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Abstract. Numerical analysis based on uniformisation and statistical
techniques based on sampling and simulation are two distinct approaches
for transient analysis of stochastic systems. We compare the two solu-
tion techniques when applied to the verification of time-bounded until
formulae in the temporal stochastic logic CSL. This study differs from
most previous comparisons of numerical and statistical approaches in
that CSL model checking is a hypothesis testing problem rather than a
parameter estimation problem. We can therefore rely on highly efficient
sequential acceptance sampling tests, which enables statistical solution
techniques to quickly return a result with some uncertainty. This suggests
that statistical techniques can be useful as a first resort during system
prototyping, rather than as a last resort as often suggested. We also
propose a novel combination of the two solution techniques for verifying
CSL queries with nested probabilistic operators.

1 Introduction

Continuous-time Markov chains (CTMCs) are an important class of stochastic
models, widely used in performance and dependability evaluation. The temporal
logic CSL (Continuous Stochastic Logic) introduced by Aziz et al. [2,3] and since
extended by Baier et al. [5] provides a powerful means to specify both path-based
and traditional state-based performance measures on CTMCs in a concise and
flexible manner. CSL contains a time-bounded until operator, the focus of this
study, that allows one to express properties such as “the probability of n servers
becoming faulty within 15.07 seconds is at most 0.01”.

The two dominating techniques used for analysis of stochastic systems are
numerical methods and statistical methods. Numerical solution techniques can
often provide a higher accuracy than statistical methods, whose results are prob-
abilistic in nature. However, numerical methods are far more memory intensive,
which often leaves statistical solution techniques as a last resort [23,7].
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The verification of time-bounded CSL formulae can be reduced to transient
analysis [4,5]. Efficient numerical solution techniques, such as uniformisation
[14,20,18,7], for transient analysis of CTMCs have existed for decades and are
well-understood. Younes and Simmons [26] have proposed a statistical approach
for verifying time-bounded CSL formulae, based on acceptance sampling and
discrete event simulation. The use of acceptance sampling is possible because
CSL formulae only ask if a probability is above or below some threshold. Previous
comparisons of numerical and statistical solution techniques have typically been
based on estimation problems. This study is concerned with hypothesis testing
problems, for which there exists highly efficient sequential acceptance sampling
tests that make statistical solution techniques look more favourable than in a
comparison with numerical techniques on estimation problems.

We have implemented the statistical model checking algorithm in the PRISM
tool1[16], a probabilistic model checker developed at the University of Birming-
ham. PRISM already implements numerical solution techniques and makes use
of symbolic data representation in order to reduce memory requirements for
those techniques.

Probabilistic model checking in general, and the two approaches implemented
in PRISM, are described in Sect. 2. In this section we also propose a combination
of numerical and statistical solution techniques to handle CSL formulae with
nested probabilistic operators. The idea of combining the two techniques has
been explored before [21,7], but not in the context of nested CSL queries. The
mixed solution technique has also been implemented in PRISM.

In Sect. 4, we present empirical results obtained with PRISM on a number
of case studies, described in Sect. 3, which serve as the comparison of the two
approaches. The results demonstrate that the complexity of both the numerical
and the statistical approach is typically linear in the time-bound of the property,
but that the statistical approach scales better with the size of the state space.
Furthermore, the statistical approach requires considerably less memory than
the numerical approach, allowing us to verify models far beyond the scope of
numerical solution methods. The principal advantage of numerical techniques
based on uniformisation is that increased accuracy in the result comes at almost
no price. The statistical solution method can very rapidly provide solutions with
some uncertainty, however reducing the uncertainty is costly. This suggest that
statistical techniques can be quite useful as a first resort during system proto-
typing, while numerical techniques may be more appropriate when very high
accuracy in the result is required.

