
HAL Id: hal-00306314
https://hal.science/hal-00306314

Submitted on 1 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimization of counterexamples in SPIN
Paul Gastin, Pierre Moro, Marc Zeitoun

To cite this version:
Paul Gastin, Pierre Moro, Marc Zeitoun. Minimization of counterexamples in SPIN. Model Checking
Software: Proc. of the 11th International SPIN Workshop, SPIN04, 2004, Barcelone, Spain. pp.92-
108, �10.1007/b96721�. �hal-00306314�

https://hal.science/hal-00306314
https://hal.archives-ouvertes.fr

Minimization of counterexamples in SPIN

Paul Gastin, Pierre Moro, and Marc Zeitoun

LIAFA, Univ. of Paris 7, Case 7014,
2 place Jussieu, F-75251 Paris Cedex 05, France

{gastin,moro,mz}@liafa.jussieu.fr

Abstract. We propose an algorithm to find a counterexample to some
property in a finite state program. This algorithm is derived from SPIN’s
one, but it finds a counterexample faster than SPIN does. In particular it
still works in linear time. Compared with SPIN’s algorithm, it requires
only one additional bit per state stored. We further propose another
algorithm to compute a counterexample of minimal size. Again, this al-
gorithm does not use more memory than SPIN does to approximate a
minimal counterexample. The cost to find a counterexample of minimal
size is that one has to revisit more states than SPIN. We provide an
implementation and discuss experimental results.

1 Introduction

Model-checking is used to prove the correctness of properties of hardware and
software systems. When the model is incorrect, locating errors is important to
provide hints on how to correct either the system or the property to be checked.
Model checkers usually exhibit counterexamples, that is, faulty execution traces
of the system. The simpler the counterexample is, the easier it will be to locate,
understand and fix the error. A counterexample can mean that the abstraction
of the system (formalized as the model) is too coarse; several techniques can be
used to refine the model, guided by the counterexample found by the model-
checker. Since the refinement stage is done manually, it is very important to
compute small counterexamples (ideally of minimal size) in case the property is
not satisfied.

It is well-known that verifying whether a finite state system M satisfies
an LTL property ϕ is equivalent to testing whether a Büchi automaton A =
AM ∩A¬ϕ has no accepting run [8], where AM is a Kripke structure describing
the system and A¬ϕ is a Büchi automaton describing executions that violate
ϕ. It is easy, in theory, to determine whether a Büchi automaton has at least
one accepting run. Since there is only a finite number of accepting states, this
problem is equivalent to finding a reachable accepting state and a loop around
it. A counterexample to ϕ in M can then be given as a path ρ = ρ1ρ2 in the
Büchi automaton, where ρ1 is a simple (loop-free) path from the initial state
to an accepting state, and ρ2 is a simple loop around this accepting state (see
Figure 1). The model-checker SPIN[6,5] can find counterexamples by exploring
on the fly the synchronized product of the system and the property. Our goal is

ρ1
ρ2

Fig. 1. An accepting path in a Büchi automaton

to find short counterexamples while sparing memory. The first trivial remark is
that we can reduce the length of a counterexample if we do not insist on the fact
that the loop starts from an accepting state. Hence, we consider counterexamples
of the form ρ = ρ1ρ2ρ3 where ρ1ρ2 is a path from the initial state to an accepting
state, and ρ3ρ2 is a simple loop around this accepting state (see Figure 2). A
minimal counterexample can then be defined as a path of this form, such that
the length of ρ is minimal.

ρ1

ρ2

ρ3

Fig. 2. An accepting path in a Büchi automaton

Finding a counterexample, even of minimal size, can of course be done in poly-
nomial time using minimal paths algorithms based on breadth-first traversals.
However, breadth-first traversals are not well-suited to detect loops. Moreover,
the model of the system frequently comes from several components working con-
currently, and the resulting Büchi automaton can be huge. Therefore, memory is
a critical resource and, for instance, we cannot afford to store the minimal dis-
tance between all pairs of states. Therefore, we retain SPIN’s approach and we
use a depth-first search-like algorithm [7,3]. Depth-first traversals are well suited
to detect loops, but they are not adapted for computing distances between states,
which makes the problem more difficult than it first appears.

With this approach, there are actually two difficulties: the first one is to
find one counterexample, the second one is to find a small counterexample, and
ideally a minimal one.

SPIN has an option to reduce the size of counterexamples it finds. Yet, it
does not provide the smallest one and results frequently remain too large and
difficult to read, even when considering simple systems. For instance, on a nat-
ural liveness property on Dekker’s mutual exclusion algorithm, SPIN provides a
counterexample with 173 transitions. In this case, it is not difficult to see that
an error occurs after 23 steps. The reason is that SPIN’s algorithm for reducing
the size of counterexamples misses lots of them and therefore fails to find the
shortest one. Our contribution is the following:

2

– We propose an algorithm to find a counterexample of a Promela model in
linear time. This algorithm is derived from SPIN’s, but finds a counterex-
ample faster than SPIN does. Moreover, compared with SPIN’s algorithm,
it only requires one additional bit per state stored.

– We propose another algorithm to compute a counterexample of minimal
size, once a first counterexample has been found. This algorithm does not
use more memory than SPIN does with option -i when trying to reduce the
size of counterexamples. The cost of finding the shortest counterexample is
to revisit more states than SPIN does.

