prices on the path,

∑n
i=1 pi. The minimum cost of reaching a location l is

defined to be the infimum cost of all finite executions ending in a state of the
form (l, u).

3 Energy-Optimal Task Graph Scheduling Using PTA

In this section we formalize the model of energy-optimal task graph scheduling
and show how to translate such an instance into a PTA.

Definition 2 (Energy Task Graph). An energy task graph is a tuple (T, P,
pre, δ, κ, π, τ, d) where T = {t1, . . . , tn} is a set of tasks, P = {p1, . . . , pm} is a
set of processors, pre : T → 2T determines the set of predecessors of every task,
δ : T × P ↪→ IN is the execution time for tasks on processors, κ : T → IN is the
bus transfer time for every task, π : P ∪ {bus} → IN is the energy consumption
rate per time unit when processing/transferring for the processors and bus, τ :
P ∪ {bus} → IN is the energy consumption rate when being idle, and d is the
deadline.

We use the shorthand notations δij , κi, {π, τ}i, and {π, τ}bus for δ(ti, pj),
κ(ti), {π, τ}(pi), and {π, τ}(bus), respectively.



224 J.I. Rasmussen, K.G. Larsen, and K. Subramani

Definition 3 (Feasible Schedule). A feasible schedule, S, for an energy task
graph (T, P, pre, δ, κ, π, τ, d) is a function S : T → P × IR≥0 × IR≥0 ∪ {∞}, such
that:

1. ∀ ti ∈ T . S(ti) = (pk, s, c) ⇒ δik is defined and c ≥ s + δik

2. ∀ ti, tj ∈ T with S(ti) = (pk, s, c),S(tj) = (pl, s
′, c′) .

a) tj ∈ pre(ti) ∧ c = ∞ ⇒ pk = pl

b) tj ∈ pre(ti) ⇒ s ≥
{

s′ + δjl + κj : pk �= pl

s′ + δjl : pk = pl

c) pk = pl ∧ s′ ≥ s ⇒ s′ ≥ s + δik

d) c′ ≥ c ⇒ c′ ≥ c + κi

3. len(S) <= d

where len(S) = max{s + δik, c + κi | (ti, pk, s, c) ∈ S}.
We will often use the notation (ti, pk, s, c) ∈ S when S(ti) = (pk, s, c). Given a
feasible schedule, S, the intuitive understanding of an element (ti, pk, s, c) is that
the execution of task ti started on processor pk at time s and was broadcasted on
the bus at time c. If c = ∞ the result was never broadcasted. The interpretation
of the constraints are (1) tasks can only execute on allowed processors and the
result cannot be broadcasted until execution has terminated. (2a) when a task
depends on the result of another task, these are either executed on the same
machine or the result has been broadcasted. (2b) no task can begin executing
until the results of all dependent tasks are available. (2cd) each processor/bus
can only execute/transfer one task/result at any time and such operations cannot
be preempted. (3) the schedule should meet the deadline. The processing time,
proc(pk), of a processor pk ∈ P is defined as

∑
{i |(ti,pk,s,c)∈S} δik and similarly

for the bus. The idle time, idle(pk), is then given as len(S) − proc(pk). Now, we
can define the cost of schedule as:

Cost(S) =
∑

pk∈P

(
πk · proc(pk) + τk · idle(pk)

)
+ πbus · proc(bus) + τbus · idle(bus) (1)

A feasible schedule, S∗, is optimal if for all feasible schedules, S, Cost(S∗) ≤
Cost(S).

Example 1. The optimal schedule (Figure 2a) for the energy task graph in Fig-
ure 1 corresponds to S = {(t1, p1, 0,∞), (t2, p2, 0, 2), (t3, p1, 6,∞)}.

In the following we describe how to take any energy-optimal task graph prob-
lem instance and convert it into a network of priced timed automata. Following
Uppaal syntax, we express a timed automaton as a composition of automata
synchronizing on binary channels and using shared variables that can be com-
pared in guards and updated on transitions. Consequently, each state in the
global state space is associated with a location vector, variable assignment, and
clock valuation. Here, we indicate by the binary variables fin[ti] whether ti has
finished execution, by act[pj ] whether pj (or bus) is being used, and by res[pj ][ti]
whether the result of ti is available at pj . The integer variable d[pj ] expresses
the time pj (or bus) is occupied.

