A Partial Order Semantics Approach to the
Clock Explosion Problem of Timed Automata

D. Lugiez, P. Niebert, and S. Zennou

Laboratoire d’Informatique Fondamentale (LIF) de Marseille
Université de Provence — CMI
39, rue Joliot-Curie / F-13453 Marseille Cedex 13

{lugiez,niebert,zennou}@cmi.univ-mrs.fr

Abstract. We propose a new approach for the symbolic exploration
of timed automata that solves a particular aspect of the combinatory
explosion occurring in the widely used clock zone automata, the splitting
of symbolic states depending on the order of transition occurrences, even
if these transitions concern unrelated components in a parallel system.
Our goal is to preserve independence (commutation of transitions) from
the original timed automaton to the symbolic level, thus fully avoiding
state splitting, yet avoiding problems of previous similar approaches with
“maximal bounds abstraction”. We achieve this goal by (1) lifting the
theory of Mazurkiewicz traces to timed words and symbolic state explo-
ration, (2) examining symbolic path exploration from a formal language
point of view, and (3) by splitting the concerns of (abstraction free) suc-
cessor computation and zone comparison by a new abstraction related to
maximal bounds. The theory results in data structures and algorithms
that we have experimentally validated, finding good reductions.

1 Introduction

Timed automata [AD94] are a powerful tool for the modeling and the analysis of
timed systems. They extend classical automata by clocks, continuous variables
“measuring” the flow of time. A state of a timed automaton is a combination
of its discrete control location and the clock values taken from the real domain.
While the resulting state space is infinite, clock constraints have been introduced
to reduce the state spaces to a finite set of equivalence classes, thus yielding a
finite (although often huge) symbolic state graph on which reachability and some
other verification problems can be resolved. While the theory, algorithms and
tools [NSY92[LPY95| for timed automata represent a considerable achievement
(and indeed impressive industrial applications have been treated), the combi-
natory explosion particular to this kind of modelling and analysis — sometimes
referred to as “clock explosions” (at the same time similar to and different from
classical “state explosion”) — remains a challenge for research and practice.
Among the approaches for improve the efficiency is the transfer of “partial or-
der reduction methods” [God96| from the discret setting (where they are known
to give good reductions) to the timed setting. Partial order methods basically

K. Jensen and A. Podelski (Eds.): TACAS 2004, LNCS 2988, pp. 296-[311] 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Partial Order Semantics Approach to the Clock Explosion Problem 297

try to avoid redundant research by exploiting knowledge about the structure of
the reachability graph, in particular independence of pairs of transitions of losely
related parts of a complex system. Such pairs a and b commute, i.e. a state s
allowing a sequence ab of transitions to state s’ also allows ba and this sequence
also leads to the same state s’. However, this kind of commutation is easily lost
in classical symbolic analysis algorithms for timed automata, which represent
sets of possible clock values by symbolic states: Consider two “independent”
transitions a resetting clock X := 0, and b resetting clock Y := 0. Executing a
first and then b means that afterwards (time may have elapsed) X > Y whereas
executing b first and then a implies that afterwards X < Y. The result of this
is that in the algorithms used in tools like Uppaal and Kronos, ab and ba lead
to incomparable states.

Previous works nevertheless trying to transfer partial order methods to the
timed automata setting have have tried to overcome
this problem, e.g. [BJLY98IMin99| reestablish independence of the above tran-
sitions ¢ and b by introducing the notion of local time semantics. The idea is
that each component in a network has its own independent time progress, only
when synchronisation occurs between two components, time is synchronised. The
price is that clock differences in that model arbitrarily diverge, and that in gen-
eral, this reestablished commutation leads to an unavoidably infinite state space
(where the aim was reduction!), see Proposition [§] [BJLY9§] therefore restrict
the class of automata in order to allow finite bounds on the state space. However,
practically almost always the resulting state spaces are considerably bigger than
with the classical approach.

The present work takes a completely new viewpoint on the problem of non-
commutation of symbolic transitions: First of all, we clean up the theory of
timed Mazurkiewicz traces. Where a path in a timed automaton must sat-
isfy timing constraints, we relax a crucial assumption that transitions occur in
the same order sequentially and temporally: We restrict this requirement to de-
pendent transitions. Our formalisation generalises “local time semantics” and
also the partial formalisation given in [DT98]. We believe that this formalisation
is a valuable contribution as such.

The second important step is a language theoretic view on the verification
problem of timed automata. Rather than considering immediately the problem
of “symbolic states”, typically representing sets of clock values, we look at the
problem of possible paths through the timed automaton and the implied Myhill-
Nerode right congruence (as well as a corresponding preorder notion), which is
known to be equivalent to minimal automata in classical language theory. Our
understanding is that all previous automata based approaches to the reacha-
bility problem in timed automata is related to this Myhill-Nerode congruence,
and attempts to avoid incomparable states (by better abstractions, etc.) aim
to get closer to the actual Myhill-Nerode congruence. For the framework with
commutation, the Myhill-Nerode congruence is typically of infinite index (see
Proposition []), whereas the classical interleaving approaches prove its finiteness
for the interleaving case.

