
Liveness with Incomprehensible Ranking�

Yi Fang1, Nir Piterman2, Amir Pnueli1,2, and Lenore Zuck1

1 New York University, New York, {yifang,amir,zuck}@cs.nyu.edu
2 Weizmann Institute, Rehovot, Israel Nir.Piterman@weizmann.ac.il

Amir.Pnueli@weizmann.ac.il

Abstract. The methods of Invisible Invariants and Invisible Ranking were deve-
loped originally in order to verify temporal properties of parameterized systems
in a fully automatic manner. These methods are based on an instantiate-project-
and-generalize heuristic for the automatic generation of auxiliary constructs and a
small model property implying that it is sufficient to check validity of a deductive
rule premises using these constructs on small instantiations of the system. The
previous version of the method of Invisible Ranking was restricted to cases where
the helpful assertions and ranking functions for a process depended only on the
local state of this process and not on any neighboring process, which seriously
restricted the applicability of the method, and often required the introduction of
auxiliary variables.
In this paper we extend the method of Invisible Ranking to cases where the helpful
assertions and ranking functions of a process may also refer to other processes. We
first develop an enhanced version of the small model property, making it applicable
to assertions that refer both to processes and their immediate neighbors. This
enables us to apply the Invisible Ranking method to parameterized systems with
ring topologies. For cases where the auxiliary assertions refer to all processes,
we develop a novel proof rule which simplifies the selection of the next helpful
transition, and enables the validation of the premises possible under the (old) small
model theorem.

1 Introduction

Uniform verification of parameterized systems is one of the most challenging problems
in verification today. Given a parameterized system S(N) : P [1]‖ · · · ‖P [N] and a
property p, uniform verification attempts to verify S(N) |= p for every N > 1. One
of the most powerful approaches to verification which is not restricted to finite-state
systems is deductive verification. This approach is based on a set of proof rules in which
the user has to establish the validity of a list of premises in order to validate a given
property of the system. The two tasks that the user has to perform are:

1. Identify some auxiliary constructs which appear in the premises of the rule;
2. Use the auxiliary constructs to establish the logical validity of the premises.

� This research was supported in part by NSF grant CCR-0205571, ONR grant N000140310916,
the Minerva Center for Verification of Reactive Systems, the European Community IST project
“Advance”, and the Israel Science Foundation grant 106/02-1.

K. Jensen and A. Podelski (Eds.): TACAS 2004, LNCS 2988, pp. 482–496, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Liveness with Incomprehensible Ranking 483

When performing manual deductive verification, the first task is usually the more dif-
ficult, requiring ingenuity, expertise, and a good understanding of the behavior of the
program and the techniques for formalizing these insights. The second task is often per-
formed using theorem provers such as pvs [OSR93] or step [BBC+95], which require
user guidance and interaction, and place additional burden on the user. The difficulties
in the execution of these two tasks are the main reason why deductive verification is not
used more widely.

A representative case is the verification of invariance properties using the invariance
rule of [MP95]. In order to prove that assertion r is an invariant of program P , the rule
requires coming up with an auxiliary assertionϕwhich is inductive (i.e. is implied by the
initial condition and is preserved under every computation step) and which strengthens
(implies) r.

In [PRZ01,APR+01] we introduced the method of invisible invariants, which pro-
poses a method for automatic generation of the auxiliary assertion ϕ for parameterized
systems, as well as an efficient algorithm for checking the validity of the premises of the
invariance rule. In [FPPZ04] we extended the method of invisible invariants to invisi-
ble ranking, by applying the method for automatic generation of auxiliary assertions to
general assertions (not necessarily invariant), and proposing a rule for proving liveness
properties of the form �(p → �q) (i.e, progress properties) that embeds the generated
assertions in its premises, and efficiently checks for their validity.

The generation of invisible auxiliary constructs is based on the following idea: It is
often the case that an auxiliary assertion ϕ for a parameterized system has the form q(i),
∀i.q(i) or, more generally, ∀i �= j.q(i, j). We construct an instance of the parameterized
system taking a fixed value N0 for the parameter N . For the finite-state instantiation
S(N0), we compute, using bdd-techniques, some assertion ψ, which we wish to gene-
ralize to an assertion in the required form. Let r1 be the projection of ψ on process index
1, obtained by discarding references to all variables which are local to all processes
other than P [1]. We take q(i) to be the generalization of r1 obtained by replacing each
reference to a local variable P [1].x by a reference to P [i].x. The obtained q(i) is our
candidate for the body of the inductive assertion ϕ : ∀i.q(i). We refer to this part of the
process as project&generalize. For example, when computing invisible invariants, ψ is
the set of reachable states of S(N0). The process can be easily generalized to generate
assertions of the type ∀i1, . . . , ik.p(�i).

Having obtained a candidate for the assertion ϕ, we still have to check the validity of
the premises of the proof rule we wish to employ. Under the assumption that our assertio-
nal language is restricted to the predicates of equality and inequality between bounded
range integer variables (which is adequate for many of the parameterized systems we
considered), we proved a small model theorem, according to which, for a certain type
of assertions, there exists a (small) bound N0 such that such an assertion is valid for
every N iff it is valid for all N ≤ N0. This enables using bdd techniques to check the
validity of such an assertion. The assertions covered by the theorem are those that can
be written in the form ∀�i∃�j.ψ(�i,�j), where ψ(�i,�j) is a quantifier-free assertion which
may refer only to the global variables and the local variables of P [i] and P [j].