2 CTMCs and Probabilistic Model Checking

Probabilistic model checking refers to a range of techniques for the formal anal-
ysis of systems that exhibit stochastic behaviour. The system is usually specified
as a state transition system, with probability values attached to the transitions.
In this paper, we consider the case where this model is a continuous-time Markov
chain (CTMC).
1 PRISM web site: www.cs.bham.ac.uk/˜dxp/prism
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A CTMC C is a tuple (S,R, L) where S is a finite set of states, R : S × S →
IR≥0 is the rate matrix and L : S → 2AP is a labelling function, mapping each
state to a subset of the set of atomic propositions AP . For any state s ∈ S, the
probability of leaving state s within t time units is given by 1 − e−E(s)·t where
E(s) =

∑
s′∈S R(s, s′). E(s) is known as the exit rate. If R(s, s′) > 0 for more

than one s′ ∈ S, then there is a race between the transitions leaving s, where
the probability of moving to s′ in a single step equals the probability that the
delay corresponding to moving from s to s′ “finishes before” the delays of any
other transition leaving s. A path of the CTMC is a sequence of states, between
each of which there is a non-zero probability of making a transition. A path of
the CTMC can be seen as a single execution of the system being modelled.

In probabilistic model checking, properties of the system to be verified are
specified in a temporal logic. For CTMCs, we use the temporal logic CSL [2,3,
5], an extension of CTL. The syntax of CSL is defined as

Φ ::= true
∣
∣ a
∣
∣ Φ ∧ Φ

∣
∣ ¬Φ

∣
∣ P�� p

(
Φ U≤t Φ

) ∣
∣ P�� p (Φ U Φ)

∣
∣ S�� p (Φ) ,

where p ∈ [0, 1], t ∈ IR≥0, �� ∈ {<,≤, ≥, >} and a is an atomic proposition from
the set AP used to label states of the CTMC.

A state s of a CTMC satisfies the formula P�� p (φ), denoted s |= P�� p (φ),
if P (s, φ) �� p, where P (s, φ) is the probability that a path starting in state s
satisfies the path formula φ. Here, a path formula φ is either Φ U≤t Ψ , meaning
that formula Ψ is satisfied within t time units and formula Φ is satisfied up until
that point, or Φ U Ψ , meaning that Φ U≤t Ψ holds for some t ∈ IR≥0. The value
P (s, φ) is defined in terms of the probability measure over paths starting in state
s, as defined by Baier et al. [5]. The S�� p (Φ) operator describes the behaviour
of the CTMC in the steady-state or long-run. The precise semantics of this and
the other CSL operators are given by Baier et al. [5]. In this paper, we focus on
the time-bounded until operator P�� p

(
Φ U≤t Ψ

)
.

2.1 Numerical Probabilistic Model Checking

The numerical model checking approach for verifying a time-bounded until for-
mula P�� p

(
Φ U≤t Ψ

)
in a state s ∈ S is based on first computing the probability

P (s, Φ U≤t Ψ), and then comparing this probability with the threshold �� p.
First, as initially proposed by Baier et al. [4], the problem is reduced to

the computation of transient probabilities on a modified CTMC. For a CTMC
C = (S,R, L), we construct the CTMC C′ = (S,R′, L) by making all states
satisfying ¬Φ∨Ψ absorbing, i.e. removing all of their outgoing transitions. Hence,
R′ is obtained from R by removing all entries from the appropriate rows. The
probability P (s, Φ U≤t Ψ) in the CTMC C is now equal to the probability of, in
the CTMC C′, being in a state satisfying Ψ at time t having started in state s.

The computation of this probability is carried out via a process know as
uniformisation (also known as randomisation), originally proposed by Jensen
[14]. We construct the uniformised discrete-time Markov chain (DTMC) of C′,
whose probability transition matrix P equals I + (R′ − E′)/q, where I is the
identity matrix, E′ is a diagonal matrix containing exit rates of C′, i.e. E′(s, s′)
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equals E′(s) if s = s′ and 0 otherwise, and q ≥ max{E′(s) | s ∈ S} is the
uniformisation constant of the CTMC C′.

