
Numeric Domains with Summarized Dimensions

Denis Gopan1, Frank DiMaio1, Nurit Dor2, Thomas Reps1, and Mooly Sagiv2

1 Comp. Sci. Dept., University of Wisconsin; {gopan,dimaio,reps}@cs.wisc.edu
2 School of Comp. Sci., Tel-Aviv University; {nurr,msagiv}@post.tau.ac.il

Abstract. We introduce a systematic approach to designing summarizing ab-
stract numeric domains from existing numeric domains. Summarizing domains
use summary dimensions to represent potentially unbounded collections of nu-
meric objects. Such domains are of benefit to analyses that verify properties of
systems with an unbounded number of numeric objects, such as shape analysis,
or systems in which the number of numeric objects is bounded, but large.

1 Introduction

Verifying the correctness of complex software systems requires reasoning about numeric
quantities. In particular, an analysis technique may have to discover certain relationships
among values of numeric objects, such as numeric variables, numeric array elements, or
numeric-valued fields of heap-allocated structures [2]. For example, to verify that there
are no buffer overruns in a particular C program, an analysis needs to make sure that the
value of an index variable does not exceed the length of the buffer at each program point
where the buffer is accessed [16].

Numeric analyses have been a research topic for several decades, and a number
of numeric domains that allow to approximate numeric state of a system have been
designed over the years. These domains exhibit varying precision/cost tradeoffs, and
target different types of numeric properties. The list of existing numeric domains in-
cludes: non-relational domains: intervals [7,15], congruences [5]; weakly relational
domains: difference constraints [4], octagons [11]; relational domains: polyhedra [2,
6], trapezoidal congruences [10].

Existing numeric domains are able to keep track of only a fixed number of numeric
objects. Traditionaly, a finite set of stack-allocated numeric variables deemed important
for the property to be verified is identified for the analysis. The remaining numeric
objects, e.g., numeric array elements or heap-allocated numeric objects, are modeled
conservatively.

Two problems that plague existing numeric domains are:

– It may be impossible to verify certain numeric properties by considering only a
fixed number of the numeric objects in the system. For example, in programs that
use collections (or, in general, dynamic memory allocation), it is impossible to
determine statically the set of memory locations used by a program.

– The resources required for higher-precision relational numeric domains, such as
polyhedra, are subject to combinatorial explosion. This is due to the representation
of elements of the numeric domain; for instance, the number of elements in the frame

K. Jensen and A. Podelski (Eds.): TACAS 2004, LNCS 2988, pp. 512–529, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Numeric Domains with Summarized Dimensions 513

(1) for(i = 0; i < n; i++) {
(2) t = 0;
(3) for(k = ia[i]; k < ia[i+1]; k++) {
(4) j = ja[k];
(5) t += a[k] * x[j];
(6) }
(7) y[i] = t;
(8) }

(a)

0 ≤ ja[·] < n
0 ≤ ia[·] ≤ nnz

(b)

0 ≤ ja[·] < n
0 ≤ ia[·] ≤ nnz
0 ≤ k < nnz
0 ≤ i < n
0 ≤ j < n

(c)

Fig. 1. Multiplication of a sparse matrix by a vector: (a) multiplication code; (b) initial constraints,
imposed by CSR format; (c) constraints that represent the abstract numeric state at line 5.

representation of a polyhedron grows exponentially with the number of tracked
objects.

The typical approach to reasoning about an unbounded number of objects (or simply
a very large number of objects) is by employing abstraction. The set of objects is divided
into a fixed number of groups based on certain criteria. Each group is then represented
(summarized) by a single abstract object. The groups themselves need not be of bounded
size. As an example, consider TVLA, a framework for shape analysis, which concerns
the problem of determining “shape invariants” for programs that perform destructive
updating on dynamically allocated storage. TVLA uses so-called “canonical abstraction”
to create bounded-size representations of memory states [14,9]. To reason about numeric
properties in such a summarizing framework, an analysis needs to be able to capture
the relationships among values of groups of numeric objects, rather than relationships
among values of individual numeric objects. Moreover, what appears to be a natural way
of applying existing techniques is, in fact, unsound.

In this paper, we define a systematic approach for extending existing numeric do-
mains to support arbitrary summarization. The domain to be extended must support four
extra operations: expand, fold, add, and drop which will be disccused in detail in later
sections. The extended numeric domain exposes a standard numeric-domain interface.
For purposes of this paper, we assume that a client analysis has the responsibility of
indicating which abstract objects are summary ones. At one extreme, if the analysis does
not do any summarization, the extended domain operates exactly as the original domain.
In the presence of summarization, the extended domain produces safe answers, with
minimal loss of precision.

The program in Fig. 1(a) multiplies an (n×n) sparse matrix stored in the compressed
sparse row (CSR) format [13] by a vector x of size n. In the CSR format, a sparse matrix
is represented using three arrays:

– the array a, of size nnz, stores the matrix elements row by row (nnz is the number
of non-zero elements in the matrix);

– the array ja, of size nnz, stores the column indices for the elements in a; thus, CSR
format imposes the constraint 0 ≤ ja[·] < n on each element of the array ja;

514 D. Gopan et al.

– the array ia, of size n + 1, stores the offsets to the beginning of each row in the
arrays a and ja; thus, CSR format imposes the constraint 0 ≤ ia[·] ≤ nnz on each
element of the array ia.

Note that, if the matrix is properly represented in CSR format, both array acceses on line
5 (shown in bold) will never be out of bounds. Yet, most existing analyses are not able
to verify this property because array indices k and j are computed through the use of
indirection arrays, ia and ja.

We used the summarizing extension of the polyhedral numeric domain [2,6] to verify
that both array accesses in line 5 are, indeed, always in bounds, if the constraints imposed
by CSR format hold initially. We used two summary dimensions to represent all elements
of the arrays ia and ja, respectively. Such summarization allowed us to represent the
abstract numeric states of the program as 7-dimensional polyhedra. It follows directly
from the constraints shown in Fig. 1(c) that the values of both indices j and k at line 5
are within the bounds of the corresponding arrays.