Being able to validate the premises on S[N0] has the additional important advantage
that the user never sees the automatically generated auxiliary assertion ϕ. This assertion
is produced as part of the procedure and is immediately consumed in order to validate the
premises of the rule. Being generated by symbolic bdd techniques, the representation of

484 Y. Fang et al.

the auxiliary assertions is often extremely unreadable and non-intuitive, and will usually
not contribute to a better understanding of the program or its proof. Because the user
never gets to see it, we refer to this method as the “method of invisible invariants.”

As shown in [PRZ01,APR+01], embedding a ∀�i.q(�i) candidate inductive invariant in
the main proof rule used for safety properties results in premises that fall under the small
model theorem. In [FPPZ04], the proof rule used for proving progress properties requires
that some auxiliary constructs have no quantifiers in order to result in ∀∃-premises. In
particular, it requires the “helpful assertions”, describing when a transition is helpful
(thus, leads to a lower ranked state), to be quantifier-free. This is the case for many
simple protocols. In fact, many parameterized protocols that have been studied in the
literature can be transformed into protocols that have unquantified helpful transitions
by adding some auxiliary variables that allow, in each state, to determine the helpful
assertions.

In this paper, we extend the method of invisible ranking and make it applicable to a
much wider set of protocols in two directions:

• The first extension allows expression such as i ± 1 to appear both in the transition
relation as well as the auxiliary constructs. This extension is especially important
for ring algorithms, where many of the assertion have a p(i, i + 1) or p(i, i − 1)
component.

• The second extension, allows helpful assertions (and ranking functions) for, say
process i, to be of the form h(i) = ∀j.H(i, j), where H(i, j) is a quantifier-free
assertion. Such helpful assertions are common in “unstructured” systems where
whether a transition of one process is helpful depends on the states of all its neighbors.
Substituted in the standard proof rules for progress properties, such helpful assertions
lead to premises which do not conform to the required ∀∃ form, and therefore cannot
be validated using the small model theorem.

To handle the first extension, we establish a new small model theorem, to which we
refer as the modest model theorem (introduced in Subsection 3.1). This theorem shows
that, similarly to the small model theorem of [PRZ01] and [FPPZ04], ∀∃-premises,
containing i± 1 sub-expressions, can be validated on relatively small models. The size
of the models, however, is larger compared to the previous small model theorem.

To handle the second extension, we introduce a novel proof rule: The main difficulty
with helpful assertions of the form h(i) = ∀j.H(i, j) is in the premise (D4 of rule
DistRank of Section 2) which claims that every “pending” state has some helpful
transitions enabled on it. Identifying the particular helpful transition for each pending
state is the hardest step when applying the rule. The new rule, PreRank (introduced in
Section 4), implements a new mechanism for selecting the helpful transitions based on
the installment of a pre-order among the helpful transitions in each state. The “helpful”
transition is identified as any transition which is minimal according to this pre-order.

We emphasize that the two extensions are part of the same method, so that we can
handle systems that both use ±1 and require universal helpful assertions. For simplicity
of exposition, we separate the extensions here.

We show the applicability of the extensions on two algorithms, a solution to the
Dining Philosophers problems that uses ±1 (but does not require quantified helpful
assertions), and the Bakery algorithm that requires quantified helpful assertions (but
does not use ±1).

Liveness with Incomprehensible Ranking 485

The paper is organized as follows: In Section 2 we present the general computational
model of fds and the restrictions which enable the application of the invisible auxiliary
constructs methods. We also review the small model property which enables automatic
validation of the premises of the various proof rules. In addition, we outline a proce-
dure that replaces compassion by justice requirements, describe the DistRank proof
rule, and explain how we automatically generate ranking and helpful assertions for the
parameterized case. In Section 3 we describe the modest model theorem which allows
handling of i±1 expressions within assertions, and demonstrate these techniques on the
Dining Philosopher problem. In Section 4 we present the new PreRank proof rule that
uses pre-order among transitions, discuss how to automatically obtain the pre-order, and
demonstrate the techniques on the Bakery algorithm. All our examples have been run
on tlv [Sha00]. The interested reader may find the code, proof files, and output of all
our examples in cs.nyu.edu/acsys/Tlv/assertions.

Related Work. The problem of uniform verification of parameterized systems is, in
general, undecidable [AK86]. One approach to remedy this situation, pursued, e.g., in
[EK00], is to look for restricted families of parameterized systems for which the problem
becomes decidable. Unfortunately, the proposed restrictions are very severe and exclude
many useful systems such as asynchronous systems where processes communicate by
shared variables.

Another approach is to look for sound but incomplete methods. Representative works
of this approach include methods based on: explicit induction ([EN95]), network invari-
ants that can be viewed as implicit induction ([LHR97]), abstraction and approximation
of network invariants ([CGJ95]), and other methods based on abstraction ([GZ98]). Other
methods include those relying on “regular model-checking” (e.g., [JN00]) that overcome
some of the complexity issues by employing acceleration procedures, methods based
on symmetry reduction (e.g., [GS97]), or compositional methods (e.g., ([McM98]) that
combine automatic abstraction with finite-instantiation due to symmetry. Some of these
approaches (such as the “regular model checking” approach) are restricted to particu-
lar architectures and may, occasionally, fail to terminate. Others, require the user to
provide auxiliary constructs and thus do not provide for fully automatic verification of
parameterized systems.

Most of the mentioned methods only deal with safety properties. Among the me-
thods dealing with liveness properties, we mention [CS02] which handles termination
of sequential programs, network invariants [LHR97], and counter abstraction [PXZ02].