It then follows that P (s, Φ U≤t Ψ) can be computed simultaneously for all
states s ∈ S by computing the vector of probabilities

P (Φ U≤t Ψ) =
∞∑

k=0

γ(k, q·t) · (Pk · Ψ
)

, (1)

where γ(k, q·t) is the kth Poisson probability with parameter q·t (i.e. γ(k, q·t) =
e−q·t · (q·t)k/k!), and Ψ characterises the set of states satisfying Ψ (i.e. Ψ(s) = 1
if s |= Ψ , and 0 otherwise). If we are only interested in verifying P�� p

(
Φ U≤t Ψ

)

in a single state s, then we only need to carry out the summation in (1) for
P (s, Φ U≤t Ψ), which in practice can save us both memory and time. However,
as pointed out by Katoen et al. [15], the asymptotic time complexity is the same
when computing the entire vector P (Φ U≤t Ψ). In this paper, we only compute
the entire vector for nested probabilistic formulae.

In practice, the infinite summation in (1) is truncated from the left by Lε

and from the right by Rε by using the techniques of Fox and Glynn [8] so that
the truncation error is bounded by an a priori error tolerance ε. This means that
if P̂ (Φ U≤t Ψ) is the solution vector obtained with truncation, then

0 ≤ P (s, Φ U≤t Ψ) − P̂ (s, Φ U≤t Ψ) ≤ ε ∀s ∈ S . (2)

Note that, since iterative squaring is not attractive for sparse matrices due
to fill-in [22,20], the matrix products Pk are typically computed in an iterative
fashion: Pk · Ψ = P · (Pk−1 · Ψ

)
. Also, although the left truncation point Lε

allows us to skip the first Lε terms of (1), we still need to compute Pk · Ψ for
k < Lε, so the total number of iterations required by the algorithm is Rε.

Steady-State Detection. To potentially reduce the number of iterations re-
quired by the numerical model checking algorithm, we can use on-the-fly steady-
state detection in conjunction with uniformisation [20,18]. If the uniformised
DTMC reaches steady-state after ks < Rε iterations, then Pk · Ψ = Pks · Ψ for
all k ≥ ks, which means that we can compute P̂ (Φ U≤t Ψ) as follows using only
ks iterations:

P̂ (Φ U≤t Ψ) =
ks∑

k=Lε

γ(k, q·t) · (Pk · Ψ
)

+
(
Pks · Ψ

) ·
(

1 −
ks∑

k=Lε

γ(k, q·t)
)

. (3)

We can ensure that a steady-state vector actually exists by choosing q strictly
greater than max{E(s) | s ∈ S} [20,18].

Malhotra et al. [18] derive an error bound for (3) under the assumption that
the steady-state point can be detected exactly within a given error tolerance.
Let Π∗ denote the true steady-state vector. Malhotra et al. claim that if ‖Pks ·
Ψ − Π∗‖ ≤ ε/4 for Lε < ks < Rε, then the same error bound as in (2) is
guaranteed. The error analysis is flawed, however, in that it results in an error
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region twice as wide as the original error region. This is a result of the error due
to steady-state detection being two-sided, while the truncation error is one-sided.
To guarantee an error region of width ε instead of 2ε, it is necessary to bound
‖Pks · Ψ − Π∗‖ by ε/8 instead of ε/4. This correction yields the error bounds
−ε/4 ≤ P (s, Φ U≤t Ψ) − P̂ (s, Φ U≤t Ψ) ≤ 3ε/4 for all s ∈ S.

In practice, the true steady-state vector Π∗ is not known a priori, so instead
we stop when the norm of the difference between successive iterates is sufficiently
small (at most ε/8 by the above analysis), as suggested by Malhotra et al. [18].

Sequential Stopping Rule. To potentially reduce the number of iterations
even further, we note that the CSL query P�� p

(
Φ U≤t Ψ

)
does not require that

we compute P (s, Φ U≤t Ψ) with higher accuracy than is needed to determine
whether P (s, Φ U≤t Ψ) �� p holds. In the following analysis we restrict �� to ≥
as the other three cases are essentially the same.