The contributions this paper makes are

– The extended numeric domains constructed using our technique support arbitrary
summarization, which makes them suitable for a wide range of client analyses:
on the one hand, the analysis could be as simple as summarizing the values of all
elements of an array; on the other hand, it could be as involved as using canonical
abstraction for summarization (which would allow multiple, dynamically changing
segments of an array to be summarized separately—see Sect. 7).

– The requirements that we place on the numeric domain to be extended are minimal: a
safe implementation of four operations must be provided. Because of this flexibility,
the numeric domain that is most suitable for a problem can be employed by a client
analysis.

– When coupled with a suitable client, such as TVLA, our extended numeric domains
are able to operate on unbounded collections of numeric objects.

– For large fixed-size collections of numeric objects, our extended numeric domains
allow trading some precision for analysis efficiency (in terms of both memory usage
and running time).

As will be illustrated in Ex. 1, what looks like a natural approach to performing operations
over values in an extended numeric domain is actually unsound. The formalization of a
sound approach is the major technical contribution of this paper.

The remainder of the paper is organized as follows: Sect. 2 discusses concrete se-
mantics. Sect. 3 introduces the concept of reducing dimensionality via summarization.
Sect. 4 describes what is involved in extending a standard numeric domain (i.e., as long
as it meets certain assumptions about various primitive operations). Sect. 5 describes
how to perform safe computations on values of extended numeric domains. Sect. 6 dis-
cusses related work. Sect. 7 sketches the application of this technique to a situation in
which multiple, dynamically changing segments of an array are summarized separately.

2 Concrete Semantics

Our goal is to perform static analysis of systems in which the number of numeric objects
(i) may change as the system operates, and (ii) cannot be bounded statically. A concrete

Numeric Domains with Summarized Dimensions 515

numeric state of the system, denoted S�, is an assignment of a value to each numeric
object. In each particular state the number of numeric objects is finite, and will be denoted
as NS�

, or N when S� is clear from context. We denote the set of objects in state S�

by ObjS�

= {v1, ..., vN}. Following the traditional numeric analysis approach, we
associate each numeric object with a dimension of an N -dimensional space, and encode
a concrete numeric state of the system as an N -dimensional point. We use a function
dimS�

: ObjS� → {1, ..., N} to map numeric objects to corresponding dimensions.
Let V denote a set of possible numeric values (such as Z or Q). Because the number

of numeric objects, and hence the number of dimensions, is not bounded a priori, a
concrete numeric state may be a point in a space of arbitrary (finite) dimension:

S� ∈ V
+, where V

+ =
∞⋃

k=1

V
k

Given an expression e(w1, ..., wk), where wi ∈ ObjS�

, we evaluate it at a concrete
numeric state S� as follows: let x[i] denote the i-th component of a vector x ∈ V

N ; we
define

[[e(w1, ..., wk)]]�(S�) = e(S�[dimS�

(w1)], ..., S�[dimS�

(wk)]).

To each program point we attach a set of concrete states D� ⊆ V
+. We define the

program’s concrete collecting semantics using the following transformers:

– Numeric tests filter the set of concrete states:

[[e(w1, ..., wk)?]]�(D�) =
{
S� ∈ D� : [[e(w1, ..., wk)]]�(S�) = true

}

– Assignments change the value of a single numeric object (in each concrete state):

[[vi ← e(w1, ..., wk)]]�(D�) =

=





S̄� : ∃S� ∈ D� s.t.




ObjS̄�

= ObjS�

, dimS̄� ≡ dimS�

S̄�[dimS�

(vi)] = [[e(w1, ..., wk)]]�(S�),
S̄�[j] = S�[j] for j �= dimS�

(vi)










– Union collects the sets at control flow merge points.

Determining the exact sets of concrete states at each program point is, in general,
undecidable. The goal of static analysis is to collect at each program point an overap-
proximation of the set of concrete states that may arise there. We use the framework of
abstract interpretation to formalize such analyses.

Existing numeric analyses identify overapproximations of the sets of concrete states
that arise at program points using a set representation that can be easily stored and
manipulated in a computer. Such value spaces are called numeric domains. The assump-
tion that existing numeric domains make is that the number of numeric objects is fixed
throughout the analysis, thus allowing sets of concrete states to be represented as subsets
of a space with a fixed number of dimensions.

In the semantics formulated above, however, the concrete numeric states arising at
a given program point belong to spaces of possibly different numbers of dimensions.

516 D. Gopan et al.

Therefore, existing numeric domains cannot be used directly. In the next section, we
show how a set of points in spaces of different dimensionalities can be abstracted by a
subset of a space with a fixed, smaller number of dimensions.

3 Summarizing Numeric Domains

In this section, we introduce a numeric domain that uses a subset of a space with a
fixed number of dimensions to overapproximate a set of points in spaces of different
dimensionalities. The idea behind the abstraction is that some dimensions of the fixed-
dimensional space will represent the values of potentially unbounded collections of
numeric objects, rather than the values of individual objects. The numeric domain is not
able to differentiate between the individual objects that are members of such collections,
and preserves only overall properties of the collection, e.g., lower and upper bounds on
the values of its members.

We call the process of grouping numeric objects into a collection summarization.
In this paper, for the sake of simplifying the presentation, we assume that each client
analysis that uses one of our summarizing numeric domains is responsible for defining
which numeric objects are to be summarized, and which collections are to be formed.
In the simplest case, as illustrated in the introduction, all elements of an array may be
summarized by a single dimension. Ultimately, our goal is to implement more compli-
cated summarizations, including canonical abstraction [14], which would allow parts of
an array to be summarized, and would let the summarization partition on array elements
change during the course of the analysis; see Sect. 7 for more on combining a client
analysis that uses canonical abstraction with a summarizing numeric domain.