2 Preliminaries

In this section we present our computation model, the small model theorem, and the
proof rule we use for the verification of progress properties.

2.1 Fair Discrete Systems

As our computational model, we take a fair discrete system (fds) S = 〈V,Θ, ρ,J , C〉,
where

486 Y. Fang et al.

• V — A set of system variables. A state of S provides a type-consistent interpretation
of the variables V . For a state s and a system variable v ∈ V , we denote by s[v] the
value assigned to v by the state s. Let Σ denote the set of all states over V .

• Θ — The initial condition: An assertion (state formula) characterizing the initial
states.

• ρ(V, V ′) — The transition relation: An assertion, relating the values V of the va-
riables in state s ∈ Σ to the values V ′ in an S-successor state s′ ∈ Σ.

• J — A set of justice (weak fairness) requirements (assertions); A computation must
include infinitely many states satisfying each of the justice requirements.

• C — A set of compassion (strong fairness) requirements: Each compassion requi-
rement is a pair 〈p, q〉 of state assertions; A computation should include either only
finitely many p-states, or infinitely many q-states.

For an assertion ψ, we say that s ∈ Σ is a ψ-state if s |= ψ. A computation of an fds S
is an infinite sequence of states σ : s0, s1, s2, ..., satisfying the requirements:

• Initiality — s0 is initial, i.e., s0 |= Θ.
• Consecution — For each � = 0, 1, ..., the state s�+1 is an S-successor of s�. That

is, 〈s�, s�+1〉 |= ρ(V, V ′) where, for each v ∈ V , we interpret v as s�[v] and v′ as
s�+1[v].

• Justice — for every J ∈ J , σ contains infinitely many occurrences of J-states.
• Compassion – for every 〈p, q〉 ∈ C, either σ contains only finitely many occurrences

of p-states, or σ contains infinitely many occurrences of q-states.

2.2 Bounded Fair Discrete Systems

To allow the application of the invisible constructs methods, we place further restrictions
on the systems we study, leading to the model of fair bounded discrete systems (fbds),
that is essentially the model of bounded discrete systems of [APR+01] augmented with
fairness. For brevity, we describe here a simplified two-type model; the extension for
the general multi-type case is straightforward.

Let N ∈ N
+ be the system’s parameter. We allow the following data types:

1. bool: the set of boolean and finite-range scalars;
2. index: a scalar data type that includes integers in the range [1..N];
3. data: a scalar data type that includes integers in the range [0..N]; and
4. arrays of the types index
→ bool and index
→ data.

Atomic formulas may compare two variables of the same type. E.g., if y and y′ are index
variables, and z is a index
→ data, then y = y′ and z[y] < z[y′] are both atomic
formulas. For z : index
→ data and y : index, we also allow the special atomic formula
z[y] > 0. We refer to quantifier-free formulas obtained by boolean combinations of such
atomic formulas as restricted assertions.

As the initial condition Θ, we allow assertions of the form ∀i.u(i), where u(i) is a
restricted assertion.

As the transition relation ρ, as well as the justice requirements J , we allow assertions
of the form ∃�i∀�j.ψ(�i,�j) for a restricted assertion ψ(�i,�j). For simplicity, we assume that
all quantified variables, free variables, and index constants are of type index.

Liveness with Incomprehensible Ranking 487

in N : natural where N > 1
local y : array [1..N] of [0..N] where y = 0

N

i=1

P [i] ::




loop forever do


0 : NonCritical
1 : y := maximal value to y[i] while preserving order of elements
2 : await ∀j �= i : (y[j] = 0 ∨ y[j] > y[i])
3 : Critical
4 : y[i] := 0







Fig. 1. Program bakery

Example 1 (The Bakery Algorithm).
Consider program bakery in Fig. 1, which is a variant of Lamport’s original Bakery
Algorithm that offers a solution of the mutual exclusion problem for any N processes.
In this version of the algorithm, location �0 constitutes the non-critical section which
may non-deterministically exit to the trying section at location �1. Location �1 is the
ticket assignment location. Location �2 is the waiting phase, where a process waits until
it holds the minimal ticket. Location �3 is the critical section, and location �4 is the
exit section. Note that y, the ticket array, is of type index
→ data, and the program
location array (which we denote by π) is of type index
→ bool. Note also that the ticket
assignment statement at �1 is non-deterministic and may modify the values of all tickets.
Fig. 2 describes the fbds corresponding to program bakery.

V :
{

y : array[1..N] of [0..N]
π : array[1..N] of [0..4]

Θ : ∀i : π[i] = 0 ∧ y[i] = 0
ρ : ∃i : ∀j, k �= i : (π′[j] = π[j]) ∧



π[i] = π′[i] ∧ y′[i] = y[i] ∧ y′[j] = y[j]
∨ π[i] = 0 ∧ π′[i] ∈ {0, 1} ∧ y′[i] = y[i] ∧ y′[j] = y[j]
∨ π[i] = 1 ∧ π′[i] = 2 ∧ y′[j] < y′[i] ∧

(y[j] = 0 ↔ y′[j] = 0) ∧ (y[j] < y[k] ↔ y′[j] < y′[k])
∨ π[i] = 2 ∧ (y[j] = 0 ∨ y[j] > y[i]) ∧ π′[i] = 3 ∧ y′[i] = y[i] ∧ y′[j] = y[j]
∨ π[i] = 3 ∧ π′[i] = 4 ∧ y′[i] = y[i] ∧ y′[j] = y[j]
∨ π[i] = 4 ∧ π′[i] = 0 ∧ y′[i] = 0 ∧ y′[j] = y[j]




J :




{J1[i] : π[i] �= 1 | i ∈ [1..N]} ∪
{J2[i] : ¬(π[i] = 2 ∧ ∀j �= i (y[j] = 0 ∨ y[j] > y[i]) | i ∈ [1..N]} ∪
{J3[i] : π[i] �= 3 | i ∈ [1..N]} ∪
{J4[i] : π[i] �= 4 | i ∈ [1..N]}




C : ∅

Fig. 2. fbds for Program bakery

488 Y. Fang et al.

Let α be an assertion over V , and R be an assertion over V ∪ V ′, which can be viewed
as a transition relation. We denote by α ◦R the assertion characterizing all state which
are R-successors of α-states. We denote by α ◦R∗ the states reachable by an R-path of
length zero or more from an α-state.