298 D. Lugiez, P. Niebert, and S. Zennou

In the third part of our contribution, the semantical basis of a new
search algorithm, we manage to get “the best of both worlds”: We compute
symbolic states with respect to the infinite index Myhill-Nerode congruence for
the trace semantics (but avoiding state splitting for independent transitions),
but we compare states with the finite index preorder (to cut branches in the
search tree), “catchup preorder”, which is a right congruence for the classical
interleaving semantics but obviously not for the relaxed semantics. It is closely
related to zone inclusion with mazximal bounds abstra ction in the classical setting
and preserves paths in the interleaving semantics. We thus preserve the worst
case bounds from classical clock zone algorithms and a good number of heuristic
improvements that have been applied to improve those bounds carry over to
our setting. The surprising fact that this approach is actually correct (i.e. yields
exactly the same set of reachable control locations of the timed automaton as the
standard semantics) relies on our timed Mazurkiewicz theory, which gives us for
each timed word with relaxed constraints on the temporal order an equivalent
path that does respect the stronger interleaving constraints.

The paper is structured as follows: In Section 2, we introduce the formal
framework of clocked and timed words and the standard semantics of timed
automata. In Section 3, we introduce Clocked and Timed Mazurkiewicz traces.
In Section 4, we set up a plan of the subsequent construction in language theory
terms and define equivalence relations of interest. In Section 5, we develop event
zones as representation of the right congruence for realisable traces. In Section
6, we define the finite index catchup preorder and combine it with the event zone
automaton of Section 5 for our reachability algorithm. In Section 7, we give some
experimental results, which demonstrate the potential impact of our approach.
Due to lack of space, all proofs had to be omitted. A long version with all proofs
is available online as technical report [LNZ04].

2 Basics

In this section, we introduce basic notions of words, languages, automata, as
well as their timed counterparts.

Words and Automata. Given an alphabet X' of actions denoted by a, b, c. ..,
27 denotes the set of words on X with € the empty word. Words are denoted by
u,v,w ... and a non-empty word is some finite sequence a; ... a,. The length of a
word w is denoted by |w|. As usual a X-automaton A is a quadruple (S, sg, —, F)
where S is a set of states, sg € S is the initial state, FF C S is the set of final
states and — C @ x X' x @ is a set of transitions. The set L(.A) is the set of
words accepted by A. The automaton is deterministic if for each state s and
action a there is a at most one s’ € S such that s % s’

Timed words. In real time systems, we associate to each position i of a sequence
of actions w = a; ...a, a time stamp which indicates when the corresponding

A Partial Order Semantics Approach to the Clock Explosion Problem 299

action takes place. More precisely, a timed word is a pair (w,t) with w € X*
and t is a function assigning to each position of w an element of RT, the set of
non-negative reals. For convenience, we set ¢(0) = 0 to be an additional time
stamp for the beginning. In the literature, timed words are often represented as
(a1,t1), (az,t2) ... ie. t(i) is replaced by ¢;. A timed word is normal if t(i) < t(j)
for i < j like in (a,3.2)(c,4.5)(b,6.3) but not in (a, 3.2)(c,2.5)(b, 6.3). Normal
timed words represent temporally ordered sequences of events and serve as stan-
dard semantics of timed automata in the literature [AD94]. Concatenation of
normal words is only a partial function and the set of normal words is thus a
partial monoid only.

Clocked words. In a timed system, events can occur only if some time con-
straints are satisfied. In timed automata, clocks belong to some finite set C and
are used to express the time constraints between an event that resets a clock and
another event that refers to the clock. This leads to the introduction of clocked
labels which are triples (action, constraints on clocks, set of reset clocks). The
constraints permitted here associate to each clock an interval (min, max) which
gives the set of possible values for the clock. The interval can be left-open, right-
open, left-closed, right-closed and the bounds can be finite or infinite —oo, +-00.
The interval | — co, +0o[means that no constraint exists and such constraints
will not be written explicitly. To preserve decidability, all finite bounds are as-
sumed to be integers (or syntactically more general: rational numbers). We are
interested in finite subsets A of the infinite set of clocked labels, called clocked
alphabets. A clocked word over A, usually denoted by w, is simply a word in A*.

Normal realisations of clocked words. In a clocked word w = (a1, ¢1,71)(az, ca, r2)

« (an, Cnymn) let lasto(w) denote the last position m where the clock C is reset,
ie. st. C € rpy (for (1 <m < n)). We define lastc(w) = 0 if no such position
exists (i.e. we assume that all clocks are reset at time position 0).

Definition 1. A timed word (w,t) is a normal realisation of a clocked word
W= ..., with a; = (a;, ¢, 7r3), iff (i) they have the same length (|lw] =m)
and the same action sequence w(i) = a; fori € {1,... ,m}, (ii) (w,t) is normal,
and (ii) for all prefizves ay . ..ag—1 and all clocks C with | = lastc(aq ... ag—1),
t(k) —t(l) € cx(C), i.e. the time elapsed since the last reset of clock C before
position k meets the interval constraint at position k.

For instance the timed word w = (a, 3.2)(¢,4)(b,6.2) is a normal realisation of
w = ayf (as defined in Figure[). A clocked word is realisable iff it has a normal
realisation. We say that « is a realisable extension of w if wa is realisable. The set
of realisable clocked words over some clocked alphabet is closed under the prefix
relation. A timed automaton is a A-automaton for some clocked alphabet A, as
in Figure[ll (where all states are final). The language of a timed automaton A is
denoted by L(A), and the timed language Ly (A) of A is the set {(w,t) | (w,?)
is a normal realisation of some w € L(A)}. On the level of clocked words, let
Ly be the language of realisable clocked words accepted by A. For instance
(a,3.2)(c,4)(b,6.2) € Lp(A) is a normal realisation of ay € Ly (A).