Formally, we assume that the concrete numeric objects are separated into M groups,
where M is determined by the client analysis. Some groups may contain just one numeric
object, while others may contain a set of objects of a priori unbounded size. In the abstract
numeric state S, each group is represented by an abstract numeric object. We denote
the set of abstract numeric objects by ObjS = {u1, ...uM}. The abstract objects that
represent groups with more than one element are called summary objects. For describing
and justifying our techniques, we will refer to (conceptual) mappings that map numeric
objects of a concrete state S�, to the corresponding numeric objects of an abstract state
S; such a mapping is called a summarization function, e.g., Fsum : ObjS� → ObjS .

A summarizing abstract numeric domain represents an abstract numeric state S as
a subset of M -dimensional space, where each dimension corresponds to an abstract
numeric object. Function dimS : ObjS → {1, ..., M} maps an abstract object to its
corresponding dimension.

The abstraction of a concrete numeric state is an M -dimensional subset constructed
by folding together the summarized dimensions. For example, as illustrated in Fig. 2, if
S� = (1, 2, 3, 4) ∈ V

4 and the summarization function is defined as

Fsum = [v1 	→ u1, v2 	→ u2, v3 	→ u2, v4 	→ u2]

the abstraction of S� is S = {(1, 2), (1, 3), (1, 4)} ⊆ V
2. Note that the abstraction loses

the distinction between the values of summarized numeric objects; e.g., under the above

Numeric Domains with Summarized Dimensions 517

v1

v2

v3

v4

u1

u2

π2

π3

π1

1

2

3

4

2

3

4

1

(a) (b)

Fig. 2. Abstraction example: (a) concrete numeric state S�; (b) abstraction of S�. Fsum = [v1 �→
u1, v2 �→ u2, v3 �→ u2, v4 �→ u2] and ΠFsum = {π1, π2, π3}.

summarization function, S is also an abstraction for the concrete states (1, 3, 2, 4) and
(1, 4, 3, 2).

Let S� ∈ V
N be a concrete numeric state, whose abstraction is S ⊆ V

M . Each point
x ∈ S is constructed by taking an orthogonal projection π : V

N → V
M of S�, such that

x[dimS(u)] = π(S�)[dimS(u)] = S�[dimS�

(v)]

where u ∈ ObjS , v ∈ ObjS�

and u = Fsum(v). We denote the set of all such projections
as ΠFsum . As shown in Fig. 2, given the above summarization function, the set ΠFsum

contains three projections: π1 projects the dimensions corresponding to v1 and v2, π2
projects the dimensions corresponding to v1 and v3, and π3 projects the dimensions
corresponding to v1 and v4.

Formally, given a summarization function Fsum, we say that an abstract state S ⊆
V

M represents a concrete state S� (denoted by S�
Fsum S) iff:

S ⊇ {
x ∈ V

M : x = π(S�) for some π ∈ ΠFsum

}

Sometimes, when Fsum is not important for the discussion, we will omit it from the
notation and write S�
 S. It is easy to see that abstract states form an infinite-height
lattice ordered by set inclusion, where the bottom element is the empty set, and the join
and the meet operations correspond to set union and set intersection, respectively.

Given a set of concrete states D� ⊆ V
+, and an abstract state S ⊆ V

M , we say that
D�
 S if S abstracts every element in D�, i.e., S�
 S for all S� ∈ D�.

We use existing numeric domains to store and manipulate M -dimensional subsets
that correspond to abstract states. Numeric domains impose certain restrictions on the
subsets they are able to represent; therefore, it may be impossible to represent an ab-
stract numeric state precisely. In such cases, an overapproximation of that abstract state
is represented. For example, the abstract state {(1, 2), (1, 3), (1, 4)} ⊆ V

2 cannot be
represented as a polyhedron directly, but can be approximated by the polyhedron

{
x ∈ V

2 : x[1] = 1 and 2 ≤ x[2] ≤ 4
}

.

518 D. Gopan et al.

Because these sets are conceptually different from the sets that occur in the existing
numeric domain, we need to extend the semantics of the existing numeric domain in
order to be able to compute safely with the abstract states of the extended numeric
domain. In the next section, we describe the operations that a given numeric domain
must support to be used with our abstraction technique.

4 Extending Numeric Domains

As was pointed out in the introduction, a number of numeric domains have been designed,
and undoubtedly more will be proposed in the future. These domains target different nu-
meric properties, and exhibit different precision/cost tradeoffs. What is common among
all of them is that they use a compact representation for a subset of a multidimensional
space, and define a number of operations that allow a client analysis to (i) evaluate certain
kinds of numeric conditions, and (ii) transform an underlying subset according to the
semantics of a program statement.

The assumption that all existing numeric domains make is that each point within
the represented subset corresponds to a concrete numeric state of the system, and vice
versa. This assumption is relied on when proving the correctness of the implementations
of operations for transforming the set, and for evaluating conditions. In contrast, in
our abstraction a concrete state corresponds to a collection of points within the subset
represented by a numeric domain, and each individual point within the represented subset
may belong to the abstraction of multiple concrete states.

To provide for sound evaluation of conditions and set transformations induced by
program statements, the numeric domain needs to be extended with several extra opera-
tions that map between subsets of spaces of different dimensionality. In this section, we
give a detailed description of these operations, and show how they can be implemented
for several existing numeric domains.

4.1 Standard Semantics of a Numeric Domain

Let us define the standard interface of a numeric domain. The operations that the numeric
domain exposes are abstract state transformers that manipulate subsets of N -dimensional
space. As mentioned above, the semantics of the state transformers is defined under the
assumption that each concrete numeric state corresponds to a single point within the
abstract state and vice versa.