2.3 The Small Model Theorem

Let ϕ : ∀�i∃�j.R(�i,�j) be an AE-formula, where R(�i,�j) is a restricted assertion which
refers to the state variables of a parameterized fbds S(N) and to the quantified (index)
variables�i and�j. LetN0 be the number of universally quantified and free index variables
appearing inR. The claim below (stated in [PRZ01] and extended in [APR+01]) provides
the basis for automatic validation of the premises in the proof rules:

Theorem 1 (Small model property).
Formula ϕ is valid iff it is valid over all instances S(N) for N ≤ N0 + 2.

The small model theorem allows to check validity ofAE-assertions on small model. In
[PRZ01,APR+01] we obtain, using project&generalize, candidate inductive assertions
for the set of reachable states that are A-formulae, checking their inductiveness required
checking validity of AE-formulae, which can be accomplished, using bdd techniques.
In [FPPZ04] we obtain, using project&generalize, candidate assertions for various as-
sertions (pending, helpful, ranking), all A- or E-formulae and, using these assertions, the
premises of the progress proof rule are again AE-formulae, which can be checked using
the theorem.

2.4 Removing Compassion

The proof rule we are employing to prove progress properties assumes a compassion-
less system. As was outlined in [KPP03], every fds S can be converted into an fds
S = 〈V, Θ, ρ,J, ∅〉 with no compassion, where

V : V ∪ {nvrp : boolean | 〈p, q〉 ∈ C} Θ : Θ ∧
∧

〈p,q〉∈C ¬nvrp

ρ : ρ ∧
(∧

〈p,q〉∈C nvrp → nvr′
p

)
J : J ∪ {nvrp ∨ q | 〈p, q〉 ∈ C}

This transformation adds to the system variables a new boolean variable nvrp for each
compassion requirement 〈p, q〉 ∈ C. The intended role of these variables is to identify,
nondeterministically, a point in the computation, beyond which p will never be true
again. The initial value of all these variables is 0 (false). The transition relation allows
nondeterministically to change the value of any nvrp variable from 0 to 1 but not vice
versa. Finally, to the justice requirements we add a new justice requirement nvrp ∨ q
requiring that there are infinitely many states in which either nvrp or q is true. Let Err
denote the assertion

∨
〈p,q〉∈C p ∧ nvrp, describing states where both p and nvrp hold,

which indicates that the prediction that p will never occur has been premature. For σ,
a computations of S, we denote by σ⇓V the sequence obtained from σ by projecting
each state on the variables of S. The relation between S and its compassion-free version
S can be stated as follows:

Sequence σ is a computation of S iff there exists σ an err -free computation of
S such that σ⇓V = σ.

Liveness with Incomprehensible Ranking 489

It follows that

S |= q =� �r iff S |= (q ∧ ¬Err) =� �(r ∨ Err)

Which allows us to assume that fbdss we consider here have an empty compassion set.

2.5 The DistRank Proof Rule

In [FPPZ04] we presented a proof rule for progress properties that exploits the structure
of parameterized systems, by associating helpful assertions and ranking functions with
each transition. The proof rule is presented in Fig. 3.

For a parameterized system with a transition domain T = T (N)
set of states Σ(N),
justice requirements {Jτ | τ ∈ T },
invariant assertion ϕ,
assertions q, r, pend and {hτ | τ ∈ T },
and ranking functions {δτ : Σ → {0, 1} | τ ∈ T }

D1. q ∧ ϕ → r ∨ pend
D2. pend ∧ ρ → r′ ∨ pend ′

D3. pend ∧ ρ → r′ ∨
∧

τ∈T δτ ≥ δ′
τ

D4. pend →
∨

τ∈T hτ

For every τ ∈ T
D5. hτ ∧ ρ → r′ ∨ h′

τ ∨ δτ > δ′
τ

D6. hτ → ¬Jτ

q =� �r

Fig. 3. The liveness rule DistRank

The rule is configured to deal directly with parameterized systems. Typically, the pa-
rameter domain provides a unique identification for each transition, and will have
the form T (N) = [0..k] × N for some fixed k. For example, in program bakery,
T (N) = [0..4]×N , where each justice transition can be identified asJm[i] form ∈ [0..4]
(corresponding to the various locations in each process), and i ∈ [1..N]. In the rule, as-
sertionϕ is an invariant assertion characterizing all the reachable states1. Assertion pend
characterizes the states which can be reached from a reachable q-state by an r-free path.
For each transition τ , assertion hτ characterizes the states at which this transition is hel-
pful. That is, these are the states whose every Jτ -satisfying successor leads to a progress
towards the goal, which is expressed by immediately reaching the goal or a decrease in
the ranking function δτ , as stated in premise D5. The ranking functions δτ are used in
order to measure progress towards the goal. See [FPPZ04] for justification of the rule.