For a given energy task graph (T, P, pre, δ, κ, π, d) we construct a PTA for
each task, processor, and the bus.



Resource-Optimal Scheduling Using Priced Timed Automata 225

Definition 4 (Processor/Bus Automaton). Given a processor pk ∈ P of an
energy task graph (T, P, pre, δ, κ, π, d), the automaton for pk has a local clock c,
action {pk} and is defined as (L, l0, E, I,P) where L = {s0, s1}, l0 = s0, I(s0) =
∅, I(s1) = c ≤ d[pk], P(s0) = τk, P(s1) = πk, and e = {(s0, ∅, {pk}, {c :=
0, act[pk] := 1}, s1), (s1, c = d[pk], {pk}, {act[pk] := 0}, s0)}.

The PTA for the bus is similar to the one for the processor and will not
be defined explicitly. For simplicity we assign values to variables together with
resetting clocks.

1

2 34

5

6

bus?
res[p1][t3]:=1
res[p2][t3]:=1

res[p1][t1]==1
∧ res[p1][t2]==1
∧ act[p1]==0

p1!, d[p1]:= δ31

res[p2][t1]==1
∧ res[p2][t2]==1

∧ act[p2]==0
p2!, d[p1]:= δ32

p1?
fin[t3]:=1, res[p1][t3]:=1

p2?
fin[t3]:=1, res[p2][t3]:=1

act[bus]==0, bus!
d[bus]:=κ3

1

2

p1?
c:=0
act[p1]:=1

act[p1]:=0
p1!
c==d[p1]

c≤d[p1]
cost’:= π1

cost’:= τ1

1

2

bus?
c:=0
act[bus]:=1

act[bus]:=0
bus!
c==d[bus]

c≤d[bus]
cost’:= πbus

cost’:= τbus

a.)

b.)

c.)

Fig. 3. Priced timed automata models for a.) task t3 b.) processor p1 c.) the bus.

Definition 5 (Task Automaton). Given a task ti ∈ T of an energy task graph
(T, P, pre, δ, κ, π, d), the automaton for ti with Act = {pk | δik is defined}∪{bus}
and is defined as (L, l0, E, I,P) where L = {s0, done, bcing, bced} ∪ Act, l0 =
s0, I(l) = ∅ and P(l) = 0 for all l ∈ L. E has the following transition
for handling broadcast (done, act[bus] = 0, {bus}, {d[bus] := κi}, bcing) and
(bcing, ∅, {bus}, {res[pk][ti] := 1 | pk ∈ P}, bced) and for each pk ∈ Act we have
the following two transitions:

– (s0, act[pk] = 0 ∧ ∧
tj∈pre(ti) res[pk][tj ] = 1, {pk}, {d[pk] := δik}, pk)

– (pk, ∅, {pk}, {fin[ti] := 1, res[pk][ti] := 1}, done)

Now, the PTA for a energy task graph is the parallel composition of the
bus automata, all task automata, and all processor automata. Furthermore, the
cost of the optimal schedule is the minimum cost of reaching a location where∧

ti∈T fin[ti] = 1.

Example 2. Figure 3 depicts PTA models for task t3, processor p1, and the bus
of the energy task graph of Figure 1. The two outgoing transitions from the
initial state (double circle state) of Figure 3a indicates that task t3 can execute
on both machines. The guard on transition (1,2) states that the result of both



226 J.I. Rasmussen, K.G. Larsen, and K. Subramani

t1 and t2 should reside at p1, and that p1 should be inactive. In such case, the
automaton can synchronize with p1 and set the occupation time of p1 to δ31.
When p1 has finished execution and is ready to synchronize, the automaton will
set the finish flag for t3, update res such that the result of t3 resides at p1 and
proceed to state 4. From here the result can be broadcasted in a similar way by
synchronizing with the bus. The result of this is that res is updated such that
the result of t3 resides at all processors.