Let di denote the i-th dimension of V
N . Let formula e(w1, ..., wk), where wi ∈

{d1, ..., dN}, denote either a numeric condition or a numeric computation. We will use
the following notation to denote the standard numeric domain operations

– Numeric tests: [[e(w1, ..., wk)?]]std

– Assignments: [[di ← e(w1, ..., wk)]]std

– Join: �std

– Widening operator: �std

The detailed definitions of the abstract state transformers can be found in the corre-
sponding papers [7,15,4,11,5,2,10].

Numeric Domains with Summarized Dimensions 519

The operations defined below insert and remove arbitrary dimensions of the mul-
tidimensional space. After each such operation, dimensions with indices above that of
the inserted or removed dimension have to be renumbered. To somewhat simplify the
presentation by avoiding recomputation of dimension indices within the operation defi-
nitions, we introduce a function [·]′ that maps the dimensions of the original space to the
corresponding dimensions of the resulting space after the j-th dimension has been re-
moved (used by operations fold and drop). Similarly, we introduce a dimension mapping
[·]′′ for inserting the new dimension j (used by operations expand and add).

k′ =






k − 1 if k > j
k if k < j
undefined if k = j

k′′ =
{

k + 1 if k ≥ j
k if k < j

4.2 The fold Operation

The fold operation formalizes the concept of folding dimensions together. Let S ⊆ V
N .

The foldi,j transforms S into a subset of V
N−1 by folding dimension j into dimension

i. For an arbitrary subset of V
N , foldi,j is defined as follows:

foldi,j(S) =
{

x ∈ V
N−1 : ∃y ∈ S s.t.

[
(x[i′] = y[i]) ∨ (x[i′] = y[j])
∧ ∀k �= i, j

[
x[k′] = y[k]

]
]}

If multiple dimensions need to be folded together, we construct the corresponding trans-
formation by composing several fold operations.

Note that the fold operation as defined above is not closed in most existing numeric
domains. For example, consider a two-dimensional polyhedron

P =
{
x ∈ V

2 : 1 ≤ x[1] ≤ 3 and 7 ≤ x[2] ≤ 12
}

Clearly, fold1,2(P) = {x ∈ V : (1 ≤ x ≤ 3) ∨ (7 ≤ x ≤ 12)} is not a polyhedron. For
such domains, we define [[foldi,j]]std(S) to be an overapproximation of the set foldi,j(S)
that is representable in that domain, e.g., for polyhedral domain, [[fold1,2]]std(P) = {x ∈
V : 1 ≤ x ≤ 12}.

4.3 The expand Operation

The expand operation is essentially the opposite of the fold operation. Let S ⊆ V
N .

The expandi,j transforms S into a subset of V
N+1 by creating an exact copy of the i-th

dimension and inserting it as a new dimension j. For an arbitrary subset of V
N , the

expandi,j operation is defined as follows:

expandi,j(S) =
{

x ∈ V
N+1 : ∃y, z ∈ S s.t.

[
x[i′′] = y[i] ∧ x[j] = z[i]

∧ ∀ k �= i
[
x[k′′] = y[k] = z[k]

]
]}

For instance, for the example from Sect. 3, expand2,3({(1, 2), (1, 3), (1, 4)}) is equal to
{(1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 3, 2), (1, 3, 3), (1, 3, 4), (1, 4, 2), (1, 4, 3), (1, 4, 4)}.
More complex expansions can be constructed by composing several expandi,j opera-
tions.

520 D. Gopan et al.

Let S ⊆ V
N . Note that the expandi,j(S) constructs the maximal subset S′ ⊆ V

N+1,
such that foldi,j(S′) is S. In fact, fold and expand form a Galois insertion:

expandi,j ◦ foldi,j(S) ⊇ S and foldi,j ◦ expandi,j(S) = S

Unlike fold, the expand operation is closed on all of the existing numeric domains
we have experimented with so far, and is likely to be closed for any numeric domain. Our
conviction is based on the fact that the values along the i-th dimension of the original
subset are precisely represented by the numeric domain. Therefore, the values along the
newly introduced j-th dimension can also be precisely represented in that domain.

4.4 The add and drop Operations

The add and drop are two auxiliary operations that add new dimensions and remove
specified dimensions from a multidimensional space. Let S ⊆ V

N . The addj(S) embeds
S into V

N+1 after inserting a new dimension, j, into V
N .

addj(S) =
{
x ∈ V

N+1 : ∃y ∈ S s.t. x[j] ∈ V and ∀ k
[
x[k′′] = y[k]

]}

The dropj(S) computes the projection of S onto V
N−1, removing the dimension j,

from V
N .

dropj(S) =
{
x ∈ V

N−1 : ∃y ∈ S s.t. ∀ k �= j
[
x[k′] = y[k]

]}

The addj operation is closed in all numeric domains and can be implemented pre-
cisely. The dropj operation is closed in the numeric domains that we have experimented
with; furthermore, we were able to design precise implementations of [[dropj]]std for
those domains. Thus, for the sake of the minimality arguments given in Sect. 5, we
assume that the numeric domain to be extended must furnish a precise implementation
of the drop operation.

4.5 Implementation Examples

In this section, we show how to implement the above operations for several existing
numeric domains. For this discussion we have chosen numeric domains that use a diverse
set of representations: the non-relational interval domain [7,15], the fully relational
polyhedral domain [2,6], and a family of weakly-relational domains constructed in [12].