Thus, in order to prove a progress property we need to identify the assertionsϕ, pend ,
and δτ , hτ for every τ ∈ T . For a parameterized system, the progress properties we are
considering are of the form ∀z.q(z)=��r(z). We instantiate the system to a small
number of processes, fix some process z, use project&generalize to obtain candidates

1 Note that a precondition for the application of the invisible ranking method is the successful
application of invisible invariants [PRZ01,APR+01].

490 Y. Fang et al.

for pend and δτ , hτ , and use the small model theorem to check the premises D1–D6,
as well as the inductiveness of ϕ. However, in order for this to succeed, the generated
assertions should adhere to some strict syntactic form. Most notably, hτ can either be a
restricted or an E-assertion in order to prove the validity of D4, since when hτ has an
A-fragment, D4 is no longer an AE-assertion.

Unfortunately, the success of this approach depends on the helpful assertions refer-
ring only the the process they “belong” to, without mention of any other process. In
many cases, this cannot be the case – helpful transitions need to refer to neighboring
processes. We study two such main cases: One in which processes are arranged in a ring.
and a process can access some variables of its immediate neighbors, and the other where
a process can access variables of all other processes.

3 Protocols with p(i, i + 1) Assertions

In many algorithms, particularly those based on ring architectures, the auxiliary asserti-
ons depend only on a process and its immediate neighbors. Consider such an algorithm
for a ring of size N . For every j = 1, .., N , define j ⊕ 1 = (j mod N) + 1 and
j � 1 = ((j − 2) mod N) + 1. We are interested in assertions of the type p(i, i ⊕ 1)
and p(i, i�1). Having the ±1 operator, these assertions do not fall into our small model
theorem that restricts the operators to comparisons (and, expressing ±1 using compa-
risons requires additional quantification.) However, as we show here, there is a small
model theorem that allows proving validity of ∀∃p(i, i ± 1) assertions. The size of the
model, however, is larger than the previous one, which is why we refer to it as “modest”.

3.1 Modest Model Theorem and Incomprehensible Assertions

Theorem 2 (Modest Model Theorem). Let S be a parameterized fbds with no data
variables2. Let ϕ : ∀�i∃�j.R(�i,�j) be such that �i and �j are index variables, and R(�i,�j)
is a restricted assertion augmented by operators ⊕1 and �1. Let K be the number of
universally quantified, index constants (including 1 and N), and free variables in ϕ.
Assume there are L index
→ bool arrays in S. Define N0 = (K − 1)2L +K. Then:

ϕ is valid over S(N) for every N ≥ 2 iff ϕ is valid over S(N) for every N ≤ N0

Proof Outline: Let ψ = ¬ϕ, i.e,. ψ = ∃�i∀�j.¬R(�i,�j). It suffices to show that if ψ is
satisfiable, then it is satisfiable in an instantiation S(N) for some N ≤ N0.

Assume that ψ is satisfiable in some state s of S(N1) and that N1 > N0. Let
u1, u2, . . . , uk be the values of index-variables (or constants) which appear existentially
quantified or free in ψ. Without loss of generality, assume 1 = u1 < u2 < . . . < uk =
N . Since there are at most K such values, k ≤ K. Since N1 > N0, there exist some
ui and ui+1 such that ui+1 − ui − 1 > 2L (i.e. the number of indices between ui and
ui+1 is greater than 2L). We construct a state s′, in an instantiation N ′

1 < N1, such that
s′ |= ψ. This process is repeated, until all uj’s are at most 2L apart.

Since ui+1 − ui − 1 > 2L, there exist two indices, m and n, such that ui < m <
n < ui+1 and a[n] = a[m] for every index
→ bool array a. Intuitively, removing the

2 This assumption is here for simplicity. It can be removed at the cost of increasing the bound.

Liveness with Incomprehensible Ranking 491

processes whose indices are m + 1, . . . , n does not impact any of the other processes
uj’s, since the index
→ bool values of their immediate neighbors remain the same.
After the removal, the remaining processes are renumbered, to reflect the removal.

Thus, we construct from s a new state s′, leaving the index variables in the range
1..m intact, and reducing the index indices larger than n by n − m, maintaining the
assignments of their index
→ bool variables. Obviously, s′ is a state ofS(N1−(n−m))
that satisfies ψ. ��
Remarks: The (outline of the) proof of the theorem implies that:

1. If there are index
→ bool variables in the system, for some non-boolean finite bool,
then 2L in the bound should be replaced by the product of the sizes of ranges of all
index
→ bool variables.

2. When the system has either p(i, i⊕1) or p(i, i�1) assertions, but not both, then the
bound computed in the theorem can be reduced by K − 1 to N0 = (K − 1)2L + 1.

3. If the free variables in the system are consecutive, then the bound computed can
be reduced accordingly. E.g., if in addition to 1 and N also N − 1 is in R, then
(K − 1)2L +K can be replaced by (K−2)2L +K, since there are at most K−2
“gaps” to collapse.

The generation of all assertions is completely invisible; so is the checking of the pre-
mises on the instantiated model. However, the instantiation of the modest model requires
feeding the assertions into the larger model. This can be done completely automatically,
or with some user intervention. Whichever it is, while the user may see the assertions,
there is no need for the user to comprehend them. In fact, being generated using bdd
techniques, they are often incomprehensible.

3.2 Example: Dining Philosophers

We demonstrate the use of the modest model theory on validating DistRank on a
classical solution to the dining philosophers problem.