– We have implemented a version of the last algorithm whose results are indeed
much smaller than those given by SPIN. For instance, for Dekker’s algorithm,
it actually finds the 23 states counterexample.

– We finally propose other improvements to SPIN’s algorithm.

The paper is organized as follows. In Section 2, we describe the algorithm to
find a first counterexample and we prove its correctness. However, there is no
guarantee that this counterexample is of minimal size. In Section 3, we present an
algorithm finding a minimal counterexample. While explaining these algorithms,
we exhibit various problems that may arise when computing a counterexample
with the current SPIN algorithm. An implementation and experimental results
are described in Section 4.

2 Finding the first counterexample

Let A = (S, E, s1, F) be a Büchi automaton where S is a finite set of states,
E ⊆ S × S is the transition relation, s1 ∈ S is the initial state and F ⊆ S is
the set of accepting states. Usually transitions are labeled with actions but since
these labels are irrelevant for the emptiness problem, they are ignored in this
paper. In pictures, the initial state is marked with an ingoing edge and accepting
states are doubly circled. If a state has k outgoing transitions, we number them
from 1 to k. Transitions from a state will be considered by the algorithms in the
order given by their labels.

A path in an automaton is a sequence of states γ = t1t2 · · · tk (also denoted
t1, t2, . . . , tk) such that for all i < k there is a transition from ti to ti+1. We call
k the length of γ, and we denote it by |γ|. The empty path, with no state, is
denoted by ε and it has length 0. We say that γ is simple if ti 6= tj for all i 6= j.

A loop is a path t1t2 · · · tk with tk = t1. A loop is accepting if it contains an
accepting state. A loop t1t2 · · · tk is a cycle if t1t2 · · · tk−1 is a simple path.

An accepting path, or counterexample, is of the form γ = s1 · · · sk · · · sk+`

where s1 · · · sk is a path starting from the initial state and sk · · · sk+` is an
accepting loop. Abusing the language, we say that γ is a simple accepting path
if in addition s1 · · · sk · · · sk+`−1 is simple.

In this section, we describe an algorithm finding the first counterexample.
It is similar to the nested DFS described in [3,1,7], with an improvement that
avoids revisiting some states unnecessarily. This improvement is also useful when
minimizing the size of the counterexample.

3

Algorithm 1 A version of the nested DFS algorithm: the color-DFS

void DFS blue (State s)

1: push(cp, s); s→is in cp := true; s→color := blue

2: for all t ∈ E(s) do

3: if (t→is in cp and t ∈ F) then exit with cp · t as counterexample

4: else if (t→color = white) then DFS blue(t) end if

5: end for

6: pop(cp); s→is in cp := false

7: if (∀t ∈ E(s), t→color = black) then

8: s→color := black

9: else if (s ∈ F) then

10: DFS red(s)

11: DFS black(s)

12: end if

void DFS red (State s)

1: push(cp, s); s→is in cp := true; s→color := red

2: for all t ∈ E(s) do

3: if (t→is in cp and (t ∈ F or t→color = blue)) then

4: exit with cp · t as counterexample

5: else if (t→color = blue) then

6: DFS red(t)

7: end if

8: end for

9: pop(cp); s→is in cp := false

10: s→color := grey

/*

* Note that line 10 of DFS_red is not part of the actual algorithm.

* Its purpose is simply to clarify the correctness proof.

* Therefore there are actually only four colors as stated in the

* description above.

*/

void DFS black (State s)

1: s→color := black

2: for all t ∈ E(s) do

3: if (t→color 6= black) then DFS black(t) end if

4: end for

Algorithm 1 uses 4 colors to mark states: white < blue < red < black. (We
also mark states in grey, but this is just for simplifying the proof.) The color of a
state can only increase. At the beginning, all states are white and the algorithm
DFS blue is called on the initial state s1.

Two DFSs alternate, the blue and red ones. The blue DFS is used to locate
reachable accepting states and to start red DFSs from these accepting states in
postfix order with respect to the covering tree defined by the blue DFS. A red
DFS starts (and interrupts the blue one) whenever one pops an accepting state
in the blue DFS. A red DFS only visits blue states, that is states already visited

4

by the blue DFS. We will show that if a red DFS initiated from an accepting
state r terminates without finding a counterexample then no state reachable
from r may be part of an accepting path. Hence, the color of all states reachable
from r may be set to black. This is the purpose of the black DFS.

The DFSs used define, at any time, a current path from the initial state to
the current state. For convenience, this current path is stored in a global variable
cp. Actually, this is not necessary with our recursive presentation, since it may
be obtained as a by-product of the execution stack when the counterexample is
found. (For efficiency, SPIN uses an iterative implementation of the DFS, and
stores the current path in a global variable.)

Each state s ∈ S is represented by a structure and the algorithm requires the
following additional fields. The extra cost of these data is only 3 bits for each
state, while the nested DFS implemented in SPIN only needs 2 bits per state.

– Color color initially white.
– Boolean is in cp initially false. This flag is used to test in constant time

whether a state belongs to the current path.

When we write for all t ∈ E(s) in the algorithms (see e.g. Algorithm 1),
we assume that the successors {t ∈ S | (s, t) ∈ E} of s are returned in a fixed
order, which is in particular the same in DFS blue and DFS red. This fact is
important for the correctness of Algorithm 1. We establish simultaneously the
following invariants.