In the interval domain, the subset of a multidimensional space is represented by main-
taining upper and lower bounds for values along each dimension, i.e., an N -dimensional
subset is represented by an ordered set I of N intervals. The [[addj]]int(I) operation is
defined by inserting interval [−∞,∞] as the new j-th interval into I . The [[dropj]]int(I)
operation removes the j-th interval from I . The operation expandi,j is defined as follows:

[[expandi,j]]int(I) = J where J [j] = I[i] and ∀k[
J [k′′] = I[k]

]

Numeric Domains with Summarized Dimensions 521

The foldi,j operation is not closed on the interval domain, hence we define [[foldi,j]]int(I)
to overapproximate the resulting set as follows:

[[foldi,j]]int(I) = J where J [i′] = I[i] �int I[j] and ∀k �= i, j
[
J [k′] = I[k]

]

In the polyhedral domain, the subset of the multidimensional space is represented as
an intersection of a finite set of linear constraints, i.e., by a polyhedron. Most polyhedral
libraries, such as Parma [1], provide routines for adding and removing dimensions. The
operation [[addj]]poly and [[dropj]]poly may be implemented by direct invocation of those
routines. A little extra care may be necessary to maintain the proper numbering of the
dimensions. Also, note that the operation [[dropj]]poly directly corresponds to Fourier-
Motzkin elimination [3] of dimension j.

The [[expandi,j]]poly(P) operations is implemented by augmenting the set of con-
straints that represent P : for each linear constraint involving dimension i, we add a
similar constraint with dimension j substituted for dimension i (and all constraints are
remapped according to [·]′′). The foldi,j operation is not closed for polyhedra, therefore
we define [[foldi,j]]poly(P) to compute an overapproximation of the set foldi,j(P) as
follows:

[[foldi,j]]poly(P) = [[dropj]]poly(P �poly [[di ← dj]]poly(P))

In weakly-relational domains, a subset of V
N is represented by a set of constraints of

the form dj−di ∈ C, where dj and di refer to the dimensions j and i, respectively. C is an
element of a non-relational base numeric domain, such as the interval domain.A weakly-
relational domain maintains an N ×N matrix m, where each element mij ∈ C encodes
a constraint dj − di ∈ mij . A closure operation [·]� that propagates the constraints
through the matrix is defined. For more details, see [12].

The [[addj]]wr operation is implemented by inserting the j-th row and j-th column
into the matrix m. The elements of the inserted row and column are initialized to the
� element of the corresponding non-relational base domain. The [[dropj]]wr operation
is implemented by removing the j-th row and j-th column from the closed matrix m�.
The operation [[expandi,j]]wr is implemented by inserting copies of the i-th row and i-th
column into matrix m� as the (new) j-th row and j-th column, respectively; the elements
mij , mji, and mjj are set to �. The operation [[foldi,j]]wr is implemented by using m�

and recomputing the elements of its i-th row and i-th column by taking the join of their
value with the value of the corresponding elements in the j-th row and j-th column. The
[[dropj]]wr operation is applied to the resulting matrix.

5 Abstract Semantics

In existing numeric domains, each point in the abstract state corresponds to a unique
concrete state. Therefore, each point in the abstract state contains enough information
to compute how the corresponding concrete state is transformed; consequently it can be
transformed independently of other points in the abstract space. Hence, using appropriate
finite representations for subsets of N-dimensional space (e.g., polyhedra), the abstract

522 D. Gopan et al.

state transformer can be defined as an operation that is applied to all points in the subset
simultaneously (e.g., a linear transform) to produce the resulting abstract state. In our
case, there is no such correspondence between the concrete states and individual points
in the abstract state. Instead, each concrete state corresponds, in general, to a subset
of the abstract state, and each point in the abstract state belongs to the abstractions of
a (possibly infinite) set of concrete states. Hence, the points within the abstract state
cannot be used independently when applying a transformation. However, we will now
show that by making appropriate calls to expand and fold, it is possible to use existing
numeric domains to compute the results of transformations safely and precisely.

In general, a transformation consists of two steps. First, for each point in the abstract
state we compute the values to which the transformation formula evaluates in the concrete
states corresponding to this point. Second, given the values computed in the first step,
we update each point. Ordinarily, the standard semantics of a numeric domain is able to
combine the two steps, because each point in the abstract state corresponds to a single
concrete state and vice versa, i.e., (i) a transformation formula evaluates to a single value
for each point in the abstract state, (ii) each point in the original abstract state corresponds
to a single point in the transformed abstract state.

In our situation, each point within the abstract state corresponds to the projections of
one or more concrete states, rather than to a single concrete state, and may not contain
all the values necessary to evaluate the transformation formula. Therefore, applying the
standard semantics of the numeric domain may produce an unsound result. We illustrate
this situation with the following example.

Example 1. Consider a concrete state S� with four numeric objects x, y1, y2, and y3. Let
S� = (1, 2, 3, 4). Consider an abstraction S in which y1, y2, and y3 are folded into a sum-
mary numeric object y: S = {(1, 2), (1, 3), (1, 4)}. Let the transformation formula be
x← y2. Evaluating this formula by binding y2 to the summary dimension corresponding
to y and treating each point in S independently, results in S′ = {(2, 2), (3, 3), (4, 4)}.
Now, applying the transformation to S� yields a concrete numeric state (3, 2, 3, 4) whose
abstraction {(3, 2), (3, 3), (3, 4)} is clearly not a subset of S′.

Intuitively, the problem occurs because for a given point x in S, we failed to compute
the set of all values to which the transformation formula evaluates in concrete states that
have x as a projection. Hence, to be able to treat the points within the abstract state
independently, we need to overcome the following problems:

– The evaluation problem. For each point in the abstract state S, we need to compute
the set of all values to which the transformation formula evaluates, across all of the
concrete states S�
 S whose abstraction includes that point. The problem is that to
compute these values we may need information from other points within the abstract
state.

– The update problem. Given the above set of values for a particular point in the
abstract state, we need to define how to update that point. The problem is that the
point needs to be updated differently for each value in the set. Therefore, a single
point in the initial abstract state may produce a potentially infinite number of points
within the transformed abstract state.

Numeric Domains with Summarized Dimensions 523

Example 2. Assume the same situation as in Ex. 1. Concrete numeric object y2 is repre-
sented by a summary numeric object in the abstract domain. Therefore, for each point in
S, the values that y2 can take on are {2, 3, 4}. Transforming each point according to each
value of y2, we get the transformed abstract state S′ = {(α, β) : α, β = 2, 3, or 4}. It
is easy to see that S′ abstracts all possible concrete states that may arise as a result of
the transformation of concrete states abstracted by S.