Processor p1 of Figure 3b has price (cost) τ1 in the initial state (1) and π1
is the processing state (2). When p1 synchronizes with a task, it resets the local
clock and sets its processing flag. The processor will remain in the processing
state until the clock reaches the value of the occupation time variable for p1. At
this point, p1 will synchronize with the occupying task and set the processing
flag to false.

4 Symbolic Minimum-Cost Reachability Analysis

The semantics of PTA is an infinite state transition system. In order to effectively
handle infinite state systems we require symbolic techniques, which operate on
sets of states simultaneously.

Usually, reachability analysis is performed on symbolic states of the form
(l, Z) where l is a location and Z ∈ B(C) is a zone. Semantically, (l, Z) is the
collection of states (l, u) with u ∈ Z. We need two operations on a zone, Z,
delay, Z↑, and reset with respect to a set of clocks r, {r}Z. The operations are
defined as Z↑ = {u + d |u ∈ Z, d ∈ IR≥0} and {r}Z = {u[r 
→ 0] |u ∈ Z}.

Given a symbolic state (l, Z), we define the delay successor to be postδ(l, Z) =
(l, (Z ∧ I(l))↑ ∧ I(l)) and for any edge, e = (l, g, a, r, l′) ∈ E, the successor
with respect to e is defined as poste(l, Z) = (l′, {r}(Z ∧ g)). Let Post(l, Z) =
{postδ(l′, Z ′) | (l′, Z ′) = poste(l, Z), e ∈ E} be the set of successors of (l, Z) by
following an edge in the automaton and delaying in that state. The symbolic
semantics of a timed automaton (L, l0, E, I, P ) can then be given as a transition
system with state set of the form (l, Z), initial state postδ(l0, u0), and transition
relation (l, Z) → (l′, Z ′) if and only if (l′, Z ′) ∈ Post(l, Z).

In the core of cost-optimal reachability analysis for PTAs, we apply a sym-
bolic semantics on a priced extension of zones, [7]. For this purpose we define
the offset, ∆Z ∈ Z, of a zone Z as the unique clock valuation, in the closure of
the zone, with ∆Z(xi) ≤ u(xi) for all xi ∈ C and u ∈ Z.

Definition 6 (Priced Zone). A priced zone, Z, is a tuple (Z, c, r), where Z
is a zone, c ∈ IN is the price of the offset, ∆Z , and r : C → ZZ assigns a cost
rate, r(x), to each clock, x ∈ C. For any u ∈ Z, the cost of u in Z, Cost(u, Z),
is defined as k +

∑
x∈C r(x) · u(x) where k = c − ∑

x∈C r(x) · ∆Z(x).

For a priced zone Z = (Z, c, r) and a clock valuation u, we write u ∈ Z when
u ∈ Z.



Resource-Optimal Scheduling Using Priced Timed Automata 227

Example 3. Figure 4 depicts a priced zone Z = (Z, 8, r) over clocks {x1, x2}, with
r(x1) = 3 and r(x2) = −2, ∆Z(x1) = ∆Z(x2) = 1, cost function 3x1 − 2x2 + 7,
and constraints x1 − x2 ≤ 1, 1 ≤ x2 ≤ 3, x1 ≥ 1.

0 1 2 3

0

1

2

3

Z

x1

x2

8
3

-2

cost = 3x1 − 2x2 + 7

Fig. 4. A priced zone.

Fig. 5. Branch and bound algorithm.

Obviously, priced symbolic states should be pairs (l, Z) where l is a location
and Z is priced zone. Furthermore, we want the a-successor (a ∈ {e, δ}) of a
priced symbolic state (l, Z) to be a state (l′,Z ′) such that whenever u ∈ Z and
(l, u)

a,p−−→ (l′, u′) then u′ ∈ Z ′ and Cost(u′,Z ′) = inf{Cost(u, Z) + p | (l, u)
a,p−−→

(l′, u′)}.
Unfortunately, under these conditions, priced symbolic states are not directly

closed under the postδ, poste, and Post operations. However, by applying the
method outlined in [15], the above successor criteria can be met in a way such
that both postδ and poste on priced zones result in a finite union of priced
zones. Post on priced zones is then defined in the obvious way, Post(l, Z) =
{postδ(l′,Z ′) | (l′,Z ′) ∈ poste(l, Z), e ∈ E}.