300 D. Lugiez, P. Niebert, and S. Zennou

0 B=(bCi€[3,4],C1 = 0)
S0 S1
o =(a,01 € B4 0= 0 = (c,C2 € [4,5[,C i= 0)
5
— B
So §3
«
)
S4

§=(d,C2 € [3,00[, @)

Q 16}
() ()

C, e [O, 1]
» Ca € [0,4]

o e= (e , D)

Fig. 1. A timed automaton

3 Clocked and Timed Mazurkiewicz Traces

As a representation of concurrency, we introduce an independence relation and
generalise the theory of Mazurkiewicz traces to the timed setting. We first recall
the basics of Mazurkiewicz trace theory in the untimed case. For an exhaustive
treatment see [DR95].

Independence Relation and Traces. For an alphabet Y, an independence
relation is a symmetric and irreflexive relation I5C X x X. We call (X, Iy)
a partially commutative alphabet. For convenience, we also use the dependence
relation Dy= Y x X'— Iy, which is reflexive and symmetric. As a representa-
tion of parallel systems we assume without loss of generality that X = Ui:l 2
where a Dy, b iff a,b € X; for some i € {1,...,l}. We call (Xy,...,%)) a dis-
tributed alphabet of (X, I5) and X; a component. For convenience, we call the set
{1,...,1} “Comp” (for components). For instance (X1 = {a,b,e}, Xs = {¢,d, e})
is a distributed alphabet corresponding to X' = {a, b, ¢, d, e} and an independence
relation I's= {(a,c), (c,a), (b,c), (c,b), (a,d), (d,a), (b,d), (d,b)}. It is well known
that every partially commutative alphabet corresponds to a distributed alphabet
and conversely. Intuitively, Is represents concurrency between actions, whereas
the distributed alphabet proposes as explanation of concurrency occurrence on
distinct processes in a distributed system. In order to reference actions or lo-
cations depending on an action we define dep(a) = {b € X' | a Dy b} and
loc(a) = {i|a € Xi}. It is obvious that dep(a) = U;gjpe(q) 2i- In analogy to last
occurrences of clock resets, we define last;(aq . .. ay,), the last occurrence of an ac-
tion of the component Y;, as the maximal k such that a; € X;, if such a k exists,
otherwise last;(ay ...a,) = 0. For instance, last;(acb) = 3 and lasta(ach) = 2
for (X1 ={a,b,e}, X5 ={c,d,e}).

The Mazurkiewicz trace equivalence associated to the partially commutative
alphabet (X, Ix) is the least congruence ~); over X* such that ab ~,; ba for

A Partial Order Semantics Approach to the Clock Explosion Problem 301

any pair of independent actions a Is b. A trace [u] is the congruence class of a
word u € X*. We denote by M(X, I's;) the set of all traces w.r.t. (X, Ix). Before
adapting these notions to the timed setting, we give the connection between
independence relations and automata as a condition on transition relations:

Definition 2 (asynchronous automaton). An asynchronous automaton
over (X, Ix) is a deterministic X-automaton such that the following two prop-
erties hold for any two letters a,b € X with a Is b:

b L b ,
ID: s % s1 — s implies s —) % sy for some state s} [Independent Diamond]

b . . b .
FD: s 5 s, and s — s| implies s1 — s for some state sy [Forward Diamond]

The theoretical foundation of many partial order reduction approaches relies
on the fact that the languages of asynchronous automata are closed with respect
to equivalent words.Intuitively, two words are equivalent with respect to ~j,
iff they can be obtained from each other by repeatedly exchanging adjacent
independent letters, as stated by the following lemma:

Lemma 3. Let (X, Ix) be a partially commutative alphabet and aq . ..a, ~
by ...by, be two equivalent words. There exists a uniquely determined permutation

7 {1,...,n} = {1,...,n}, such that a; = br(;) and for a; Dy a; we have
i < g iff w(i) < w(j). Conversely, let ay ...an be a word and 7 : {1,... ,n} —
{1,...,n} be a permutation of indices such that for each pairi,j a; Dx a; we

have i < j iff m(i) < 7(j). Then ar@)...arm) ~=nm a1 ...a,. For convenience,
we assume m to be defined on 0 with w(0) = 0.

Generalisation to Clocked Words

Timed traces. The independence relation Iy immediately carries over to (non
normal) timed words. The resulting congruence classes are called timed traces.
Here, the exchange of two independent actions also exchanges their time stamps,
e.g. (a,3.2)(,3.5)(c,6.3) ~pr (a,3.2)(c,6.3)(b,3.5) where b Iy ¢, which means
that normality (temporal order of actions) is not preserved under commutation.
Therefore we introduce a weaker notion of normality: a timed word (w,t) is Is-
normal iff for any two letters a = w(i),b = w(j) with ¢ < j and additionally
a Dx b we have t(i) < t(j). This relaxed normality condition is preserved under
Mazurkiewicz equivalence, allowing to define normality on the level of traces:
We call a timed trace [(w,t)] Is-normal iff (w,t) is Ix-normal.

Proposition 4. Every Is-normal timed word (w,t) is equivalent to a normal
timed word (w',t").

Independence for clocked words. To extend the independence relation I to
clocked words, we define JnC A x A based on Iy as follows: (a1,c1,71) Ia
(ag,co,m9) iff (i) a Iy b, (ii) 1y Ny = @ and (iii) For all C € 7 we have
¢2(C) =] — 00, 00[and conversely for all C' € ry we have ¢;(C) =] — oo, 0.