In the following discussion, we will often refer to concrete states whose abstraction
includes a particular point within the abstract state. We introduce a concise notation to
simplify the presentation: suppose that S ⊆ V

M is an abstract state; let x be a point
in S, and let S�
 S be a concrete state whose abstraction contains x. We denote this
relationship as S�
x S.

5.1 General Overview of the Approach

Let e(w1, ..., wk) be a numeric formula, where each wi denotes a concrete numeric
object. Each concrete numeric object wi in the formula corresponds to either a summary
or non-summary abstract numeric object. Without loss of generality, we assume that first
k̂ of the wi’s, where 0 ≤ k̂ ≤ k, correspond to summary numeric objects.

Let S ⊆ V
M be an abstract numeric state, and let x be a point in S. We denote the

set of values that e(w1, ..., wk) evaluates to in all concrete numeric states S�
x S as

V aluesS
e (x) =

{
[[e(w1, ..., wk)]]�(S�) : S�
x S

}

Given a test e(w1, ..., wk)?, or an assignment vi ← e(w1, ..., wk), we transform an
abstract numeric state S in three steps:

– Preparation step. First, we construct a set Se ⊆ V
M+k̂, which allows us to com-

pute the set V aluesS
e (x) for each point x ∈ S by using the standard semantics

associated with the numeric domain. We construct Se by creating exact copies
of the dimensions of S that correspond to the summary abstract numeric objects
Fsum(w1), ..., Fsum(wk̂). The detailed description of this construction is given in
Sect. 5.2.

– Transformation step. Next, we use the standard semantics of the numeric domain
to perform the transformation of Se. Certain care is necessary to handle the as-
signments to summary numeric objects, because these objects also represent the
concrete numeric objects whose value is not changed by the assignment. For such
assignments, we introduce an extra dimension to capture the new values that are
assigned to the numeric object, and then combine the new values with the old values
by folding this extra dimension into the dimension that corresponds to the object.
The details are covered in Sects. 5.3, 5.4, and 5.5.

– Clean-up step. Finally, we remove from Se the dimensions introduced in the prepa-
ration step to produce an M -dimensional subset that corresponds to the updated
abstract state, S′.

Because the clean-up step returns us to a situation in which ΠFsum defines a mapping
from concrete states in V

N to abstract states (subsets of V
M), the standard numeric

524 D. Gopan et al.

domain join operation, �std, can be used to combine numeric states at control flow
merge points. The standard semantics of a widening operator, �std, is safe with respect
to the abstraction. Thus, for brevity, we will not discuss widening in this paper.

5.2 Evaluation of Numeric Formulas

Let S ∈ V
M be an abstract state, and let e(w1, ..., wk) be a numeric formula. We will

show how to construct the set Se, so that it is possible to compute V aluesS
e (x) for all

x ∈ S by applying standard numeric domain operations to Se.
Let S�
 S. The value [[e(w1, ..., wk)]]�(S�) is completely determined by the values

that the wi’s have in S�. Thus, to be able to use the standard semantics of the numeric
domain, we will extend S by adding k extra dimensions, and put all combinations of
values wi’s have in S�
x S into the new dimensions for each x ∈ S,

Se =
{

y ∈ V
M+k :

x = (y[1], ..., y[M]) ∈ S, S�
x S, and
y[M + j] = S�[dimS�

(wj)] for j = {1, ..., k}
}

Now we can compute V aluesS
e (x) for all points x ∈ S in parallel by evaluating the for-

mula e(dM+1, ..., dM+k) on Se using the standard semantics of the (M+k)-dimensional
numeric domain.

We can simplify the set Se somewhat. Let x ∈ S. It follows from the abstraction that
if Fsum(wi) is a non-summary abstract numeric object, then for all S�
x S,

S�[dimS�

(wi)] = x[dimS(Fsum(wi))]

Therefore, we do not need to create extra dimensions for wi that correspond to non-
summary abstract objects (i.e., i > k̂). The simplified definition of Se is

Se =
{

y ∈ V
M+k̂ :

x = (y[1], ..., y[M]) ∈ S, S�
x S and
y[M + j] = S�[dimS�

(wj)] for j ∈ {1, ..., k̂}
}

This definition of Se allows us to compute the set V aluesS
e (x) for all points x ∈ S

by evaluating the formula e(dM+1, ..., dM+k̂, ddimS(Fsum(wk̂+1))
, ..., ddimS(Fsum(wk)))

on Se using the standard semantics of the (M + k̂)-dimensional numeric domain. For
brevity, we will refer to the above formula as e(d̄) in the remainder of the paper.

The dimensions M +j of Se, where j ∈ {1, ..., k̂}, are constructed by creating exact
copies of dimensions dimS(Fsum(wj)). We use a composition of expand operations,
denoted expande, to construct them:

Se = [[expande]]std(S)
= [[expanddimS(Fsum(wk̂)),M+k̂]]std ◦ ... ◦ [[expanddimS(Fsum(w1)),M+1]]std(S)

After the transformation is applied to the set Se, we need to project the transformed
set S′

e back into M -dimensional space. We define the operation drope as a composition
of drop operations to remove the dimensions dM+1, ..., dM+k̂,

S′ = [[drope]]std(S′
e) = [[dropM+1]]std ◦ ... ◦ [[dropM+k̂]]std(S′

e)

Numeric Domains with Summarized Dimensions 525

5.3 Numeric Tests

Let S ∈ V
M be an abstract state and let e(w1, ..., wk) be a numeric condition. We want

to construct the most-precise abstract state S′, such that for any concrete state S�
 S
in which e(w1, ..., wk) holds, S�
 S′. Let ObjS′

= ObjS and dimS′ ≡ dimS . We
define the abstract transformer as follows:

S′ = [[e(w1, ..., wk)?]](S) =
{
x : x ∈ S and true ∈ V aluesS

e (x)
}

= [[drope]]std ◦ [[e(d̄)?]]std ◦ [[expande]]std(S)

We argue that the above transformation is sound. Let S�
 S be an arbitrary concrete
numeric state such that the condition e(w1, ..., wk) holds in S�. By the definition of set
V aluesS

e (x), it follows that true ∈ V aluesS
e (x) for all points x in the abstraction of

S�. Hence, by the definition of the transformation, the entire abstraction of S� is in S′.
Therefore, S�
 S′. The equality on the second line of the definition is justified by the
discussion of how to compute set V aluesS

e (x) in Sect. 5.2.
Also, we argue that the result of the transformation is minimal in the sense that no

points can be excluded from S′. Note that, by construction, for all points x ∈ S′, the
set V aluesS

e (x) contains the value true. Hence there exists at least one concrete state
S�
 S in which the condition holds and whose abstraction contains x.

5.4 Assignments to Non-summary Objects

Let S ∈ V
M be an abstract state and let vi ← e(w1, ..., wk) be an assignment, such

that Fsum(vi) is a non-summary abstract object. We want to construct the most precise
abstract state S′ ∈ V

M , such that for any concrete state S�
 S,

[[vi ← e(w1, ..., wk)]]�(S�)
 S′

Let ObjS′
= ObjS and dimS′ ≡ dimS . Also let m = dimS(Fsum(vi)). We define the

abstract transformer as follows:

S′ = [[vi ← e(w1, ..., wk)]](S)

=
{
y : ∃x ∈ S s.t. y[m] ∈ V aluesS

e (x) and y[j] = x[j] for j �= m
}

= [[drope]]std ◦ [[dm ← e(d̄)]]std ◦ [[expande]]std(S)

Let us show that this transformation is sound. Let S�
Fsum S be an arbitrary
concrete numeric state, such that [[e(w1, ..., wk)]]�(S�) = α. We denote the concrete
state, to which S� is transformed as the result of the assignment, by Ŝ�, where:

Ŝ� = [[vi ← e(w1, ..., wk)]]�(S�)

Both S� and Ŝ� are points in N -dimensional space. By the definition of the concrete
semantics, S� and Ŝ� are equal component-wise, except for component vi which is equal
to α in Ŝ�. Let us pick an arbitrary projection π ∈ ΠFsum . Let x = π(S�) and x̂ = π(Ŝ�).
Since Fsum(vi) is a non-summary abstract numeric object, the m-th component of x̂ is

526 D. Gopan et al.

equal to α, whereas other components are equal to corresponding components of x. Now,
since x ∈ S and α ∈ V aluesS

e (x), it follows by construction that x̂ ∈ S′. Therefore,
Ŝ�
Fsum S′. The equality on the third line of the definition is justified by the discussion
of how to compute set V aluesS

e (x) in Sect. 5.2.
Also, the transformation is minimal in the sense that for every point x′ ∈ S′, there

exists a concrete state S�
 S, such that x′ is in the abstraction of a concrete state Ŝ�,
where

Ŝ� = [[vi ← e(w1, ..., wk)]]�(S�)

By construction, the point x′ is in S′ if there exists a point x ∈ S, which is equal to x′

component-wise with the exception of component x′[m], whose value is in V aluesS
e (x).

By definition of the set V aluesS
e (x), there exists a concrete state S�
 S, such that its

abstraction contains point x and [[e(w1, ..., wk)]]�(S�) = x′[m]. Then, from the concrete
semantics and the abstraction mechanism, it follows that x′ is in the abstraction of
concrete state Ŝ�.

5.5 Assignments to Summary Objects

Let S ∈ V
M be an abstract state and let vi ← e(w1, ..., wk) be an assignment, such that

Fsum(vi) is a summary abstract object. We want to construct the most precise abstract
state S′ ∈ V

M , such that for any concrete state S�
 S,

[[vi ← e(w1, ..., wk)]]�(S�)
 S′

Let ObjS′
= ObjS and dimS′ ≡ dimS . Also let m = dimS(Fsum(vi)). We define the

abstract transformer as follows:

S′ = [[vi ← e(w1, ..., wk)]](S)

=
{
y : ∃x ∈ S s.t. y[m] ∈ V aluesS

e (x) ∪ {x[m]} and y[j] = x[j] for j �= m
}

⊇ [[drope]]std ◦ [[folddm,dn
]]std ◦ [[dn ← e(d̄)]]std ◦ [[adddn

]]std ◦ [[expande]]std(S)

The soundness and minimality arguments are the same as in the Sect. 5.4. The only
difference is that the abstract object Fsum(vi) corresponds to a collection of concrete
numeric objects, only one of which is updated. Hence, for each point x ∈ S, the com-
ponent x[m] may preserve its old value. Note, that ⊇ in the third line of the equation is
due to the implementation [[fold]]std, which computes an overapproximation of fold in
most numeric domains.

6 Related Work

The introduction already mentioned several numeric domains that have been investi-
gated, including non-relational domains, such as intervals [7,15] and congruences [5];
weakly relational domains, such as difference constraints [4] and octagons [11]; and re-
lational domains, such as polyhedra [2,6] and trapezoidal congruences [10]. In all of this
work, the assumption is made that there are a fixed number of numeric objects to track,
where the number is known in advance. In contrast, our work provides techniques for

Numeric Domains with Summarized Dimensions 527

(1) for(i = 0; i < n; i++) {
(2) for(j = 0; j < i; j++)
(3) if(A[j] > A[i]) break;
(4) t = A[i];
(5) for(k = i; k > j; k--)
(6) A[k] = A[k-1];
(7) A[j] = t
(8) }

(a)

����
����
����
����

����
����
����
����

���
���
���
���

uu u u u1 2 3 4 5

a[]
j i

(b)

u1 ≤ u4
u4 < u3
u4 < u2

(c)

Fig. 3. Insertion sort: (a) code for insertion sort; (b) array partitioning: abstract objects ui represent
array segments; (c) invariants captured by the abstract state at line 4.

performing static analysis in the presence of an unbounded number of concrete numeric
objects (which are then collapsed into some number of summary objects).