Let P̂ k(s, Φ U≤t Ψ) denote the accumulated probability up until and in-
cluding iteration k. Because each term in (1) is non-negative, we know that
P̂ i(s, Φ U≤t Ψ) ≥ P̂ k(s, Φ U≤t Ψ) for all i > k. Therefore if P̂ k(s, Φ U≤t Ψ) ≥ p
holds for some k < Rε, then we can answer the query P≥ p

(
Φ U≤t Ψ

)
affirma-

tively after only k iterations instead of Rε (or ks) iterations.
For early termination with a negative result, we can use the upper bound

on the right Poisson tail provided by Fox and Glynn [8] for k ≥ 2 + 	q · t
 to
determine if P≥ p

(
Φ U≤t Ψ

)
is false before completing Rε iterations. Let T̂ be

the upper bound on the right Poisson tail. If P̂ k(s, Φ U≤t Ψ) + T̂ < p, then we
know already after k iterations that P≥ p

(
Φ U≤t Ψ

)
is false.

We now have a sequential stopping rule for our algorithm, but note that the
potential savings are limited by the fact that the positive part of the rule applies
first after Lε iterations and the negative part first after 2 + 	q·t
 iterations, and
both Lε and Rε are of the same order of magnitude as q·t. We will see later that
the sequential component of the statistical approach is much more significant.

Symbolic Representation. The PRISM tool uses binary decision diagrams
(BDDs) [6] and multi-terminal BDDs (MTBDDs) [9] to construct a CTMC from
a model description in the PRISM language, a variant of Alur and Henzinger’s
Reactive Modules formalism [1]. For numerical computation though, PRISM
includes three separate engines making varying use of symbolic methods.

The first engine uses MTBDDs to store the model and iteration vector, while
the second uses conventional data structures for numerical analysis: sparse matri-
ces and arrays. The latter nearly always provides faster numerical computation
than its MTBDD counterpart, but sacrifices the ability to conserve memory by
exploiting structure. The third, hybrid, engine provides a compromise by storing
the models in an MTBDD-like structure, which is adapted so that numerical
computation can be carried out in combination with array-based storage for
vectors. This hybrid approach is generally faster than MTBDDs, while handling
larger systems than sparse matrices, and hence is the one used in this paper. For
further details and comparisons between the engines see [17,19].
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2.2 Statistical Probabilistic Model Checking

Statistical techniques, involving simulation and sampling, have been in use for
decades to analyse stochastic systems. Younes and Simmons [26] show how dis-
crete event simulation and acceptance sampling can be used to verify proper-
ties of general discrete event systems expressed as CSL formulae not includ-
ing P�� p (Φ U Φ) and S�� p (Φ). We focus here on P≥ p

(
Φ U≤t Ψ

)
, noting that

P≤ p

(
Φ U≤t Ψ

) ≡ ¬P> 1−p

(
Φ U≤t Ψ

)
, and that > (<) is practically indistin-

guishable from ≥ (≤) to any acceptance sampling test (this can be said of
numerical approaches as well due to the use of finite precision floating-point
arithmetic).

Given a state s ∈ S and a CSL formula P≥ p

(
Φ U≤t Ψ

)
, we wish to test

whether P (s, Φ U≤t Ψ) is above or below the threshold p. More specifically, we
want to test the hypothesis P (s, Φ U≤t Ψ) ≥ p against the alternative hypothesis
P (s, Φ U≤t Ψ) < p.

In order for acceptance sampling to be applicable, however, we first need to
relax the hypotheses. For some δ > 0, let H0 be the hypothesis P (s, Φ U≤t Ψ) ≥
p + δ and let H1 be the hypothesis P (s, Φ U≤t Ψ) ≤ p − δ. Clearly, the formula
P≥ p

(
Φ U≤t Ψ

)
is true if H0 holds and false if H1 holds. An acceptance sampling

test, such as Wald’s sequential probability ratio test [24], will limit the probability
of accepting H1 when H0 holds (false negative) to α and the probability of
accepting H0 when H1 holds (false positive) to β. We refer to the region I =
(p − δ, p + δ) as the indifference region, because no guarantees regarding the
error probability is given if P (s, Φ U≤t Ψ) ∈ I, and we assume that the user
selects δ with this in mind. The parameters α and β determine the strength of
the acceptance sampling test.