Consider program Dine that offers a solution to the dining philosophers problem
for anyN philosophers. The program uses semaphores for forks. In this program,N−1
philosophers, P [1], . . . , P [N−1], reach first for their left forks and then for their right
forks, while P [N] reaches first for its right fork and only then for its left fork.

in N : natural where N > 1
local y : array [1..N] of bool where y = 1

N−1

i=1

P [i] ::




loop forever do


�0 : NonCritical
�1 : request y[i]
�2 : request y[i ⊕ 1]
�3 : Critical
�4 : release y[i], y[i ⊕ 1]







‖ P [N] ::




loop forever do


�0 : NonCritical
�1 : request y[1]
�2 : request y[N]
�3 : Critical
�4 : release y[N], y[1]







Fig. 4. Program Dine: Solution to the Dining Philosophers Problem

The semaphore instructions "request x" and "release x" appearing in the program
stand, respectively, for “〈when x = 1 do x := 0〉” and “x := 1”. Consequently, we have

492 Y. Fang et al.

a compassion requirement for each "request x", indicating that if a process is requesting
a semaphore that is available infinitely often, it obtains it infinitely often.

As outlined in Subsection 2.4, we transform the fbds into a compassion-free fbds by
adding two new boolean arrays, nvr1 and nvr2, each nvr�[i] corresponding to the request
of process i at location �. Fig. 5 describes the variables, initial conditions, and justice
requirements of the fbds we associate with Program Dine.

V :
{

y, nvr1, nvr2 : array [1..N] of bool
π : array [1..N] of [0..4]

}

Θ : ∀i. (π[i] = 0 ∧ y[i] ∧ ¬nvr1[i] ∧ ¬nvr2[i])

J :




{J1[i] : nvr1[i] ∨ π[i] �= 1 | i ∈ [1..N]} ∪
{J2[i] : nvr2[i] ∨ π[i] �= 2 | i ∈ [1..N]} ∪
{J3[i] : π[i] �= 3 | i ∈ [1..N]} ∪
{J4[i] : π[i] �= 4 | i ∈ [1..N]}




Fig. 5. fbds for Program Dine

The progress property of the original system is (π[z] = 1)=��(π[z] = 3), which
is proven in two steps, the first establishing that (π[z] = 1)=��(π[z] = 2) and the
second establishing that (π[z] = 2)=��(π[z] = 3). For simplicity of presentation, we
restrict discussion to the latter progress property.

Since P [N] differs from P [1], . . . , P [N−1], and since it accesses y[1], which is
also accessed by P [1], and y[N], which is also accessed by P [N−1], we choose some
z in the range 2, . . . , N − 2 and prove progress of P [z]. The progress property of the
other three processes can be established separately (and similarly.) Taking into account
the translation into a compassion-less system, the property we attempt to prove is

(π[z] = 2) =� �(π[z] = 3 ∨ Err) (2 ≤ z ≤ N − 2)

where

Err =
∨N−1

i=1 (π[i] = 1 ∧ y[i] ∧ nvr1[i]) ∨ (π[i] = 2 ∧ y[i+ 1] ∧ nvr2[i])
∨ (π[N] = 1 ∧ y[1] ∧ nvr1[N]) ∨ (π[N] = 2 ∧ y[N] ∧ nvr2[N])

3.3 Automatic Generation of Symbolic Assertions

Following the guidelines in [FPPZ04], we instantiate Dine according to the small model
theorem, compute the auxiliary concrete constructs for the instantiation, and abstract
them. Here, we chose an instantiation of N0 = 6 (obviously, we need N0 ≥ 4; it seems
safer to allow at least a chain of three that does not depend on the “special” three,
hence we obtained 6.) For the progress property, we chose z = 3, and attempt to prove
(π[3] = 2)=��(π[3] = 3 ∨ Err). Due to the structure of Program Dine, process P [i]
depends only on it neighbors, thus, we expect the auxiliary constructs to include only
assertions that refer to two neighboring process at the time. We chose to focus on pairs
of the form (i, i� 1).

We first compute ϕa(i, i� 1), which is the abstraction of the set of reachable states.
We distinguish between three cases, i = 1, i = N , and i = 2, . . . , N−1. For the first,

Liveness with Incomprehensible Ranking 493

we project the concrete ϕ on 1 and 6 (and generalize to 1 and N), for the second, we
project the concrete ϕ on 6 and 5 (and generalize to N and N−1), and for the third we
project the concrete ϕ on 3 and 2 (and generalize to i and i−1). Thus, for the general
i �∈ {1, N} case we obtain:

ϕa(i, i−1) =
(

(y[i−1] → π[i−1] < 2) ∧ (π[i−1] > 2 → π[i] < 2)
∧ (y[i] ↔ (π[i−1] < 3 ∧ π[i] < 2))

)

We then take : ϕa = ϕa(1, N) ∧ ϕa(N,N−1) ∧ ∀i �= 1, N.ϕa(i, i−1)
and define penda = reacha ∧ ¬Err ∧ π[3] = 2.

For the helpful sets, and the δ’s, we obtain, as expected, assertions of the type
p(i, i� 1). E.g., for every j = z + 1, . . . , N−1, we get

ha
2 [j] : π[j−1] = 2 ∧ nvr2[j−1] ∧ π[j] = 2 ∧ ¬nvr2[j]
δ2[j] : ¬nvr2[j] ∧ (π[j−1] = 2 ∧ nvr2[j−1] → π[j] < 3)

Thus, the proof of inductiveness of ϕ, as well as all premises of DistRank are now of
the form covered by the modest model theorem.