Lemma 1. (1) Invariant for DFS blue: no black state is part of a simple ac-
cepting path and all states reachable from a black state are also black.
(2) Invariant for DFS red initiated from DFS red(r) with r ∈ F : either no state
reachable from r is part of a simple accepting path, or there is a simple accepting
path going through r and using no black or grey state.

Proof. (1) During DFS blue(s), if we execute line 8 then all successors of s
are black and the result is clear by induction. Now, assume that we execute
line 11. Then DFS red(s) was executed completely and the color of s is grey.
Using (2) (with r = s) we deduce that no state reachable from s is part of a
simple accepting path. Hence, after executing DFS black(s), the invariant is still
satisfied.
(2) This is the difficult part. First, note that when entering DFS red(r) there
are no grey states and we get property (2) directly from (1). Now, this invariant
may only be affected by the execution of line 10 inside some DFS red(s). When
executing this statement, all successors of s are either black, grey, or red. Note
that a red successor of s is necessarily on the current path between r and s
since the states on cp(r) are still blue, where cp(r) is the current path when
DFS red(r) was called.

Assume that there exists a simple accepting path α going through r and
using no black or grey state. Note that all paths using no black state and going
from r to an accepting state must cross cp(r) · r. This is due to the postfix order
of the calls DFS red(t) for t ∈ F . Since we can reach an accepting state, following

5

α from r, unwinding α once if necessary, we get a path β from r to cp(r) ·r using
no black or grey state. The path cp(r) · β is a simple accepting path using no
black or grey state.

If s /∈ β then the invariant still holds after setting the color of s to grey in
line 10. Assume now that s ∈ β and let t be the successor of s on the path β.
The color of t must be red. Let v be the last state of β whose color is red and
write β = β1vβ2. Since the color of v is red, it is on the current path between
r and s and cp(r) · r is a prefix of cp(v) · v. Therefore, cp(v) · vβ2 is a simple
accepting path using no grey or black states and does not contain s. Therefore,
the invariant still holds after setting the color of s to grey in line 10. ut

Remark 2. One can prove that if a call DFS red(r) with r ∈ F terminates with-
out finding a counterexample, then all states reachable from r are black or grey.
Therefore, in line 10 of DFS red(s), we could set the color of s to black directly
and remove line 11 (the call to DFS black) in DFS blue. This modification is
fine if we are only interested in finding the first counterexample. But when the
color of some state s is set to grey, then we do not know whether s is part of a
counterexample or not. In other words, one can deduce that a grey state cannot
be part of a counterexample only when the initial call DFS red(r), with r ∈ F ,
terminates. In order to avoid revisiting unnecessarily some states, the minimiza-
tion algorithm presented in Section 3 can use the fact that a black state cannot
be part of a counterexample. This is why we do not use this modification.

Since the algorithm visits a state at most 3 times, Algorithm 1 terminates.
Moreover, one gets as a corollary of Lemma 1 the following statement.

Proposition 3. If a Büchi automaton A admits a counterexample, then Algo-
rithm 1 finds a counterexample on input A.

2.1 Comparison with SPIN’s algorithm

The difference between our algorithm and SPIN’s is that SPIN does not paint
states in black to avoid unnecessary revisits of states. More precisely, in SPIN’s
algorithm, lines 7 to 12 of DFS blue are replaced with

if s ∈ F then r := s; DFS red(s) endif

where r is a global variable used to memorize the origin of the red DFS. To
illustrate the benefit of black states, consider the automaton below. Recall that
the transition labels indicate in which order successors are considered by the
DFSs. With SPIN’s algorithm, the large tree is visited twice. The first visit is
started with DFS blue(2) and the second one with DFS red(3). With our algo-
rithm, when DFS blue(2) terminates, state 2 is black. Indeed, DFS blue is called
recursively on each state of the tree accessible from state 2. All leaves of this
tree, which have no successor, are marked black at lines 7–8, and this propagates
back to state 2. Therefore the tree will not be revisited by DFS red(3).

6

1 2
Large tree with

no accepting state
3

12

3 Finding a minimal counterexample

To find a minimal counterexample, we use a depth-first search [2] which does
not necessarily stop when it reaches a state already visited. Indeed, reaching a
state s with a distance to the initial state s1 smaller than for the previous visit
of s may lead to a shorter counterexample.

Therefore, in addition to the fields used in Algorithm 1, each state has an
integer field depth, storing the smallest length of current paths on which that
state occurred. This field remains infinite as long as the state has not been
visited, and it can only decrease during the algorithm. We also use an additional
variable mce, a stack of states containing the minimal counterexample found so
far. It is initially empty. At the end of the algorithm, it will contain a minimal
counterexample of the whole automaton.

3.1 SPIN’s algorithm

The current algorithm implemented in SPIN to find a small counterexample is
a variation of the nested DFS algorithm [7]. It carries on the visit below a state
either if the state is new or if it is found more quickly than during the previous
visits. (And, before popping an accepting state, it looks for a loop from that
state.) This algorithm cannot guarantee to find a minimal counterexample. The
reason is that, after finding the first counterexample, SPIN backtracks whenever
it reaches a state with a path longer than the stored distance to the initial state.
This is due to the false intuition that using a longer path will never yield a
shorter counterexample. There are two cases where this is not appropriate and
the minimal counterexample is missed. The following examples illustrate these
two cases. As before, transition labels indicate in which order they are visited.