Wald’s sequential probability ratio test is carried out as follows. Let p0 = p+δ
and p1 = p − δ, and let xi be a sample of a Bernoulli variate X representing
the result of verifying Φ U≤t Ψ over a sample path starting in state s. Sample
paths are generated through discrete event simulation, and we only generate as
much of a sample path as is needed to determine the truth value of Φ U≤t Ψ .
Note that we can perform simulation at the level of the PRISM language and
never need to generate the underlying CTMC. At the mth stage of the test, we
calculate the quantity

p1m

p0m
=

m∏

i=1

Pr[X = xi | P (s, Φ U≤t Ψ) = p1]
Pr[X = xi | P (s, Φ U≤t Ψ) = p0]

,

where xi is the ith sample of the Bernoulli variate X (1 if path formula holds
and 0 otherwise), and Pr[X = xi | P (s, Φ U≤t Ψ) = pj ] = pxi

j (1 − pj)1−xi .
Hypothesis H0 is accepted if p1m/p0m ≤ β/(1−α), and hypothesis H1 is accepted
if p1m/p0m ≥ (1 − β)/α. Otherwise, an additional sample is required. This gives
an acceptance sampling test that, for all practical purposes, has strength α and
β. For further details on the test see [24].
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2.3 Mixing Numerical and Statistical Techniques

Although the algorithm of Younes and Simmons [26] can handle CSL formulae
with nested probabilistic operators, the way in which it is done requires in the
worst case that the nested formula be verified in each state along a sample path,
each time with an error inversely proportional to the length of the sample path.
The numerical approach, on the other hand, can verify the nested formula for all
states simultaneously at the same (asymptotic) cost as verifying the formula for
a single state. This is a clear advantage when dealing with nested probabilistic
operators.

We therefore propose a mixed approach, implemented in our system, where
statistical sampling is used to verify the outermost probabilistic operator, while
numerical techniques are used to verify the nested probabilistic operators. We
can mix the numerical and statistical techniques by assuming that the result
of the numerical technique holds with certainty (i.e. α = β = 0 in terms of a
statistical test). The nested formulae are first verified for all states using numer-
ical methods. When verifying a path formula over a sample path we only need
to read the value for each state along the path without any additional verifica-
tion effort for the nested formulae. The cost for verifying the nested components
of a formula is exactly the same for the mixed approach as for the numerical
approach, but the use of sampling for the outermost probabilistic operator can
provide a faster solution.

3 Case Studies

We now introduce three case studies, taken from the literature on performance
evaluation and probabilistic model checking, on which we will base our empirical
evaluation. A fourth simple case study is also introduced to illustrate the use of
nested probabilistic operators in CSL.

Tandem Queueing Network. The first case study is based on a CTMC model
of a tandem queueing network presented by Hermanns et al. [11]. The network
consists of an M/Cox2/1 queue sequentially composed with an M/M/1 queue.
The capacity of each queue is n, and the state space is O(n2). The property of
interest is given by the CSL formula P< 0.5

(
true U≤T full

)
which is true in a

state if there is less than a 50% chance of the queueing network becoming full
within T time units, and, in the case of the sampling-based approach, we verify
the correctness of this property in the state where the both queues are empty.

Symmetric Polling System. For this case study we consider an n-station sym-
metric polling system described by Ibe and Trivedi [12]. Each station has a
single-message buffer and the stations are attended by a single server in cyclic
order. The server begins polling station 1. If there is a message in the buffer of
station 1, the server starts polling that station. Once station i has been polled,
or if there is no message in the buffer of station i when it is being served, the
server starts polling station i + 1 (or 1 if i = n). The polling and service times
are exponentially distributed, as is the time from when a station has been polled
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until a new message fills its buffer. The fact that all rates are equal for all sta-
tions makes the system symmetric. The size of the state space for a system with
n stations is O(n · 2n).