The symbolic semantics for PTA can be stated similarly to the symbolic
semantics for timed automata with Post determining the transition relation and
(l0,Z0) = postδ(l0, (u0, 0, r0)) as the initial state where r0 has rate zero for all
clocks.

Let mincost(Z) = inf{Cost(u, Z) |u ∈ Z} denote the infimum cost over all
clock valuations in Z. The cheapest way of reaching some goal location lg is then
given as the minimum cost of all mincost(Z) where there exists a finite path in
the priced symbolic state space from the initial state to a state (lg,Z).

Now, we are ready to provide an algorithm for symbolic minimum-cost reach-
ability analysis. The algorithm searches the symbolic state space based on a
branch and bound approach and returns the minimum cost of reaching a loca-
tion in a set of goal locations, G. The algorithm is depicted in Figure 5.

The algorithm uses a list of explored states, Passed, and a list of states
waiting to be explored, Waiting. Initially, the waiting list contains the initial
state (l0,Z0). For every iteration of the while loop, we remove one element,



228 J.I. Rasmussen, K.G. Larsen, and K. Subramani

(l, Z), from the list in some order. If none of the states in the passed list have
the same location and are larger and cheaper (�, defined below), we add (l, Z) to
the passed list. Then, if l is a goal locations and the minimum cost of the priced
zone is the smallest encountered, we update the cheapest cost and skip to the
next iteration2. We assume remain(l, Z) to provide lower bound estimates on
the cost of reaching a goal location from (l, Z). We only compute the successors
of (l, Z) if there is a chance that we reach a goal location with a lower cost than
previously encountered.

The algorithm terminates when there are no more states to explore and
Cost will hold the lowest cost of reaching a goal location. Termination of the
algorithm depends on the symbolic state space being well-quasi ordered under
�, [15]. Formally, the notion of ’bigger and cheaper’ between priced symbolic
states is defined as follows, (l′,Z ′) � (l, Z) if and only if l = l′, Z ⊆ Z ′, and for
all u ∈ Z, Cost(u, Z ′) ≤ Cost(u, Z) where Z and Z ′ are the zone parts of Z and
Z ′, respectively.

Given two priced zones Z = (Z, c, r) and Z ′ = (Z ′, c′, r′) where Z ⊆ Z ′ we
can decide whether (l, Z ′) � (l, Z) by computing mincost(Z ′′) over a priced
zone Z ′′ with zone part Z and Cost(u, Z ′′) = Cost(u, Z) − Cost(u, Z ′) for all
u ∈ Z. If the result is larger than zero we know that (l, Z ′) � (l, Z).

Thus, solving mincost(Z) becomes a central aspect of the algorithm for sym-
bolic minimum-cost reachability and the solution corresponds to the following
linear program over clock variables.

Definition 7 (mincost LP). Given a priced zone Z = (Z, c, r), with all strong
inequalities relaxed, over clock variables C, the mincost LP is defined as:

Minimize: subject to:

k +
∑

x∈C

r(x) · x Z and ∀x ∈ C . x ∈ IR≥0, (2)

Solutions to the mincost LP are given in terms of clock valuations and the
objective function value of a given solution, u, is denoted by z(u).

The mincost LP, when first described in [15], was solved using the simplex
algorithm3, [11]. As noted in [15], the mincost LP’s occurring through minimum-
cost reachability of practical problems are often very small, since the number of
variables equals the number of clocks. Furthermore, the constraints of the LP’s
can be stated solely as clock difference constraints when using the difference
bound matrix representation (DBM) outlined in, [14]4. The simplex package
applied, on the other hand, is tailored towards large, general LP’s with up to
30000 variables and 50000 constraints, [8]. Experimental results show that, in the
current implementation, 50-80 percent of the time spent during minimum-cost
2 We are not concerned with the successors given the monotonicity of cost evolution.
3 The implementation used the lp solve package by Michel Berkelaar,
ftp://ftp.es.ele.tue.nl/pub/lp solve.