302 D. Lugiez, P. Niebert, and S. Zennou

Intuitively, conditions (ii) and (iii) arise from the view of clocks as shared
variables in concurrent programming: An action resetting a clock is writing it
whereas an action with a non-trivial condition on a clock is reading it. The
restriction states that two actions are dependent if both are writing the same
variable or one is writing a variable the other one is reading it. We call the
(A, 1) constructed in this way a partially commutative clocked alphabet and
say that Ia respects Is. The notion of traces and equivalence ~); are defined
as for Is.

For the rest of the paper, we will silently assume some partially commutative
clocked alphabet (A,). If clear from the context, we write I instead of Ia.
Relaxing the notion of normal realisations, the following definition establishes
the relation between clocked words and I-normal timed words.

Definition 5 (Ia-normal realisation). Let w = «a;...q, with o =
(aj,cj,r;) be a clocked word over (A,IA). A timed word (w,t) Ia-realises w iff
(1) (same length and actions) |w| = |wl|, for j = 1,...,|w| we have w(j) = aj,

(ii) (mormality) (w,t) is Ix-normal, (i) (satisfaction of constraints) for all pre-
fizes aq ... ag—1 and all clocks C with | = lastc (o ... ap—1) t(k) —t(l) € cx(C).
In that case, we also say that w is I a-realisable and by extension that [(w,t)] is
a Ia-realisation of w.

For instance, the timed word (c,4)(a,3.2)(b,6.2) Ia-realises the clocked word
~yaf (for the automaton in Figure[T], assuming o 4 7). The main result of this
section establishes the tight link between clocked and timed traces, in particular
it shows that [-realisability is invariant under trace equivalence, allowing in
principle the exploration of realisable clocked words on representatives.

Theorem 6. Let o ... ~p Bi... 0, be two equivalent clocked words over
(A, 1) and 7 be the permutation as defined in Lemmal3 Then (by,t1) ... (bn,tn)
is an I-normal realisation of B1...[Bn iff (br1),trx1)) - (bx(n)strm)) 5 an I-
normal realisation of oy ...,

Applications to the verification problem. In analogy to the definition of
Ly(A) let L;(A) denote the set of I-realisable clocked words accepted by A. It
is straightforward by definition that Lp(A) = 0 iff Ly(A) =0 iff L;(A) =0, so
that we can check this emptiness problem equivalently for either language. The
important aspect of L;(A) is that it is closed under equivalence as expressed in
the following corollary of Theorem

Corollary 7. Let w ~); ' be equivalent clocked words, then w is I-realisable iff
W' is I-realisable and w € Li(A) iff o' € Li(A). If w € Li(A) then there exists
W'~ w such that w' € Ly(A).

This observation gives rise to the hope that partial order reduction techniques
could be applied when checking for emptiness of L;(A). However, as explained
in the following sections, this language cannot always be represented by a finite
automaton and we need more sophisticated methods to solve this problem.

A Partial Order Semantics Approach to the Clock Explosion Problem 303
4 A Language Theoretic View

Our primary goal is to build a finite automaton for the language L;(A) = {w |
w I-realisable and w € L(A)}, which yields an immediate way to decide the
emptiness of the language. For any language, the classical way to build an au-
tomaton is to consider the Myhill-Myhill-Nerode right-congruence which yields
the minimal automaton accepting the language (the states are the equivalence
classes of the congruence)El. In our case the relevant congruence would be
w1 >y we iff wy Sy we and wy Sy wy where wy <j wy iff Vw, wyw I-realisable im-
plies wow I-realisable. By definition ~), C <, which justifies to write [w1] <r [wa].
Unfortunately, this congruence is not of finite index:

Proposition 8. There exist finite A for which <y and ~y are of infinite indez.

Proof. Let o = (a, X € [1,1],X :=0), 8= (b,Y € [1,1],Y :=0), v = (¢, X €
[1,1,Y € [1,1],Y := 0) with aIB. Then for i # j we have that o' Z; o,
because the extension w = 3%y make o3y I-realisable whereas o’ /3"y is not
I-realisable. O

This ruins our primary goal and explains why we use an indirect and complex

approach to decide L;(.A) Z . Keeping the Myhill-Nerode congruence idea in
mind, we define several relations which help understanding the problems and
that provide constructions similar to zones for timed automata while preserving
properties of realizable traces. Again the resulting automaton is infinite but we
define a relation on zones which has a finite index and allows to decide the
emptiness of L;(A) in a finite amount of time. Given some language L, a right-
precongruence is a relation <y such that v <p v iff Vw, if uw € L implies vw € L.
The obvious link with ~p, is ~;= (<1 N 21). The index of a preorder < is by
definition the index of the equivalence < N 2. We describe now all the relations
that we use, apart <; and ~; that are already defined.

Definition 9 (Syy~n, Siny ~1n). For clocked words wy,wa, let

— w1 SN we iff Vw, if wiw has a normal realisation then wow has a mormal
realisation. In general ~nZ SN, so Sy cannot be lifted to traces and is given
for comparisons only.

— w1 Sinv wo iff Vw if there exists w) ~pr wi such that wiw has a normal real-
isation, then there exists wh ~pr wo such that whw has a normal realisation.
We define w1 ~in wa by w1 Sy wo and wy Syn wy. This relation still
concerns normal realization, but weakens <y by forgetting the interleaving
of the past.