We will verify the property that, if station 1 is full, then it is polled within
T time units with probability at least 0.5. We do so in the state where station
1 has just been polled and the buffers of all stations are full. Let s ∈ {1, . . . , n}
be the station currently getting the server’s attention, let a ∈ {0, 1} represent
the activity of the server (0 for polling and 1 for serving), and let mi ∈ {0, 1}
be the number of messages in the buffer of station i. We can then represent the
property of interest with the CSL formula m1=1 =⇒ P≥ 0.5

(
true U≤T poll1

)

where poll1 ≡ s=1 ∧ a=0, and the state in which we verify the formula is given
by s=1 ∧ a=1 ∧ m1=1 ∧ . . . ∧ mn=1.

Dependable Workstation Cluster. The third case study is a dependable cluster of
workstations due to Haverkort et al. [10]. The system consists of two sub-clusters
each containing n workstations. Communication between the two sub-clusters is
performed over a backbone connection. The workstations of each sub-cluster are
connected in a star topology, with a single switch providing connectivity to the
backbone. Each of the components can fail at any time, and the time to failure
is exponentially distributed with different rates for different components. There
is a single repair unit that can restore failed units. The repair time is assumed
to be exponentially distributed. The size of the state space is O(n2) for a cluster
with 2n workstations.

The minimum quality of service (QoS) for a cluster is defined as having at
least k interconnected operational workstations. This can be achieved by having
at least k operational workstations in one sub-cluster with a functional switch, or
by having at least k operational workstations in total with the backbone and both
switches functioning properly. Let wl and wr denote the number of operational
workstations in the left and right sub-clusters respectively. Furthermore, let b
represent the atomic proposition that the backbone is working, and sl (sr) that
the left (right) switch is up. Minimum QoS can then be defined as minimum ≡
(wl≥k ∧ sl) ∨ (wr≥k ∧ sr) ∨ (wl+wr≥k ∧ b ∧ sl ∧ sr). The property we will verify
is P< 0.1

(
true U≤T ¬minimum

)
, corresponding to Φ4 of [10], that there is a less

than 10% chance of the QoS dropping below minimum within T time units, and
this property will be verified in the state where all units are functional.

Grid World. For the last case study we consider an n × n grid world with a
robot moving from the bottom left corner to the top right corner, first along the
bottom edge and then along the right edge. There is a janitor moving randomly
around the grid, and the robot cannot move into a square occupied by the
janitor. The objective is for the robot to reach the goal square at top right
corner within T1 time units with probability at least 0.9, while maintaining at
least a 0.5 probability of periodically communicating with the base station. The
CSL formula P≥ 0.9

(P≥ 0.5
(
true U≤T2 communicate

) U≤T1 goal
)

expresses the
given objective. The size of the state space is O(n3).
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4 Empirical Evaluation

We base our empirical evaluation on the case studies presented in Sect. 3. We
have verified the time-bounded until formulae for the first three case studies
using both the numerical and the statistical approach, varying the problem size
(and thereby the size of the state space) and the time bound. Fig. 1 shows the
verification time in seconds for these case studies, both as a function of the state
space size and as a function of the time bound. All results, for both the numerical
and the statistical approach, are for the verification of a CSL property in a single
state. The results were generated on a 500 MHz Pentium III PC running Linux,
and with a 700 MB memory limit set per process.

Memory Requirements. In the case of the numerical solution method, all ex-
periments were run using the hybrid engine (see Sect. 2.1) which, although not
necessarily the fastest engine, in general allows the analysis of larger problems
than the other engines. The limiting factor in the hybrid approach is the space
required to store the iteration vector: however compact the matrix representa-
tion is, memory proportional to the number of states is required for numerical
solution. More precisely, the hybrid engine with steady-state detection requires
storage of three double precision floating point vectors of size |S|, which for the
memory limit of 700 MB means that systems with at most 31 million states can
be analysed.2 In practice, for the first three case studies, we were able to handle
systems with about 27 million states, showing that the symbolic representation
of the probability matrix is fairly compact.

The memory requirements for the statistical approach are very conserva-
tive. In principle, all that we need to store during verification is the current
state, which only requires memory logarithmic in the size of the state space. We
never exhausted memory during verification when using the statistical solution
method.