4 By introducing a clock, x0, whose value is always zero, any constraint of the form
xi �� n can be written as xi − x0 �� n, ��∈ {≤, ≥, =, <, >}.



Resource-Optimal Scheduling Using Priced Timed Automata 229

reachability is used for solving mincost LP’s. Thus, we may benefit significantly
by exploiting the simple structure and/or the small size of the mincost LP’s.

5 Minimum Cost Flow and Duality

In this section we describe a problem that is closely related to the mincost LP,
namely the minimum cost flow problem (or min-cost flow). At the end of the
section we show how the two problems relate through duality of linear programs.

Definition 8 (Min-Cost Flow Problem). Let G = 〈 N ,A 〉 be a directed
graph with node set N and arc set A ⊆ N × N . With each node i ∈ N we
associate a value bi ∈ IN, such that

∑
i∈N bi = 0, with each arc (i, j) ∈ A we

associate a cost cij and a variable yij. The min-cost flow problem is defined as:

Minimize: subject to:
∑

(i,j)∈A
cijyij ∀ i ∈ N .

∑

{j:(i,j)∈A}
yij −

∑

{j:(j,i)∈A}
yji = bi, (3)

∀ (i, j) ∈ A . yij ∈ IR≥0. (4)

We call a node i ∈ N a supply node, demand node, or transshipment node
depending on whether bi > 0, bi < 0, or bi = 0, respectively. The intuitive
interpretation of the min-cost flow problem is to find the cheapest assignment
of flow to arcs, such that for each node the outflow minus the inflow equals the
supply/demand of that node.

Example 4. Figure 6 depicts a min-cost flow problem with nodes {0, 1, 2} and
arcs {(0, 1), (0, 2), (1, 2), (2, 0)}. The supply/demand of the nodes are b0 = 1, b2 =
2, and b1 = −3. The arc costs are c01 = c02 = −1, c12 = 1, and c20 = 3. One
(non-optimal) solution that satisfies Equation 3 is to assign 4 units flow to arcs
(0, 1) and (2, 0), and 1 to arcs (0, 2) and (1, 2). The cost of this solution is 8.

Legend

i j
cij

bi bj

Non-optimal solution:
y01 = y20 = 4 and y02 = y12 = 1
Cost: 8

0
1

1
-3

2
2

-1

-1

3

1

Fig. 6. Example min-cost flow problem. Node 1 is a demand node and nodes 0 and 2
are supply nodes.



230 J.I. Rasmussen, K.G. Larsen, and K. Subramani

For the solution of min-cost flow problems, a special and considerably faster
adaptation of the general simplex algorithm, the network simplex algorithm,
[10], has been proposed. Despite the worst-case exponential running-time of the
network simplex algorithm it is often, in practice, faster than its polynomial time
counterparts, [2].

Now, we show that instead of solving mincost LP’s as general linear pro-
grams, we can instead solve related instances of the min-cost flow problem. The
relation comes through duality of linear programming. For every linear program,
called the primal, there is a closely related linear program, called the dual, and
such primal/dual pairs share a number of properties. The property we exploit
in this paper is the so-called strong duality theorem, [11,2]:

Theorem 1 (Strong Duality Theorem). For every pair of primal/dual prob-
lems, if either problem has a bounded optimal solution, then so does the other
and the optimal objective function values are identical.

In other words, to obtain the optimal objective function value of a linear pro-
gram, we can instead solve the dual problem since the optimal objective function
values agree.

Definition 9 (Min-Cost Flow Dual). Given a min-cost flow problem as
stated in Definition 8, the dual problem is defined, over variables xi where i ∈ N ,
as:

Maximize: subject to:
∑

i∈N
bixi ∀ (i, j) ∈ A . xi − xj ≤ cij (5)

∀ i ∈ N . xi ∈ IR (6)

Obviously, the min-cost flow dual resembles the mincost LP using the DBM rep-
resentation of zones. The differences are that the min-cost flow dual is a max-
imization problem, the decision variables range, unrestrictedly, over the reals,
and the cost rates of all clocks must sum to zero. However, we can accommodate
for these discrepancies by rewriting the mincost LP.