— <gz (defined in sectionld) is defined in terms of difference constraints sets
generated by clock constraints and can be seen as an implementation of <y

since SpzC<r.

! but this automaton is finite for regular languages only!
2 for simplicity we forget momentarily the finite automaton A

304 D. Lugiez, P. Niebert, and S. Zennou

— <c¢ is defined from Sgz and can be seen as an implementation of Syn since
ScCSiNe

The relations <7, Spz are precongruences that are used to define automata, but

they may have infinite index while <;n, Se have finite index but may not be
precongruences. Their properties are summarized in Figure 2

finite index <c - NI
not (pre)congruence
Ul Ul
(pre)congruence < <
not finite index ~m € ~NEZ C S

Fig. 2. Right preorders for clocked traces

The proof of Proposition B] supports the claim that <;y is not a precon-
gruence: aa ~jy aaq, but aafl 2y aaaf. However, the relation <y is a

crucial tool for solving Ly(A) <) because (i) the inclusion $;CSyn holds (see
Proposition [[7) provided some slight assumptions on the alphabet A, (ii) it is
of finite index, (iii) it preserves the non-emptiness of L;(A) (in a weak sense).
The relations <pz, <c represent the computational aspects of our approach and
give an effective way to approximate the relations <; and <yy.

A similar approach underlies the theory of timed automata: the language
of the realisable clocked words Ly(A) of an automaton A is represented by a
zone automaton and the constructions given in the litterature can be understood
as computating precongruences Sz4C Sy, (4)- These precongruences may have
(many) more states that the ideal <y, (4) and works for improving timed au-
tomata constructions can often be seen as tentatives to get closer to Sp(4)-
But whatever the finite size of these zone automata, they prove that <y (4
is of finite index. The reader should notice that the bound that we get for the
index of < in Proposition [[9]is remarquably close to the bound for the number
of clock zones of classical timed automata.

5 Event Zones for the Representation of <;

This section is devoted to the construction of <py and ~p; with event zones.
The aim is to obtain a right precongruence reasonably close to <; that allows
efficient data structures and algorithms for the representation of congruence
classes and for testing <pz. Difference constraint sets provide the tool needed to
achieve this goal, leading to the construction of an event zone automaton, which
specifies the set of I-realisable traces. This automaton may still be infinite and
section [6] will show how to decide emptiness of the accepted language.

A Partial Order Semantics Approach to the Clock Explosion Problem 305

Difference Constraint Sets. Difference constraint sets are set of inequations
of the form # —y < c or x —y < ¢ where and y are real valued variables
and c is a numerical constant (a rational number or an integer). We represent
a different constraint by a graph (the incidence matrix of which is a Difference
Bounds Matrix, DBM): the variables are the vertices and there is an edge from
z; and z; labelled by ¢, < (resp. ¢, <) iff #; —x; < ¢ (resp. x; — x; < ¢) is one
of the constraints (when several constraints relate the same variables, we choose
the stricter one). The graph is completed by adding the constraints @ —x < 0
for every « and x; — ; < 400 when no constraints z; —z; < ¢ (or z; — z; < ¢)
exist. A solution is a valuation from the set of variables to R which satisfies all
the constraints. Since constraints are differences there is a solution iff there is a
positive solution (all variables are > 0). A difference constraint set is consistent
iff it has one solution. Figure[d gives a difference constraint set corresponding to
the clocked word af of the timed automaton of Figure [l

Fig. 3. A difference constraint set (left) and its closure (right).

We define & on pairs (¢, <) by (1, <1)®(c2, <2) = (142, <1) if <3=<3 and
(c1 + ¢2,<) otherwise. The closure of a difference constraint set m 0 <
(V, E) is the difference constraint set (V, E’) = CI(V, E) such that -
E'(z,y) = min{E(x1,22) ® ... ® E(xp_1,2p) | ¢ = 21,... ,2p = e
y € V}, i.e. the length of the shortest path from x to y if it exists,
—o00, < otherwise. The closure of the previous difference constraint
graph is given in Figure [J] (right part).

The closure can be computed by an all pairs shortest path al-
gorithm such as Floyd-Warshall [CLR90]. The projection ITy: of
(V,E) on V' C V is the difference constraint set (V’/, E’) such that e
E'(z,y) = E(x,y) for z,y € V'. The figure at right gives the pro-
jection on {xg, x5} of the closure of the difference graph of Figure U 0,<
Bl Projection is normally only a sensible operation on closed constraint sets (i.e.
such that CI(V, E) = (V, E)).

8,< ||-6.<

306 D. Lugiez, P. Niebert, and S. Zennou

Event Zones and the <gz Relation. In this subsection, the link between
clocked words and difference constraint sets is done in the context of I-normality
via event zones. Then the right precongruence <gz is defined and some proper-
ties of Figure 2] are proved.