Yavuz-Kahveci and Bultan present an algorithm for shape analysis in which numeric
information is attached to summary nodes; the information on a summary node u of a
shape-graph S bounds the number of concrete nodes that are mapped to u from any con-
crete memory configuration that S represents [17]. This represents a different approach
to combining a collection of numeric quantities from the one pursued in our work: in
[17], each combined object contributes 1 to a sum that labels the summary object; in our
approach, when objects are combined together, the effect is to create a set of values.

7 Future Work

In this section, we sketch how the techniques developed in the paper could be applied in a
situation in which multiple, dynamically changing segments of an array are summarized
separately.

The goal would be to use static analysis to prove the correctness of an array-sorting
program, such as the insertion-sort program shown in Fig. 3(a). The idea would be to use
summary numeric objects to represent segments of the array. Fig. 3(b) depicts a situation
that occurs during the execution of insertion sort. This would be represented using three
summary numeric objects: u1, u3, and u5. As the sort progresses, u1, u3, and u5 must
be associated with different segments of the array. In other words, the dimensionalities
of the spaces that they represent have to vary.

To actually carry this out in a static-analysis algorithm, the main difficulty would be
to find which dimensions/segments to merge, and when to adjust the pattern of merging
during the course of the analysis. Fortunately, this is addressed by canonical abstraction
[14]. The verification of sorting algorithms by means of shape analysis (using the TVLA
system [9]) was described in [8]. However, TVLA does not provide a facility to describe
numeric values directly; thus, in [8] it was necessary to introduce a “work-around”—an
artificial binary predicate dle (for “data less-than or equal”), to record whether the value
of one element is less than or equal to the value of another element.

528 D. Gopan et al.

The work presented in this paper would allow such problems to be addressed in a
more straightforward manner: the numeric manipulations would be handled by the oper-
ations described in Sect. 5, and TVLA’s normal mechanisms for summarizing elements,
based on canonical abstraction, and unsummarizing elements (TVLA’s “focus” oper-
ation) would drive how the summarization partition on array elements would change
during the course of the analysis.

Some additional issues arise in supporting the operations of new and delete, which
introduce and remove numeric objects, respectively. However, the mechanisms that have
been presented provide all the machinery that is required. For instance, the abstract
semantics for the new operation is to add a new dimension to an abstract state initialized
to a range of possible initial values. If the client analysis indicates that the added object
is to be summarized by one of the existing abstract objects, the new dimension is then
folded into the corresponding existing dimension. Deleting a non-summary numeric
object drops the corresponding dimension from the abstract state.

Space limitation precludes giving a full treatment of the remaining issues involved in
using summarizing abstract numeric domains in conjunction with canonical abstraction.

References

1. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the parma polyhedra library. In Static Analysis Symp., volume 2477, pages 213–229, 2002.

2. P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among variables of a
program. In Symp. on Princ. of Prog. Lang., 1978.

3. G. B. Dantzig and B. C. Eaves. Fourier-motzkin elimination and its dual. Journal of Combi-
natorial Theory (A), 14:288–297, 1973.

4. D.L. Dill. Timing assumptions and verification of finite-state concurrent systems. InAutomatic
Verification Methods for Finite State Systems, pages 197–212, 1989.

5. P. Granger. Analyses Semantiques de Congruence. PhD thesis, Ecole Polytechnique, 1991.
6. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear

relation analysis. Formal Methods in System Design, 11(2):157–185, 1997.
7. W.H. Harrison. Compiler analysis of the value ranges for variables. Trans. on Softw. Eng.,

3(3):243–250, 1977.
8. T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work for verification:

A case study. In Int. Symp. on Software Testing and Analysis, pages 26–38, 2000.
9. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In Static

Analysis Symp., pages 280–301, 2000.
10. F. Masdupuy. Array Indices Relational Semantic Analysis using Rational Cosets and Trape-

zoids. PhD thesis, Ecole Polytechnique, 1993.
11. A. Mine. The octagon abstract domain. In Proc. Eighth Working Conf. on Rev. Eng., pages

310–322, 2001.
12. A. Mine. A few graph-based relational numerical abstract domains. In Static Analysis Symp.,

pages 117–132, 2002.
13. Y. Saad. Sparsekit: A basic tool kit for sparse matrix computations, version 2. Tech. rep.,

Comp. Sci. Dept. Univ. of Minnesota, June 1994.
14. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. Trans. on

Prog. Lang. and Syst., 24(3):217–298, 2002.
15. C. Verbrugge, P. Co, and L.J. Hendren. Generalized constant propagation: A study in C. In

Int. Conf. on Comp. Construct., volume 1060 of Lec. Notes in Comp. Sci., pages 74–90, 1996.

Numeric Domains with Summarized Dimensions 529

16. D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated detection of
buffer overrun vulnerabilities. In Symp. on Network and Distributed Systems Security (NDSS),
February 2000.

17. T. Yavuz-Kahveci and T. Bultan. Automated verification of concurrent linked lists with
counters. In Static Analysis Symp., pages 69–84, 2002.

	Introduction
	Concrete Semantics
	Summarizing Numeric Domains
	Extending Numeric Domains
	Standard Semantics of a Numeric Domain
	The $text {{em fold}}$ Operation
	The $text {{em expand}}$ Operation
	The $text {{em add}}$ and $text {{em drop}}$ Operations
	Implementation Examples

	Abstract Semantics
	General Overview of the Approach
	Evaluation of Numeric Formulas
	Numeric Tests
	Assignments to Non-summary Objects
	Assignments to Summary Objects

	Related Work
	Future Work