For this purpose we derive a linear program that is identical to the mincost
LP in the sense, that for every solution to the mincost LP there is a solution in
the new LP, which achieves the same objective function value, and vice versa.

Definition 10 (Relaxed mincost LP). Given a priced zone Z = (Z, c, r) over
a set of clock variables C ∪ {x0}, the relaxed mincost LP is defined as5

Minimize: subject to:

k +
∑

x∈C

r(x) · (x − x0) Z∗ and ∀x ∈ C ∪ {x0} . x ∈ IR (7)

5 Z∗ denotes the representation of a zone, Z, using only difference constraints by
introducing a clock, x0. [14]. Furthermore, all strong inequalities have been relaxed.



Resource-Optimal Scheduling Using Priced Timed Automata 231

Solutions to the relaxed mincost LP are given in terms of an assignment
function v : C∪{x0} → IR. The objective function value of a given solution, v, is
denoted by z(v). The relaxed mincost LP has a number of interesting properties.
The proofs of these properties are straight forward and can be found in, [18]

Property 1. If u is a solution to the mincost LP, then v is a solution to the
relaxed mincost LP, where v(x) = u(x) for all x ∈ C and v(x0) = 0. Furthermore,
z(u) = z(v).

Property 2. If v is a solution to the relaxed mincost LP, then u is a solution
to the mincost LP, where u(x) = v(x) − v(x0) for all x ∈ C. Furthermore,
z(v) = z(u).

As a consequence of Properties 1 and 2 the optimal objective function values
of the mincost LP and the relaxed mincost LP agree. In other words, when
determining the lowest price of a priced zone, we can choose to solve either LP.

In order for the relaxed mincost LP to be a min-cost flow dual, we need to
change it into a maximization problem. However, this is trivial as minimizing a
function corresponds to maximizing the negated function. That is, we can negate
the objective function of the relaxed mincost LP, solve it as a maximization
problem, and negate the result.

Finally, we need to verify that the sum of all supply/demand in the primal
min-cost flow problem sum to zero. This fact follows immediately from the ob-
jective function of the relaxed mincost LP, as the factor of x0 is the negated
sum of all cost rates of xi ∈ C.

We conclude that instead of solving the mincost LP, we can solve the primal
min-cost flow problem of the maximization version of the relaxed mincost LP.
This technique requires us to negate the result received from the min-cost flow
problem and add the constant k in order to obtain the correct solution.

Theorem 2. Given a priced zone Z = (Z, c, r), the corresponding min-cost flow
problem is obtained as: For each clock xi ∈ C create a node xi and set bxi

=
−r(xi), create a node x0 for the zero clock with bx0 =

∑
xi∈C r(xi), and for

every constraint xi − xj ≤ m in Z∗ make an arc from node xi to xj with cost
cxixj = m. The solution to the mincost LP is the negated solution to the min-cost
flow problem plus k.

Example 5. To illustrate the above technique we show that the min-cost flow
problem of Figure 6 is, in fact, the primal problem of the relaxed mincost LP
over the priced zone in Figure 4. For each of the clock variables x0, x1, and x2
we have the nodes 0, 1, 2, respectively. The constraints of Z∗ are x0 − x1 ≤
−1, x0 − x2 ≤ −1, x2 − x0 ≤ 3, and x1 − x2 ≤ 1, each of which corresponds to
an arc with appropriate cost in the graph. The supply/demands of the nodes
are given as 1,−3, and 2, respectively, which obviously equals the negated cost
rates and sum to zero.

Furthermore, the optimal solution to the min-cost flow graph is x20 =
2, x01 = 3, and x02 = x12 = 0 and has cost 3. By negating the result and adding



232 J.I. Rasmussen, K.G. Larsen, and K. Subramani

the constant k = 7, we obtain the optimal solution (i.e. 4) to the mincost LP
given in Example 3.

Note that when solving the mincost LP, the number of variables equals the
number of clocks, and when solving the dual min-cost flow problem, the number
of variables equals the number of clock constraints. Thus, we are interested
in reducing the number of constraints. For this purpose, we use the algorithm
provided in [14] that computes a zone representation with a minimal set of
constraints.