Let I be an independence relation which respects Iy, the independence rela-
tion for some distributed alphabet X' = (X,... , X}). Let w = a3 ... @, be some
fixed clocked word with «; = (a;, ¢;, ;). For each position i of w we associate an
event variable x; which corresponds to a time stamp, plus an additional g for
the initial stamp. Since the arrows in difference constraint graphs are couples
(constant, sign), we need functions extracting from the clock constraint intervals
the upper and lower (actually its opposite) bounds together with their sign:

upper((c1, ca[) = (c2, <) and upper((ci1, ca]) = (cq, <)
lower(Jci, c2)) = (—c1, <) and lower([cq, ¢2)) = (—c1, <) (note the — sign)

Definition 10 (event zone). The event zone Z,, associated to a clocked word
w is a triple (V,,, E,, Last,) where V,, = {xo,%1,... 2|4}, E, is defined by
Ey(zi,zj) = min{(m,=<) | z; —x; < m € Ay} for all z;,x; € V with A, the
following set of constraints:

Respect clock constraints: for k,l with | = lastc(aq ... ak—1) for some C €
C xrp—x <m e A, and (m, <) = upper(ck(C))
xp—xp <m € Ay, and (m, <) = lower(cx(C))
Is-normality: for k,l withl = last;(a; ...ax—1) for some i € loc(ay) x;—x) <
0e A,
Totality: =; —x; <0€ A, and x; —x; < +o00 € A,.

and Last,, : C U Comp—V,, is the function which gives the last event variable
occurrence of a clock C or an action of X; i.e. Last,(C) = x; such thalt i =
lastc(w) and Last, (i) = x; such that j = last;(w).

The difference constraint set associated to Z, is S, = (V,,, E,,). The closure
of the zone Z, = (V,,, E., Last,,) is simply Cl(Z,,) = (Cl(V,,, E,,), Last,,) and
the projection is ITy.(Z,,) = (IIyv:(V,,, E,,), Last,,). A zone Z, is consistent iff
its associated difference constraint set S, is consistent. By construction a zone
Z., is consistent iff w is I-realisable.

Definition 11 (event zone precongruence). Let wy,wy be two clocked words
over A and Cl(Z,,) = (V1, E1, Lasty), Cl(Z,,) = (Va, B2, Lasts) be the closure
of their respective event zones. The event zone precongruence is defined in the
following way: Z,, Sgz Zw, Uf Z,, and Z,, are both inconsistent or Z,, is
inconsistent and Z,, is consistent or else there are both consistent and for all
&1,6 € CUComp, Ei(Lasty(&1), Last;(&2)) < Ey(Laste(£1), Lasta(£2)).

We define w; <

~

gz wo iff Z,, <pz Z,, and we get the following properties:

Proposition 12. Let wy,wsy be two clocked words. Then (i) wy ~p wo implies
w1 Spz wa, (it) Sgz is a right precongruence, (11i) w1 Spz we implies wy i wa.

A Partial Order Semantics Approach to the Clock Explosion Problem 307

The Event Zone Automaton. For the construction of an automaton we define
the notion of zone extension.

Definition 13. An extension of an event zone Z, = (V. =
{zo,...,2n}, E,Last) of w by a = (a,e,r) € A, denoted Z, ® a,
is the triple (V',E', Last’) such that: (i) The difference con-
straint set is extended: V' = V U {zp41} and E' is defined by:

E'(z;,x;) = E(x;,xj) for all z;,x; # Tni1,

E'(xpi1,2;) = min{(m, <) | py1 — 2 <m € Appat
E' (2, xpe1) = min{(m, <) | ©; — Tpse1 < m € Apoat
with A,ea the following set of difference constraints:

clock constraint condition: For all z; = Last(C') with C' a clock,

Tny1 — T < m € Ayea and (m, <) = upper(c(C))

X — Tpyp1 <M € Aypa and (m, <) = lower(c(C))
Is;-normality: For all x; = Last(i) with i € loc(a) 1 — pt1 <0 € Avoa
totality: for all z; € V, x; — xpi1 < 400, Tpt1 — T < 400 € Apoas

and Tpi1 — Tpy1 <0 € Avopa -

(ii) Last occurrences are updated: if i € loc(a) then Last' (i) = x,.1, if
C € r then Last'(C) = x,41, otherwise Last' (€) = Last(§).

By definition, we get Z, ® @ ~gz Z,o. Event zones have an unbounded
number of variables but only the variables representing the last occurrences
of events are relevant. Let last(Z,) denote the projection of the closed zone
Cl(Z,) = Cl(V,, E,, Last,) on Vi,st, the codomain of Last,,. That is last(Z,) =
IIy,,.,(Cl(V,, E,), Last,,). As an example, last(Z,g3) (Zap is depicted on the left
part of FigureB) is the projection of the closure Cl(Z,3) (right part of Figure B)
on the set Vi, = {20, 22} (Figure below the Figure B). This projection behaves
well with respect to extension and <gy:

Proposition 14. Let Z be a consistent event zone and « be a clocked label.
Then last(Z ® «) ~gz last(last(Z) ®).

This justifies the use of last(Z) to define the event automaton in the following
construction where Z denotes the set of event zones over A and Z. is the special
event zone (V,, E,, Last,.) associated to the empty word such that V., = {x¢} (the
initial time stamp), E(zo,zo) = (0, <) and Last(§) = xg for all £ € C' U Comp
(everything is reset).

Definition 15 (event zone automaton). The event zone automaton A’ =
(87, s, —", F') associated to an asynchronous timed automaton A = (S, sg, —
,F) is such that 8" = S x Z/~,,, couples of discrete states and (quotients
of) event zones, the initial state is s = (so,[Zo]), the set of final states is
F'={(s,Z) | s € F} and the transition relation —': S x A — S’, is defined by
(5,[2]) = (s1,[Z1]) iff s = s1 is in A and Z; = last(Z © «) is consistent.

Proposition 16. The event zone automaton for an asynchronous timed au-
tomaton is an asynchronous timed automaton accepting exactly the clocked words
having an I-realisation.