Performance of Numerical Solution Method. For model checking time-bounded
until formulae using the numerical approach, PRISM computes the Poisson prob-
abilities (see Sect. 2.1) using the Fox-Glynn algorithm [8], which, for the hybrid
engine, yields an overall time complexity of O(q·t·M), where q is the uniformi-
sation constant of the CTMC, t is the time bound of the until formula and M
is the number of non-zero entries in R.

In all the examples considered, the number of non-zeros in the rate matrix
is linear in the size of the state space. Hence, the verification time for a given
time-bounded until formula is linear in the size of the state space, as can be
observed in Figs. 1(a), (c), and (e). For a single model, the complexity is linear
in the time bound, as demonstrated by the results in Figs. 1(b), (d), and (f). Note
that Figs. 1(b) and (d) show the verification time to be constant once the time
bound has become sufficiently large. This is caused by steady-state detection
as described in Sect. 2.1. We can also see the effect of steady-state detection in
2 We need an additional floating point vector of size |S| for verifying a formula in all

states simultaneously, which would make the limit 23 million states.
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Fig. 1. The verification time, in seconds, for the tandem queueing network (top), the
symmetric polling system (centre), and the dependable workstation cluster (bottom).
To the left, the verification time is given as a function of the state space size, and to
the right as a function of the time bound for the property that is being verified. Solid
curves are for the statistical approach with α = β = 10−2 and 2δ = 10−2, while dashed
curves are for the numerical approach using the hybrid engine and ε = 10−6.
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Fig. 1(a), with the curve for T = 50 and T = 500 coinciding for larger state
spaces.

Performance of Statistical Solution Method. There are two main factors influenc-
ing the verification time for the statistical approach: the number of samples and
the length of sample paths (in terms of state transitions). Consider the problem
of verifying the formula P≥ p (φ) in a state s.

For fixed α and β (test strength) and δ (indifference region), the number
of samples grows larger the closer p gets to the probability P (s, φ) that φ is
satisfied by a path starting in state s. The results in Fig. 1 were generated using
α = β = 10−2 and 2δ = 10−2. The peaks in the curves for the statistical solution
method all coincide with P (s, φ) being in the indifference region [p − δ, p + δ].

The number of samples required to verify a formula of the form P≥ p (φ)
rapidly decreases as P (s, φ) gets further away from the threshold p. The key
performance factor then becomes the length of sample paths, which depends on
the exit rates of the CTMC and on the path formula φ. An upper bound on the
expected length of sample paths is O(q·t). We can see in Fig. 1(f), where P (s, φ)
remains far from the threshold and the number of samples is close to constant
(about 400 samples) for all values of the time bound, that the curves for both
methods have roughly the same slope. The statistical approach scales better with
the size of the state space giving it the edge over the numerical approach in the
cluster example, but steady-state detection gives the numerical approach a clear
advantage in the tandem case study (Fig. 1(b)).

For the tandem queueing network, the arrival rate for messages is 4n, where
n is the capacity of the queues. This has as a result that sample path lengths are
proportional to n. As n increases, the sample path length becomes the dominant
performance factor, meaning that verification time for the statistical approach
becomes proportional to n. This is to be compared with the numerical approach,
whose performance is linear in the size of the state space, which is quadratic in
n. Similar results can be seen for the dependable workstation cluster. In the
polling example, the arrival rate λ is inversely proportional to the number of
polling stations n, while the other rates remain constant for all n. This explains
the levelling-off of the curves for the statistical solution method in Fig. 1(c).

Recall that we only need to generate as much of a sample path as is needed
to determine the truth value of φ. For φ = Φ U≤t Ψ , we can stop if we reach a
state satisfying ¬Φ∨Ψ (cf. the CTMC C′ constructed in the numerical approach
in Sect. 2.1). The effect of this is seen most clearly for the polling case study
as we increase the time bound. Once the path formula is satisfied the average
length of the sample paths does not increase (Fig. 1(d)).