6 Experimental Results

In this section we provide the experimental results obtained for energy-optimal
task graph scheduling using PTA.

For conducting the experiments we have taken the Standard Task Graph
Set6 of [19] and added communication costs, energy consumptions, and restrict-
ing task execution to a subset of the processors. The results are summarized in
Table 1. The missing entries indicate that we were unable to create a problem
instance that could be solved within the available memory. Simplex and Net-
Simplex refer to the running-times using the standard simplex algorithm [8] and
network simplex algorithm [17], respectively. The performance gain is given as
Speedup and Threshold shows the time needed to compute a feasible schedule
within 10 percent of the optimal.

The results in Table 1 show that the running-time of symbolic minimum-cost
reachability can be improved by 70-80 percent7 by solving the min-cost flow dual
problem instead of the mincost LP. The results are similar when performing the
same experiments on the examples reported in [15].

Given the computational complexity of (energy-optimal) task graph schedul-
ing the, key to solving large problem instances is to guide the search towards ap-
proximate solutions as fast as possible, [13]. Unfortunately, we have been unable
to find energy task graphs with known optimal solutions to use for experiment-
ing with heuristic-based guiding techniques. However, using a random-depth first
search order, Table 1 shows that even for most problems, we can obtain a so-
lution within a 10 percent margin using only a fraction of the time need for
obtaining the optimum.

Since we were unable find comparable results using other algorithms, it is
hard to conclude on the competitiveness energy-optimal TGS using PTA. How-
ever, the results in [15] show that the PTA approach to cost-optimal scheduling
is competitive with MILP. Furthermore, [1] provides results showing that we
can efficiently find approximate solutions to TGS with timed automata using
guiding heuristics. For these reasons, we are positive that using more involved
6 The STG set is available at http://www.kasahara.elec.waseda.ac.jp/schedule/.
7 We disregard the results where both algorithms terminate within one second, since

there is an overhead at startup where the input is passed and converted before
execution begins.

http://www.kasahara.elec.waseda.ac.jp/schedule/


Resource-Optimal Scheduling Using Priced Timed Automata 233

Table 1. Experimental results for 19 energy task graph instances. The results were
obtained on a PentiumM 1.2GHz with 512MB RAM. Done indicates that the algorithm
found the optimal and terminated within 1 sec.

Processors Tasks 5 7 9 10 11 12
2 Simplex 0.438s 2.734s 24.889s 127.318s 15.345s 844.804s

NetSimplex 0.205s 0.592s 4.565s 27.890s 3.041s 181.997s
Speedup (%) 53.2 78.3 81.7 78.1 80.1 78.5
Threshold done done 2.730s 0.694s 1.297s 9.663s

3 Simplex 0.466s 10.850s 27.039s 155.823s 197.141s
NetSimplex 0.159s 2.618s 5.235s 36.403s 56.270s
Speedup (%) 65.9 75.9 80.6 76.6 71.5
Threshold done 0.392s 5.768s 1.121s 0.141s

4 Simplex 1.827s 15.049s 31.080s 450.859s 302.062s
NetSimplex 0.426s 3.583s 7.006s 106.804s 87.685s
Speedup (%) 76.7 76.2 77.5 76.3 71.0
Threshold done 0.593s 0.779s 4.616s 17.85s

5 Simplex 4.122s 20.603s 44.882s
NetSimplex 0.896s 5.104s 10.690s
Speedup (%) 78.3 75.2 76.2
Threshold done 0.476s 5.099s

guiding heuristics together with good remain estimates, PTA will be a compet-
itive approach to solving energy-optimal TGS problems.

7 Conclusions and Future Work

In this paper we have shown how to exploit the structure of the LPs solved
during symbolic minimum-cost reachability through a reduction to the min-cost
flow problem, thus providing an answer to the question put forward in [15]. The
current implementation in Uppaal uses a simplex algorithm to solve these LPs.
Experimental results show that solving the related min-cost flow instances with
a network simplex algorithm instead, reduces the overall running-time of the
reachability algorithm by 70-80 percent. In particular, we have shown how to
solve energy-optimal TGS problems with PTA, and through initial experimental
results we believe that PTA is a competitive approach to solving such problems.
Additional experiments on e.g. the aircraft landing problem, [15], indicate that
the performance gain generalizes to all PTA minimum-cost reachability prob-
lems.