308 D. Lugiez, P. Niebert, and S. Zennou
6 Catchup Preorder for Language Emptiness Checking

In this section we introduce the catchup preorder, closely related to the maximal
bounds abstraction used in classical timed automata algorithms and a very im-
portant aspect of our approach. Based on it, we then give an algorithm to decide
the emptiness of timed automata languages.

Catchup preorder and equivalence. First we introduce a useful technical
tool: the separator action $. A separator $ is an element of A such that the
constraints are trivial (no conditions on any clocks), the reset set is empty, and
for all @« € A it holds that @ £$. Any clocked alphabet A can be extended to a
clocked alphabet A’ containing a separator (either there is one already in A or
we simply add one). This extension preserves the semantics: if w1 Sy wo in A/,
then wy <y wy in A. From now on, we assume that A contains such a separator
$. All previous results holds independently of the existence of $, but it is used
in the proof of the next proposition:

Proposition 17. If A contains a separator $, then <;C<;n .

Definition 18 (catchup simulation of event zones). Let wi,wy be two
clocked words and let Z,,s = (Vi,Ey, Last1) and Z,,5 = (Va, B9, Lasty) the
event zones for w1$,w.$ respectively, where $ is a separator. Moreover, for all
pairs & €C, & e CU{1} (1€ C’ompﬁ):

- E1 (L(J,Stl (51), LaStl(fg)) S EQ(LastQ(fl), LaStQ(fg)); or

— Ei(Lasty(&1), Last1 (1)), Ea(Lasta(&1), Lasta(1)) (constraint between clock
reset events and the separator) are both strictly smaller than (—c, <) for the
greatest non-trivial upper bound (¢, <) for & in A (upper catchup); or

— both Ey(Lasty(&1), Last1(&2)), Eo(Lasta(&1), Lasta(E2)) greater or equal to
the opposite of the biggest lower bound for & in A (lower catchup).

Then we write that w1 So we (and say that we catchup simulates wy). Moreover
w1 ~c wy (catchup equivalent) iff w1 So wa and we So wi.

The intuition is that we abstract event zone extensions that occur in the past
of already present event (e.g. events that would have occurred before the sepa-
rator in the second rule). We consider such events as late and catching up. The
second rule addresses bounds relevant to upper bounds of clocks (upper catchup),
the third rule addresses bounds relevant to lower bounds (lower catchup).

Theorem 19. <cC<;y and the index of ~¢ is smaller than (4K + 3)"(”+1)
where n is the number of clocks and K is the biggest constant mentioned in
constraints.

3 This choice is arbitrary, the last action for any component is $

A Partial Order Semantics Approach to the Clock Explosion Problem 309

An algorithm to decide the emptiness of Ly(.A). The description of the
algorithm uses traces for readability, but the actual implementation relies on
event zones. The set of traces is partionned into white traces that are not visited
yet, gray traces that await exploration, black traces that have been explored, and
red traces that have been rejected because of catchup equivalence. This last set
is convenient for the correctness proof only and is useless in the implementation.
The algorithm is generic and doesn’t rely on the particular method used to
explore traces. The key point for ensuring termination is the finite index of the
relation <. The actual implementation uses several technical improvments that
we do not describe because of the lack of space.

Algorithm 1 Generic exploration algorithm

Gray < {[e]}, Black < 0, Red < ()
while Gray # () do
Choose [w] € Gray, Gray < Gray \ {[w]}, Black < Black U {w}
for all W' = wa with (Sw, @y Swa) € — and Z,q consistent do
if J[w”] € Black U Gray.s,» = s, and w’ S¢ w” /* or weaker ~¢ */then
Red <+ Red U {[w']}
end if
end for
end while
return “empty”

Theorem 20. For an asynchronous timed automaton A, Algorithm O termi-
nates and yields a witness w € Li(A) iff Li(A) # 0 otherwise returns “empty”.

Comparison with clock zone automata

The zone automaton. If I = (), we are back to classical timed automata and
SN==<;n==7. Zones and the relation <y are the same and we can modify the

~ ~

algorithm to get a finite deterministic automaton for Ly (A).

Relation of <;n and the convex hull overapproximation. UppAal has an option
to join incomparable clock zones 71, Z5 into a so-called convex hull, the least
zone Z, such that containing both 71,7 <y Z. For the exploration algorithm
this means replacing two state zone pairs (s, Z;) into a single pair (s, Z). This is
an overapproximation (additional states may become reachable), yet it can be
used to prove language emptiness.

Given a word ajas ... ay, the corresponding classical zone is Z,,; for wg =
a13a98 ... S, (the separator forbids any interleaving). We can prove that for
any ajas . ..o, € (W], ifwg = @188 ... S, then wg <1 w, wg Sy w and wg Se

w. This means that all classical zones corresponding to interleavings of the same
word are included in the same event zone, i.e. the convex hull approximation is

310 D. Lugiez, P. Niebert, and S. Zennou

exact when applied to zones reached by equivalent interleavings only and in fact
a single interleaving in our semantics already yields this convex hull!

Ezperiments. For practical evaluation, we have built a tool, ELSE, currently
in prototype status. It allows both classical semantics (corresponding to clock
zones) and event zones, implementing Algorithm [1. We measure reductions in
terms of number of states (where feasable for the prototype) and did not compare
execution times. Also, absolute comparisons with existing tools like UppAal seem
not meaningful at this stage. We chose to compare the two modi of the same base
implementation to estimate the potential of passing from classical semantics to
event zones and catchup preorder.