To compute the size of the instantiation needed, note that the product of ranges of
index
→ bool variables is 40 (5 locations, and 2 each for the fork and two nvr’s). There
are three free variables in the system, 1, N , and N−1. (The reason we include N−1 is,
e.g., its explicit mention in ϕa). Following the remarks on the modest model theorem,
since the three variables are consecutive, and since in all constructs we have only i� 1,
the size of the (modest) model we need to take is 40(u+ 1) + u, where u is the number
of universally quantified variables. Since u ≤ 2 for each of D1–D6 (it is 0 for D4, 1 for
D1, and 2 for D2, D3, and D5), we choose an instantiation of 122.

Construct bdd nodes

ϕ 1,779
pend 3,024
ρ 10,778
hp’s < 10
δ ≤ 10

Premise Time to Validate

ϕ (inductiveness) 0.39 seconds
D1, D4, D6 < 0.02 seconds
D2 0.42 seconds
D3 163.74 seconds
D5 138.59 seconds

Fig. 6. Run-time Results for Verifying Liveness of Program Dine

Fig. 6 shows the number of bdd nodes computed for each auxiliary construct and the
time it took to validate the inductiveness of ϕ and each of the premises D1–D6 on the
largest instantiation (122 philosophers). Checking all instantiations (2–122) took about
8 hours.

4 Imposing Ordering on Transitions

In this section we study helpful assertions that are “truly” universal. Such helpful asser-
tions are quite frequent. In fact, most helpful assertions are of the type h(i) : ∀j.p(i, j)
where i is the index of the process that can take a helpful step, and all other processes

494 Y. Fang et al.

(j) satisfy some supporting conditions. Incorporating such helpful assertions in Premise
D4 of rule DistRank results in an EA-disjunct which is out of the scope of the small
model theorem. We present a new proof rule for progress that allows to order the helpful
assertions in terms of the precedence of their helpfulness, so that “the helpful” assertion
is the minimal in the ordering, thus avoiding the disjunction in the r-h-s of Premise D4.

4.1 Pre-ordering Transitions

A binary relation � is a pre-order over domain D if it is reflexive, transitive, and total.
Let S be an fbds with set of transitions T (N) = [0..k] × N (as in Section 2). For
every state in S(N), define a pre-order � over T . From totality of �, every S(N)-state
has minimal τ�[i] ∈ T according to �. We replace D4 in DistRank with a premise
stating that for every pending state s, the minimal transition in s is also helpful at s. The
new rule PreRank appears in Fig. 7. To avoid confusion we name its premises R1–R9.
PreRank is exactly like DistRank, with the addition of a pre-order � : Σ → 2T ×T ,
rules checking that it is a pre-order (R7–R9), and replacement of D4 by R4.

For a parameterized system with a transition domain T = T (N)
set of states Σ(N),
justice requirements {Jτ | τ ∈ T },
invariant assertion ϕ,
assertions q, r, pend and {hτ | τ ∈ T },
ranking functions {δτ : Σ → {0, 1} | τ ∈ T },
and a pre-order � : Σ �→ 2T ×T

R1. q ∧ ϕ → r ∨ pend
R2. pend ∧ ρ → r′ ∨ pend ′

R3. pend ∧ ρ → r′ ∨
∧

τ∈T δτ ≥ δ′
τ

For every τ ∈ T
R4. pend ∧

(∧
τ1∈T τ � τ1

)
→ hτ

R5. hτ ∧ ρ → r′ ∨ h′
τ ∨ δτ > δ′

τ

R6. hτ → ¬Jτ

R7. pend → τ � τ
For every τ1, τ2 ∈ T
R8. pend ∧ τ � τ1 ∧ τ1 � τ2 → τ � τ2

R9. pend → τ � τ1 ∨ τ1 � τ

q =� �r

Fig. 7. The liveness rule PreRank

In order apply PreRank automatically, we have to generate �. We instantiateS(N0),
compute concrete �, and then project&generalize to compute an abstract �a . The main
problem is the computation of the concrete �. We define s |= τ1 � τ2 if:

s |= ((¬hτ2 ∧ pend) W (hτ1 ∧ pend)) ∨ ¬((¬hτ1 ∧ pend) W (hτ2 ∧ pend))
(1)

where W is the weak-until or unless operator.

Liveness with Incomprehensible Ranking 495

τ1[j] τ2[j] τ3[j] τ4[j]

τ1[i]
i = j

∨ j �= z
∨ π[z] = 2

j �= z ∧ π[z] = 2 ∧ α
∨

i = j = z ∧ π[z] = 1

j = z
∨ (π[z] = 2 ∧ α

∧π[j] �= 3)

j = z
∨ π[z] = 2 ∧ α

∧π[j] < 3

τ2[i]
j �= z

∨ π[z] = 2

i = j
∨ β
∨ π[j] �= 2
∨ j �= z ∧ y[z] < y[j]

j = z ∨ π[z] = 1
∨ i = j ∧ π[j] �= 3
∨ i �= j ∧ (π[j] /∈ {2, 3}∨

β ∨ y[z] < y[j])

ß

j = z ∨ π[z] = 1
∨ i = j ∧ π[j] < 3
∨ i �= j ∧ (π[j] < 2
∨ β ∨ y[z] < y[j])

τ3[i]
j �= z

∨ π[z] = 2

¬(i = j = z)∧
(π[z] = 1 ∨ β
∨π[i] = 3 ∨ α)

i = j ∨ j = z
∨ β ∨ π[i] = 3
∨ γ(2, 3)

(i = j ∧ π[i] = 2)
∨ β ∨ π[i] = 3
∨ γ(2..4)
∨ π[z] = 1 ∨ j = z

τ4[i]
j �= z

∨ π[z] = 2

¬(i = j = z)∧
(π[z] = 1 ∨ β
∨π[i] > 2 ∨ α)

j = z ∨ β
∨ i �= j ∧ π[i] > 2
∨ γ(2, 3)

i = j ∨ j = z
∨ β ∨ π[i] > 2
∨ γ(2..4)

Fig. 8. The pre-order, where α : π[j] = 2 → y[z] < y[j], β : π[i] = 2 ∧ y[i] < y[j], and
γ(L) : π[j] ∈ L → y[z] < y[j].