Trading Accuracy for Speed. With both solution methods, it is possible to ad-
just the accuracy of the result. For the statistical approach, we can control
the parameters α, β, and δ so as to trade accuracy for efficiency. By setting
these parameters high, we can get an answer quickly. We could then gradually
tighten the error bounds and/or the indifference region to obtain higher accu-
racy. This approach is taken by Younes et al. [25], who modify the statistical
solution method for verifying CSL formulae of the form P≥ p (φ) without nested
probabilistic operators so that it can be stopped at any time to return a result.
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Figure 2 shows how the verification time for a polling system problem and a
workstation cluster problem depends on the strength of the test and the width
of the indifference region. We can see that the verification time is inversely
proportional both to the error bounds and the width of the indifference region,
and that for some parameter values the numerical approach is faster while for
others the statistical approach is the fastest. Using the statistical approach with
error bounds α = β = 10−10 and half-width of the indifference region δ ≈ 2·10−4,
for example, we could obtain a verification result for the polling system problem
(n = 10) in roughly the same time as is required by the numerical approach.
For larger models, we would of course be able to obtain even higher accuracy
with the statistical approach if allowed as much time as needed by the numerical
approach to solve the problem.
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(a) Symmetric polling system (n =
10 and T = 40).
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(b) Dependable workstation cluster
(n = 64 and T = 80).

Fig. 2. Verification time as a function of the half-width of the indifference region for
different error bounds. The dashed line in each graph represents the verification time
for the numerical approach.

We can adjust the accuracy for the numerical solution method by varying the
parameter ε, but increasing or decreasing ε has very little effect on the verification
time as shown by Reibman and Trivedi [20] and Malhotra et al. [18]. This means
that the numerical solution method can provide very high accuracy without
much of a performance degradation, while the statistical solution method is well
suited if a quick answer with some uncertainty is more useful. This suggest that
statistical techniques can be quite useful as a first resort, instead of a last resort
as often suggested.

Mixing Solution Techniques. Finally, we present some results for the grid world
case study, where the CSL property has nested probabilistic operators. We can
see in Fig. 3 that the mixed approach shares performance characteristics with
both approaches, outperforming the pure numerical solution method for larger
state spaces.
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Fig. 3. Verification time as a function of state space size for the grid world example,
with T1 = 100 and T2 = 7.

5 Discussion

In this paper, we have empirically compared numerical and statistical solution
techniques for probabilistic model checking on case studies taken from the liter-
ature on performance evaluation and probabilistic model checking. We focused
our attention on time-bounded properties as these are the type of properties
most suited for statistical methods (the time-bound provides a natural limit for
simulations).

The nature of CSL formulae allows us to use statistical hypothesis testing
instead of estimation (we only need to know if the probability of a path formula
holding is above or below some threshold). The use of sequential acceptance
sampling allows the statistical approach to adapt to the difficulty of the problem:
verifying a property P≥ p (φ) in a state s takes more time if the true probability
of φ holding in s is close to the threshold p. This can give a clear edge for
statistical methods over numerical approaches for model checking CSL formulae.
Most previous assessments of statistical techniques (see, e.g., [21]) are based on
parameter estimation problems, which are clearly harder in that they typically
require a large number of samples. Our results show that the intuition from
earlier studies does not necessarily carry over to CSL model checking. Instead of
a last resort, statistical solution methods can be seen as a first resort providing a
result rapidly, for example during system prototyping when high accuracy may
not be a priority, while numerical techniques often remain superior when very
high accuracy is required.

Our results are otherwise in line with known complexity results for the two
techniques. We show a linear complexity in the time-bound for both approaches.
Our results also confirm that statistical methods scale better with the size of the
state space, but that high accuracy comes at a greater price than for numerical
methods.

The case studies we considered in this paper were all CTMCs. For more com-
plex models with general distributions, such as semi-Markov processes, numeri-
cal methods rely on even more elaborate techniques for verifying time-bounded
properties (see e.g. [13]). A statistical approach, on the other hand, would work
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just as well for semi-Markov processes (assuming, of course, that samples from
the distributions used in the model can be generated in roughly the same amount
of time as samples from the exponential distribution).3
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