0 . /I\ 2 @ e ::
] Yy :=0 /R Yo :=0] Yp =0, By :=
a0 () a2 > 2
Bi,Bo, X1 < 1,Y1/5 1\ Xo <1,Yp > Xp <1,
@ . = J@ = 27@ >#)@

Fig. 4. The diamond example with 2n clocks

We consider three examples. The first — artificial — example is the diamond
example of Figure @t Two automata just reset clocks in a fixed order and when
both are done, an observer tests some properties of the interleavings. The clock
zone automaton has just one maximal run (trace), with a quadratic number of
prefixes. Clock zone automata however have to distinguish all possible shuffles
of the resets of clocks X; and Y;. So this artificial example gives polynomial
against exponential growth. More realistic, the second example is a timed version
of the dining philosophers, which yield forks taken if they do not obtain the
second fork before a timeout (in order to avoid deadlocks). While both the
event zone approach and the clock zone approach yield exponential blowups,
the difference between the two is impressing and encouraging for applications
with some distribution. The third example, popular Fischer’s protocol [AL94] is a
very unfavourable example, since there is hardly any independence in the models.
Still, we report it to show that even in such cases, event zones may yield a fair
reduction. The experimental results are summarized in Figure B, where “EZC”
stands for exploration with event zone automata and catchup preorder whereas
“CZ” stands for clock zone automata. Each case concerns scalable examples
with a parameter m (number of clock of each process in the diamond example,
number of philosophers, number of processes Fischer protocol).

Acknowledgements. We thank Victor Braberman, Sergio Yovine, Stavros Tri-
pakis, Oded Maler, Eugene Asarin, Yasmina Abdeddaim, Bengt Johnsson and
Rom Langerak for discussions about the challenging topic. Many thanks go to
Walter Vogler for his helpful constructive critique. This work was supported

A Partial Order Semantics Approach to the Clock Explosion Problem 311

[processnumber [2]3[4 [5 [6 [7 [8 [9 [10 [100]

Diamond, EZC [19/29| 41 | 55 71 89 109 131 | 155 ||3571
Diamond, CZ |56{198| 711 | 2596 | 9607 | 35923 | 135407 | - - -

Philosophers, EZC|13| 48 | 153 | 478 | 1507 | 4791 | 15369 |49662(161393|| —

Philosophers, CZ |13| 66 | 393 | 2772 | 23103 | 223052 [2453967| — - -

Fischer, EZC |24]|209|2048|21077|224536|2480277 - - - -

Fischer, CZ 25|229(2393|26961|322525(4081295 - - - -

Fig. 5. Experimental results

by the IST project AMETIST (Advanced Methods in Timed Systems, contract
IST-2001-35304, http://ametist.cs.utwente.nl).

References

[AD94]

[ALY4]

[BJLY9S]

[CLR90]

[DGKKOS]

[DR95)
[DT9S)

[God96]

[LNZ04]

[LPY95]

[Min99]

[NSY92]

R. Alur and D. Dill, A theory of timed automata, Theoretical Computer
Science 126(2) (1994), 183-235.

M. Abadi and L.Lamport, An old-fashioned recipe for real time, ACM
Transactions on Programming Languages and Systems 16 (1994), no. 5,
1543-1571.

J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi, Partial order reductions
for timed systems, Proceedings, Ninth International Conference on Con-
currency Theory, LNCS, vol. 1466, Springer-Verlag, 1998, pp. 485-500.
Th. Cormen, Ch. Leiserson, and R. Rivest, Introduction to algorithms,
MIT Press, 1990.

D. Dams, R. Gerth, B. Knaack, and R. Kuiper, Partial-order reduction
techniques for real-time model checking, Formal Methods for Industrial
Critical Systems (Amsterdam), no. 10, May 1998, pp. 469-482.

V. Diekert and G. Rozenberg (eds.), The book of traces, World Scientific,
1995.

D. D’Souza and P.S. Thiagarajan, Distributed interval automata: A sub-
class of timed automata, 1998, Internal Report TCS-98-3.

P. Godefroid, Partial-order methods for the verification of concurrent
systems: an approach to the state-explosion problem, LNCS, vol. 1032,
Springer-Verlag Inc., New York, NY, USA, 1996.

D. Lugiez, P. Niebert, and S. Zennou, A Partial Order Semantics Ap-
proach to the Clock Explosion Problem of Timed Automata, Rapport de
Recherche, Laboratoire d’Informatique Fondamentale de Marseille, Jan-
uary 2004, available from http://www.1lif .univ-mrs.fr/Rapports.

K. Larsen, P. Pettersson, and W. Yi, Model-checking for real-time sys-
tems, Fundamentals of Computation Theory, Lecture Notes in Computer
Science, August 1995, Invited talk, pp. 62-88.

Marius Minea, Partial order reduction for verification of timed systems,
Ph.D. thesis, Carnegie Mellon University, 1999.

X. Nicollin, J. Sifakis, and S. Yovine, Compiling real-time specifica-
tions into extended automata, IEE Transactions on Software Engineering,
vol. 18, September 1992, pp. 794-804.

	Introduction
	Basics
	Clocked and Timed Mazurkiewicz Traces
	A Language Theoretic View
	Event Zones for the Representation of $lesssim _I$
	Catchup Preorder for Language Emptiness Checking