In the automaton of Fig. 3, the first counterexample found is s1s2s3s4s5s6s3.

s1

s2 s3

s4

s5

s6

2

1

Fig. 3. Missing the minimal counterexample: case 1

After this visit, the state depths are set as follows: (s1, 1), (s2, 2), (s3, 3),
(s4, 4), (s5, 5), (s6, 6). SPIN’s algorithm then backtracks and s5 is reached from

7

s1 with depth 2. Since this is smaller than the previous depth of s5 the visit
proceeds to s6 which is reached now at depth 3, and then to s3, reached at
depth 4. But 4 is greater than the previous depth of s3 and SPIN’s algorithm
would backtrack missing the shortest counterexample which is s1s5s6s3s4s5.

The second case is when an accepting state is on the current path. Then,
even if no depth was reduced after finding the first counterexample, one should
revisit already visited states. An example is shown in Fig. 4.

s1 s2

s3s4

1

2

12

Fig. 4. Missing the minimal counterexample: case 2

The first counterexample found (during the second depth-first search from s2)
is s1s2s3s4s1 and the state depths are (s1, 1), (s2, 2), (s3, 3), (s4, 2). Now, when
we reach s4 from s2 with the current path s1s2s4, no depth has been reduced and
again SPIN’s algorithm would backtrack missing the shortest counterexample
which is s1s2s4s1. In this case, the relevant length that was reduced is the length
from the accepting state s2 to s4 (from 2 to 1). Because memory is the most
critical resource, it is not possible to store the length from all accepting states
to each state. Therefore, we have to revisit states already visited.

To cope with these cases, Algorithm 2 has two operating modes: a normal
one where several criteria can make the algorithm backtrack, and a more careful
one, where the visit can only stop when either the current path loops, or becomes
longer than the size of the minimal counterexample found so far. In this mode,
states may be revisited several times. If the algorithm enters in careful mode
while pushing a state s on the current path, it remains in this mode until that
occurrence of s is popped off the current path.

In the example of Fig. 3, we would switch to careful mode at lines 11–12 of
Algorithm 2 when visiting s5 for the second time, because the field s5→depth

gets reduced. In the example of Fig. 4, we would switch to careful mode at
lines 7–8 when visiting s2, an accepting state.

The important fact is that being careful only in these two situations is suffi-
cient to catch a minimal counterexample.

3.2 An algorithm finding the minimal counterexample

Algorithm 2 is again presented by a recursive procedure which tags states while
visiting them. Its first argument is the state to be visited. Its second argument
is the mode, initially normal, used for the visit. When we detect that some
counterexample might be missed in that mode, we switch to the careful mode

8

by calling the procedure with careful as the second argument. The mode could
be implemented as a global variable, which saves memory. Making it an argument
of the procedure yields a simpler presentation of the algorithm.

Algorithm 2 Finding a minimal counterexample

void DFS MIN (State s, Boolean mode)

1: push(cp, s)

2: s→depth := min(length(cp), s→depth)
3: for all t ∈ E(s) do

4: if
`

mce = ε or (length(cp) + 1 < length(mce))
´

then

5: if t ∈ cp then

6: if closes accepting(t) then mce := cp.t end if

7: else if (mode = careful or t ∈ F) then

8: DFS MIN(t, careful)

9: else if t→depth = ∞ then

10: DFS MIN(t, mode)

11: else if
`

(t→depth > length(cp) + 1) and mce 6= ε
´

then

12: DFS MIN(t, careful)

13: end if

14: end if

15: end for

16: pop(cp)

In the description of Algorithm 2, we use the following functions:

– int length(p) returns the length of the path p (i.e., its number of states).
Since we only use it with cp and mce as arguments, one can maintain their
lengths in two global variables, hence we may assume that this call requires
O(1)-time.

– Boolean closes accepting(t) returns true iff cp · t is an accepting path
(assuming that cp itself is not accepting). To implement this function, one
can use another stack of states recording, for each state s of the current path
cp the depth of the last accepting state of cp located before s. For instance,
if the current path is [s1, s2, s3, s4, s5, s6] and only s2, s5 are accepting, then
this stack contains [0, 2, 2, 2, 5, 5] (where 0 means that there is no accepting
state). The function closes accepting can then be implemented:
• in O(1)-time if we accept to store the depth of each state on the current

path. To check that a state closing a cycle creates an accepting cycle,
one checks that the depth of its occurrence on the current path is smaller
than the depth of the last accepting state on the current path.

• in O(n)-time otherwise, where n is the length of the current path. Never-
theless, the additional stack still gives useful information to avoid visiting
the current path. For instance, if s→depth (which will be smaller than
the depth of s in cp) is larger than the depth of the last accepting state
on the current path, or if there is no accepting state on it, we know that
s does not close an accepting path.