The intuition behind the first disjunct is that for a state s, hτ1 is “helpful earlier”
than hτ2 if every path leading from s that reaches hτ1 doesn’t reach hτ2 before. The
role of the second disjunct is to guarantee the totality of �, so that when hτ1 precedes
hτ2 in some computations, and hτ2 precedes hτ1 in others, we obtain both τ1 � τ2
and τ2 � τ1. To abstract a formula ϕ(τ�1 [i]) W ϕ(τ�2 [j]), we use project&generalize,
projecting onto processes i and j. To abstract the negation of such a formula, we first
abstract the formula, and then negate the result. Therefore, to abstract Formula (1), we
abstract each disjunct separately, and then take the disjunction of the abstract disjuncts.

4.2 Case Study: Bakery

Consider program bakery of Example 1. Suppose we want to verify (π[z] = 1) =�
�(π[z] = 3). We instantiate the system to N0 = 3, and obtain the auxiliary assertions
ϕ, pend , the h’s and δ’s3. After applying project&generalize, we obtain for h�[i], two
type of assertions. One is for the case that i = z, and then, as expected, h2[z] is the most
interesting one, having an A-construct claiming that z’s ticket is the minimal among
ticket holders. The other case is for j �= z, and there we have a similar A-construct (for
j’s ticket minimality) for � = 2, 3, 4. For the pre-order, one must consider τ�1 [i] � τ�2 [j]
for every �1, �2 = 1, ..., 4 and i = z �= j, i = j �= z, i, j �= z for (�1, i) �= (�2, j). The
results for τ�1 [i] � τ�2 [j] for i �= z that are not trivially t are listed in Fig. 8.

Using the above pre-order, we succeeded in validating Premises R1–R9 of PreRank,
thus establishing the liveness property of program bakery.

3 cs.nyu.edu/acsys/Tlv/assertions contains full list of assertions and pre-order definitions

496 Y. Fang et al.

References

[AK86] K. R. Apt and D. Kozen. Limits for automatic program verification of finite-state
concurrent systems. IPL, 22(6), 1986.

[APR+01] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with
automatically computed inductive assertions. In 13th CAV, LNCS 2102, 2001.

[BBC+95] N. Bjørner, I.A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H.B. Sipma, and
T.E. Uribe. STeP: The Stanford Temporal Prover, User’s Manual. Technical Report
STAN-CS-TR-95-1562, CS Department, Stanford University, Nov. 1995.

[CGJ95] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parametrized networks using ab-
straction and regular languages. In 6th CONCUR, LNCS 962, 395–407, 1995.

[CS02] M. Colon and H. Sipma. Practical methods for proving program termination. In 14th

CAV, LNCS 2404, 442–454, 2002.
[EK00] E.A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In

17th CADE, pages 236–255, 2000.
[EN95] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In 22nd POPL, 1995.
[FPPZ04] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with invisible ranking. In 5th

VMCAI, LNCS, 2004.
[GS97] V. Gyuris and A. P. Sistla. On-the-fly model checking under fairness that exploits

symmetry. In 4th TACAS, LNCS 1384, 424–438, 1998.
[GZ98] E.P. Gribomont and G. Zenner. Automated verification of szymanski’s algorithm. In

9th CAV, LNCS 1254, 1997.
[JN00] B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying

infinite-state systems. In 6th TACAS, LNCS 1785,2000.
[KPP03] Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair simulation and

trace inclusion. In 15th CAV, LNCS 2725, 381–392. 2003.
[LHR97] D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameterized

linear networks of processes. In 24th POPL, 1997.
[McM98] K.L. McMillan. Verification of an implementation of Tomasulo’s algorithm by com-

positional model checking. In10th CAV, LNCS 1427, 110–121, 1998.
[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. 1995.
[OSR93] S. Owre, N. Shankar, and J.M. Rushby. User guide for the PVS specification and

verification system (draft). Tech. report, CS Lab., SRI International, CA, 1993.
[PRZ01] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible

invariants. In 7th TACAS, LNCS 2031, 82–97, 2001.
[PXZ02] A. Pnueli, J. Xu, and L. Zuck. Liveness with (0, 1, ∞)-counter abstraction, In 14th

CAV, LNCS 2404, 107–122. 2002.
[Sha00] E. Shahar. The TLV Manual, 2000. http://www.wisdom.weizmann.ac.il/˜verify/tlv.

	Introduction
	Preliminaries
	Fair Discrete Systems
	Bounded Fair Discrete Systems
	The Small Model Theorem
	Removing Compassion
	The DistRank Proof Rule

	Protocols with p(i, i + 1) Assertions
	Modest Model Theorem and Incomprehensible Assertions
	Example: Dining Philosophers
	Automatic Generation of Symbolic Assertions

	Imposing Ordering on Transitions
	Pre-ordering Transitions
	Case Study: Bakery

	References