To improve the competitiveness of PTA in energy-optimal TGS, we need to
develop more elaborate guiding heuristics and remaining estimates in order to
efficiently guide the search in the direction of approximate solutions.

An interesting alternative, which can potentially provide considerable
speedup, is to identify abstractions that are exact w.r.t. optimal reachability,
e.g. a suitable adaption of the domination points techniques used in [1].



234 J.I. Rasmussen, K.G. Larsen, and K. Subramani

Another promising approach is be to develop a compositional technique for
finding either approximate or exact optimal solutions. The idea is to exploit the
(in)dependency structure often found in large scale real problems.

References

1. Yasmina Abdeddaim, Abdelkarim Kerbaa, and Oded Maler. Task graph scheduling
using timed automata. Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), 2003.

2. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows -
Theory, Algorithms, and Applications. Prentice Hall, 1993.

3. R. Alur and D. Dill. Automata for modelling real-time systems. In Proc. of Int.
Colloquium on Algorithms, Languages and Programming, number 443, pages 322–
335, July 1990.

4. Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted
timed automata. Lecture Notes in Computer Science, 2034:pp. 49–??, 2001.

5. J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson. Scheduling
aircraft landings - the static case. Transportation Science, 34(2):pp. 180–197, 2000.

6. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul Petterson, and
Judi Romijn. Efficient guiding towards cost-optimality in UPPAAL. Lecture Notes
in Computer Science, 2031:pp. 174+, 2001.

7. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul Pettersson,
Judi Romijn, and Frits Vaandrager. Minimum-cost reachability for priced timed
automata. Lecture Notes in Computer Science, 2034:pp. 147+, 2001.

8. Michel Berkelaar.
http://www.cs.sunysb.edu/˜algorith/implement/lpsolve/implement.shtml,
Oct. 2003.

9. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A
model-checking tool for real-time systems. In A. J. Hu and M. Y. Vardi, editors,
Proc. 10th International Conference on Computer Aided Verification, Vancouver,
Canada, volume 1427, pages 546–550. Springer-Verlag, 1998.

10. W. H. Cunningham. A network simplex method. Mathematical Programming,
11:pp. 105–106, 1976.

11. George B. Dantzig. Linear Programming and Extensions. Princeton University
Press, Princeton, New Jersey, 1963.

12. Flavius Gruian and Krzysztof Kuchcinski. Low-energy directed architecture selec-
tion and task scheduling. Proceedings of the 25th EuroMICRO Conference, 1:pp.
296–302, 1999.

13. Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison of the task
graph scheduling algorithms. Journal of Parallel and Distributed Computing,
59(3):pp. 381–422, 1999.

14. K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-time
systems: Compact data structure and state space reduction. In Proc. Real-Time
Systems Symposium, pages pp. 14–24, 1997.

15. Kim Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune, Paul
Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-optimal reach-
ability for priced timed automata. Lecture Notes in Computer Science, 2102:pp.
493+, 2001.

http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml


Resource-Optimal Scheduling Using Priced Timed Automata 235

16. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

17. Andreas Löbel. http://www.zib.de/Optimization/Software/Mcf/, Oct. 2003.
18. Jacob Illum Rasmussen. Priced timed automata and duality - available at

http://www.cs.auc.dk/˜illum/pubs/ptaduality.html, 2003.
19. T. Tobita, M. Kouda, and H. Kasahara. Performance evaluation of minimum

execution time multiprocessor scheduling algorithms using standard task graph
set. Proc. of PDPTA’00, pages 745–751, 2000.

http://www.zib.de/Optimization/Software/Mcf/
http://www.cs.auc.dk/~illum/pubs/ptaduality.html

	Introduction
	Priced Timed Automata
	Energy-Optimal Task Graph Scheduling Using PTA
	Symbolic Minimum-Cost Reachability Analysis
	Minimum Cost Flow and Duality
	Experimental Results
	Conclusions and Future Work