9

3.3 Correctness of the algorithm

To prove that Algorithm 2 is correct, we introduce the lexicographic ordering
on paths starting from the initial state of the automaton. Recall that if a state
has k outgoing transitions, they are labeled from 1 to k according to the order
in which they will be processed by the algorithm. Let λ : S × S → N assigning
to each edge its labeling. We extend λ to paths starting at s1 by letting λ(s1) =
ε and λ(s1, s2, . . . , sn) = λ(s1, s2)λ(s2, s3) · · ·λ(sn−1, sn). If γ and γ′ are two
paths starting at s1, we say that γ is lexicographically smaller than γ′, denoted
γ ≺lex γ′, if λ(γ) is lexicographically smaller than λ(γ′) (with the usual order
over N). We let γ �lex γ′ iff γ ≺lex γ′ or γ = γ′.

The first observation is that the algorithm discovers paths in increasing lex-
icographic order. In other words, each call to DFS MIN makes the current path
greater in the lexicographic ordering.

Lemma 4. Let α and β be the values of cp after two consecutive executions of
line 1 of Algorithm 2. Then, α ≺lex β.

Proof. First observe that the test at line 5 guarantees that the current path
cp remains simple: DFS MIN will not be called on a state that would close the
current path. Let α = s1s2 · · · s`. Then either no state is popped before the next
execution of line 1, and β is of the form αs`+1, hence α ≺lex β. Or 1 ≤ k < `
states are first popped, and the algorithm then pushes t on the current path.
By definition of the transition labeling λ, t is a successor of s`−k such that
λ(s`−k, s`−k+1) < λ(s`−k, t). Hence, the new value of cp is β = s1s2 · · · s`−kt
and α ≺lex β. ut

Corollary 5. Algorithm 2 halts on any input.

Proof. There is a finite number of simple paths in a finite graph, cp takes its
values in this finite set and each recursive call makes it greater. ut

Since Algorithm 2 discovers an increasing sequence of paths in the lexico-
graphic ordering, it is natural to introduce the following sequence (γi)0≤i≤p. Let
S be the finite set of simple accepting paths. Recall that a simple accepting path
is of the form αsβs with αsβ simple and sβ ∩ F 6= ∅. Since the lexicographic
ordering is total, we can define a sequence (γi)0≤i≤p as follows:

{

γ0 = min≺lex
S if S 6= ∅

γi+1 = min≺lex
{γ ∈ S | |γ| < |γi|} if {γ ∈ S | |γ| < |γi|} 6= ∅

where |γ| denotes the length of γ. By construction, the last element γp of this se-
quence is an accepting path of minimal length. Note that the sequence γ0, . . . , γp

is increasing in the lexicographic ordering and decreasing in length. For α, β ∈ S,
we let α v β if α �lex β and |α| ≤ |β|. We shall use the following simple fact.

Fact 1 Each γi is v-minimal in S.

10

The following proposition states in particular that Algorithm 2 is correct,
since the last value taken by mce is precisely γp. It also shows what would be
the behavior of a variant of our algorithm which outputs the successive values
of mce.

Proposition 6. The successive values taken by the variable mce during the ex-
ecution of Algorithm 2 are γ−1 = ε, γ0, . . . , γp.

Proposition 6 is a direct consequence of Proposition 7 below. Given a path α,
we let min(α) = min{i | α is a prefix of γi} and max(α) = max{i | α is a prefix of γi}.
By convention, min(α) = ∞ and max(α) = −∞ if α is not a prefix of some γi.

Proposition 7. Let δs be a strict prefix of γk with k = min(δs) < ∞. As-
sume that at the beginning of a call DFS MIN(s,mode), we have cp = δ and
that for all prefixes δ1r of δs we had mce = γmin(δ1r)−1 at the beginning of
the call DFS MIN(r,). Then, at the end of the call DFS MIN(s,mode), we have
mce = γmax(δs). Moreover, whenever the variable mce is updated, it is switched
from some γ`−1 to γ` with ` ≥ 0.

The proof of this proposition in turn uses Lemma 8.

Proof. Let T = {t ∈ E(s) | min(δst) < ∞}. Write T = {t1, . . . , tn} with
λ(s, ti) < λ(s, ti+1) for all 1 ≤ i < n. We use an induction on |γk| − |δs| ≥ 1.

Claim. If before line 4 when considering ti ∈ E(s) we have mce = γmin(δsti)−1

then after line 14 of this iteration we have mce = γmax(δsti).

Let t = ti and ` = min(δst). Either ` = 0 and mce = ε or |cp| + 1 = |δst| ≤
|γ`| < |mce| and the test line 4 succeeds.

The first case is when t ∈ cp = δs. Then, we have γ` = δst and t closes an
accepting path. Therefore, mce is updated to γ`. For any other successor v of s
with λ(s, v) > λ(s, t), we have |δsv| = |γ`| = |mce|, hence the test line 4 fails.
Therefore, the value of mce remains γ` until the end of the call DFS MIN(s,).
Moreover, from γ` = δst we deduce that i = n and γ` = max(δstn) = max(δs)
which proves the claim.

The second case is when t /∈ cp = δs. All hypotheses of Lemma 8 are fulfilled,
hence DFS MIN(t,) is called. When DFS MIN(t,) is called, δst is a strict prefix
of γ`, cp = δs, mce = γ`−1 = γmin(δst)−1 and for all prefixes δ1r of δs we had
mce = γmin(δ1r)−1 at the beginning of the call DFS MIN(r,). Therefore, the
hypotheses of Proposition 7 are fulfilled and since |γ`| − |δst| < |γk| − |δs| we
get by induction that mce = γmax(δst) at the end of the call DFS MIN(t,). The
claim is proved.

Now, we show by induction on i that before line 4 when considering ti ∈ E(s)
we have mce = γmin(δsti).

Note that k = min(δs) = min(δst1). By definition of γk, no successor t of
s with λ(s, t) < λ(s, t1) may be such that δst is on a simple accepting path of
length less than |γk−1| (with the convention |γ−1| = ∞). Hence, the value of mce
remains γk−1 until t1 ∈ E(s) is considered. The property holds for i = 1.

11

Assume now that the property holds for some i < n. From the claim, we get
mce = max(δsti) after the iteration for ti ∈ E(s). Let q = max(δsti). Note that
min(δsti+1) = max(δsti) + 1 = q + 1. By definition of γq+1 and of the set T , no
successor v of s with λ(s, ti) < λ(s, v) < λ(s, ti+1) may be such that δsv is on a
simple accepting path of length less than |γq|. Hence, the value of mce remains
γq until ti+1 ∈ E(s) is considered and the property still holds for i + 1.

Finally, before line 4 when considering tn ∈ E(s) we have mce = γmin(δstn).
Using the claim, we get mce = max(δstn) after the iteration for tn ∈ E(s). Note
that q = max(δstn) = max(δs). By definition of the set T , no successor v of
s with λ(s, tn) < λ(s, v) may be such that δsv is on a simple accepting path
of length less than |γq|. Hence, the value of mce remains γq until the end of
DFS MIN(s,mode) and the proposition is proved. ut

The proof of the next lemma uses auxiliary results (Lemmas 10 and 11 below)
on paths that are totally independent of the algorithm.

Lemma 8. Let δst be a simple path with ` = min(δst) < ∞. Assume that,
while considering the successor t of s in DFS MIN(s,), we have cp = δs and
mce = γ`−1 and that for all prefixes δ1r of δs we had mce = γmin(δ1r)−1 at the
beginning of the call DFS MIN(r,). Then, DFS MIN(t,) is called.

Proof. We let α′ = δs. Assume first that ` = 0, so that α′t is a prefix of γ0. Since
mce = γ−1 = ε, the test line 4 succeeds. Since α′t is simple and cp = α′, the test
line 5 fails. Assume that the test line 7 fails. Then, the mode of the algorithm
is necessarily normal, and in particular there is no accepting state on cp = α′.
Moreover, t is not accepting: α′t ∩ F = ∅. If the test line 9 also fails, then t has
already been visited along a simple path that we denote β′t. By Lemma 4, we
have β′t ≺lex α′t. This situation is impossible by Lemma 11. Hence the test line
9 must succeed and DFS MIN(t,) is called in this case.

Assume now that ` 6= 0. We have |cp| + 1 = |α′t| ≤ |γ`| since α′t is a prefix of
γ`. Further, |γ`| < |γ`−1| by definition of the sequence (|γi|)i. Since mce = γ`−1,
we deduce that the test line 4 succeeds. Assume that the test line 7 fails. We
show as before that α′t ∩ F = ∅. Assume that the test line 9 also fails. Then,
there exists a simple path β′t such that β′t ≺lex α′t and |β′t| = t→depth. If
|β′t| > |γ`|, then t→depth = |β′t| > |α′t| = |cp| + 1 and DFS MIN(t,) is called
on line 11.

Assume now that |β′t| ≤ |γ`|. We want to apply Lemma 10 with α = γ`.
Recall that γ` is a simple accepting path which is v-minimal in S. Note that
α′t is a prefix of α which satisfies property (1) of Lemma 10 and it remains to
show that α′t is minimal with this property. Since the algorithm is still in mode
normal (the test line 7 failed), for all prefixes α′

1r of α′, we had r→depth = ∞
when the call to DFS MIN(r,normal) was made. By hypothesis, at the beginning
of this call, we had mce = γ`1 where `1 = min(α′

1r). Assume that there is
a simple path β′

1r ≺lex α′
1r. Since β′

1r was not visited before α′
1r, we have

|β′
1r| ≥ |γ`1 | ≥ |γ`| = |α| and property (1) of Lemma 10 does not hold for α′

1r.
Therefore, α′t is the shortest prefix of α = γ` satisfying (1) and Lemma 10

12

implies that |β′| > |α′|. We conclude as above that DFS MIN(t,) is called on
line 11. ut

Lemma 9. Let δ = αsβs be a path with sβ ∩F 6= ∅, αs simple and αs∩ β = ∅.
We can construct a simple accepting path δ′ = α′s′β′s′ such that |δ′| ≤ |δ| and
αs is a prefix of α′s′.

Proof. Assume that δ is not simple. Let t be the first state occuring twice in
β. Then, we write β = β1tβ2tβ3 with t /∈ β1β2. If sβ1tβ3 ∩ F 6= ∅ then we let
δ′ = αsβ1tβ3s. The path δ′ still satisfies the hypotheses of the lemma and we have
|δ′| < |δ|. Hence we can conclude by induction. Otherwise, we let δ′ = αsβ1tβ2t.
Again, δ′ still satisfies the hypotheses of the lemma and |δ′| < |δ|. Since αs is a
prefix of αsβ1t, we can again conclude by induction. ut

Lemma 10. Let α ∈ S be a simple accepting path which is v-minimal in S.
Assume that there exists a prefix α′t of α satisfying

α′t ∩ F = ∅, β′t ≺lex α′t and |β′t| ≤ |α| for some simple path β′t. (1)

For the shortest prefix α′t of α satsisfying (1) we have |β′| > |α′|.

Proof. Let α1 be the greatest common prefix of α′ and β′. We write α′ = α1α2

and β′ = α1β2. Note that the transition between the last state of α1 and the
first state of β2 is strictly smaller than the transition between the last state of
α1 and the first state of α2. Hence, for all nonempty prefixes β′

2 of β2 and α′
2 of

α2, we have α1β
′
2 ≺lex α1α

′
2.

Assuming by contradiction that |β2| ≤ |α2| we will build a simple accepting
path β with β ≺lex α and |β| ≤ |α|, a contradiction with the v-minimality of α.

Write α = α′tα′′ and let s be the first state on β2t which occurs also on tα′′.
We write β2t = β′

2sβ
′′
2 and α′′ = α3sα4 with s /∈ α3. Below, whenever we state

that a path is simple, this follows from the definition of s and α3 and from the
fact that α and β′t are simple.

s1
α1

sβ′
2

t
α2

β′′
2

s
α3

v
α4

1. Assume that α3s contains a final state. Then, δ = α1β
′
2sβ

′′
2 α3s is an accepting

path which is not necessarily simple. Yet, β′t = α1β
′
2sβ

′′
2 is simple and α1β

′
2s ∩

α3 = ∅ since α is simple and by definition of s and α3. Applying Lemma 9, we
obtain a simple accepting path β with |β| ≤ |δ| ≤ |α| and α1β

′
2s is a prefix of β.

We deduce that β ≺lex α as announced.
Assume now that α3s ∩ F = ∅ and let v be the last state of α. By definition

of an accepting path, v is also the seed of the accepting loop.
2. We first show that v does not occur in α2. Assume by contradiction that α2 =
α′

2vα′′
2 and consider the simple path δ = α1β

′
2sα4 = δ′v. We have δ′v ≺lex α1α

′
2v

and |δ′v| ≤ |α|, a contradiction with the fact that t is the first such state.
3. If v does not occur in tα3 then we let β = α1β

′
2sα4.

13

4. If v occurs in tα3 then we write tα3 = α′
3vα′′

3 and we let β = α1β
′
2sα4α

′′
3s.

In both cases, we can check that β is a simple accepting path and that
β ≺lex α and |β| ≤ |α| as desired. ut

Lemma 11. If α′t is a prefix of γ0 with α′t∩F = ∅ then there is no simple path
β′t with β′t ≺lex α′t.

Proof. Assume by contradiction that there exists a prefix α′t of γ0 such that
α′t ∩ F = ∅ and β′t ≺lex α′t for some simple path β′t. In the following, we
assume that α′t is the shortest such prefix of γ0. We will buid a simple accepting
path β with β ≺lex γ0, a contradiction with the definition of γ0.

We proceed exactly as in the proof of Lemma 10. The only difference is in
case (2) when v occurs in α2. Here we let β = α1β

′
2sα4α

′′
2 tα3s. Note that we

may have |β| > |γ0| but we can show that β is a simple accepting path with
β ≺lex γ0. ut

3.4 Remarks on the algorithm

To keep the presentation simple, we have described the algorithm starting from
a fresh input. However, one can also start from an automaton already tagged by
Algorithm 1. Since no counterexample can go through a black state, this allows
us to backtrack in the depth-first search as soon as a black state is seen. This
shortens obviously the search by cutting useless parts of the automaton.

Moreover, one can also bound the search by the size of the counterexample
produced by Algorithm 1. More precisely, Algorithm 2 is well suited for bounded
model-checking. One can give it a bound B for the depth of the research, and it
would find successively the counterexamples γ`, γ`+1, . . . , γp where ` is the first
index such that |γ`| < B. This amounts only to changing the test of line 4 by

(

mce = ε and (length(cp) + 1 < B)
)

or
(

length(cp) + 1 < length(mce)
)

Although the time consumption of the algorithm is high, the algorithm out-
puts all counterexamples of the sequence γi when they are discovered, and the
user can stop the search at any time. For instance, Dekker’s algorithm produces
about 80 counterexamples (and the first of these counterexamples is found by
the linear

4 Implementation and experimental results

The algorithm presented in Section 2 is quite efficient and visits each state
at most twice (in view of Remark 2) in order to find a first counterexample.
The second algorithm on the other hand finds the shortest counterexample at
the expense of revisiting states much more often. In the worst case, its time
complexity is exponential. In order to get the best of the two, we start with the
first algorithm until a first counterexample is found (if any) and then switch
to the second algorithm to find the shortest counterexample. For this, before

14

switching to the minimization algorithm, we have to pop the execution stack
until the first (oldest) accepting state is reached.

In the prototype used to obtain the experimental results presented below, we
actually used SPIN’s algorithm for finding the first counterexample instead of our
algorithm presented in Section 2. Then we switch to our minimization algorithm
of Section 3. The reason is that more in-depth changes have to be carried out on
SPIN’s code to implement our algorithm of Section 2 and our primary goal was
just to minimize the size of the counterexample. We are currently implementing
the algorithm of Section 2 and since it is always more efficient than SPIN’s one,
more improvements can be expected.

In the synchronized product between the model and the LTL automaton
built by SPIN, there is a strict alternation between transitions of the model and
transitions of the LTL automaton (see [6]). Therefore all accepting paths are
of odd length and when minimizing the size of a counterexample we can set
the bound to length(mce)-2 instead of length(mce)-1 for an arbitrary Büchi
automaton. This trivial optimization is important for our algorithm since it may
revisit states quite often.

We have conducted experiments for various algorithms and specifications.
Experiments for which the model does not satisfy the specification and coun-
terexamples exist are gathered in Table 1.

SPIN -i Contrex

counterexample length 55 19
Peterson states stored 80 85

states matched 1968 9469
computation time 0m0.030s 0m0.070s

counterexample length 173 23
Dekker states stored 539 543

states matched 48593 2.5 ∗ 106

computation time 0m0.240s 0m11.420s

counterexample length 5 5
Dijkstra states stored 211258 209687
(3 users) states matched 1.96928e+09 654246

computation time 71m27.700s 0m1.780s

counterexample length 97 17
Hyman states stored 123 157

states matched 7389 40913
computation time 0m0.080s 0m0.210s

Table 1. Experiments for various algorithms when a counterexample does exist

We compare our algorithm with SPIN -i which tries to reduce the size of
the counterexample. Clearly SPIN -i does not find the shortest counterexample
while we have proved in Section 3 that our algorithm does. The automata of the

15

specifications (never-claims) have been generated by the tool LTL2BA [4] both for
the verification with SPIN -i and with our algorithm. For each experiment, we
show, in addition to the size of the minimal counterexample found, the number
of different states visited by the algorithms (states stored). The last information
(states matched) is the number of states (re)visited during the algorithm. Here,
each time a state is (re)visited this counter is incremented. The execution time
which is indicated is the user time (the system time is negligible in all cases)
obtained on a Pentium III 700Mhz with 1Gb of RAM and 1Gb of cache. We see
that as expected our algorithm needs to revisit more states that SPIN’s one in
order to really find the minimal counterexample.

The next table shows, for random graphs of sizes 20. 100 and 1000, the av-
erage counterexample length, number of matched states and of counterexamples
found.

SPIN -i/ Contrex/ Contrex/
nested-DFS nested-DFS color-DFS

counterexample length 3,2 3,2 3,2
20 states states matched 56,2 72,6 69,6

number of counterexamples 2,8 3,4 3,4

counterexample length 10,8 10,2 10,2
100 states states matched 290,8 531 522

number of counterexamples 7 7,6 7,6

counterexample length 9,6 8,6 8,6
1000 states states matched 2385 2727,6 2727

number of counterexamples 19,4 20,4 20,4

Table 2. Experiments for random graphs

5 Conclusion and open problems

The main contribution of this paper is the algorithm presented in Section 3 which
finds a shortest accepting path in a Büchi automaton. It has been implemented
and the comparison with SPIN’s algorithm clearly demonstrates its superiority.
We also proposed an algorithm to find a counterexample, without trying to
minimize its length, which is more efficient than SPIN’s. It avoids unnecessary
revisits of states and hence finds a counterexample more quickly. It also finds
a shorter counterexample because it does not insist on having a cycle starting
from an accepting state. We plan to implement this algorithm and to compare
it experimentally with SPIN. Further, this algorithm detects states that cannot
be part of an accepting path (black states). Hence, using it instead of SPIN’s
before searching for a minimal counterexample should improve the performance
of our second algorithm.

16

Finding a shortest counterexample is time consuming because we need to
revisit states many times. A general goal for improving the efficiency is to detect
more states that need not be revisited.

Another important issue is to be able to deal with partial order reductions.
While the first nested-DFS algorithm [3] failed in the presence of partial order
reductions, the version of [7] is able to cope with some reductions. We need
to investigate whether our algorithms can handle partial order reductions with
reasonable memory requirements.

Finally, it would be interesting to find ways to minimize the length of the
counterexample with respect to the model and the LTL specification. Instead,
existing algorithms search for counterexamples for the model and a specific au-
tomaton associated with the LTL specification. It is often the case that this
specific automaton is not optimal for finding a short counterexample for the
LTL formula.

Acknowledgment. The authors wish to thank the anonymous referees for their
careful reading of the submitted version of the paper and for their comments.

References

1. E. M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT Press,
1999.

2. Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2001.

3. C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algo-
rithms for the verification of temporal properties. In Computer-aided verification
’90 (New Brunswick, NJ, 1990), volume 3 of DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., pages 207–218. Amer. Math. Soc., Providence, RI, 1991.

4. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In G. Berry,
H. Comon, and A. Finkel, editors, Proceedings of the 13th Conference on Computer
Aided Verification (CAV’01), number 2102 in Lect. Notes Comp. Sci., pages 53–65.
Springer, 2001.

5. G. Holzmann. The model checker spin. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997. Special issue on Formal Methods in Software Practice.

6. G. Holzmann. The SPIN model-checker. Addison-Wesley, 2003.
7. G. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In Proc.

Second SPIN Workshop, pages 23–32, Rutgers, Piscataway, NJ, 1996. American
Mathematical Society.

8. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st Symp. on Logic in Computer Science, pages 332–344,
Cambridge, June 1986.

17

