
On Containment of Conjunctive Queries with

Arithmetic Comparisons

Foto Afrati1, Chen Li2, and Prasenjit Mitra3

1 National Technical University of Athens, 157 73 Athens, Greece
afrati@cs.ece.ntua.gr

2 Information and Computer Science, University of California, Irvine, CA 92697,
U.S.A

chenli@ics.uci.edu??

3 School of Information Sciences and Techonology
The Pennsylvania State University, University Park, PA 16802, U.S.A

pmitra@ist.psu.edu

Abstract. We study the following problem: how to test if Q2 is con-
tained in Q1, where Q1 and Q2 are conjunctive queries with arithmetic
comparisons? This problem is fundamental in a large variety of database
applications. Existing algorithms �rst normalize the queries, then test a
logical implication using multiple containment mappings from Q1 to Q2.
We are interested in cases where the containment can be tested more
eÆciently. This work aims to (a) reduce the problem complexity from
�P

2 -completeness to NP-completeness in these cases; (b) utilize the ad-
vantages of the homomorphism property (i.e., the containment test is
based on a single containment mapping) in applications such as those of
answering queries using views; and (c) observing that many real queries
have the homomorphism property. The following are our results. (1) We
show several cases where the normalization step is not needed, thus re-
ducing the size of the queries and the number of containment mappings.
(2) We develop an algorithm for checking various syntactic conditions on
queries, under which the homomorphism property holds. (3) We further
reduce the conditions of these classes using practical domain knowledge
that is easily obtainable. (4) We conducted experiments on real queries,
and show that most of the queries pass this test.

1 Introduction

The problem of testing query containment is as follows: how to test whether
a query Q2 is contained in a query Q1, i.e., for any database D, is the set of
answers to Q2 a subset of the answers to Q1? This problem arises in a large
variety of database applications, such as query evaluation and optimization [1],
data warehousing [2], and data integration using views [3]. For instance, an
important problem in data integration is to decide how to answer a query using
source views. Many existing algorithms are based on query containment [4].

?? Supported by NSF CAREER award No. IIS-0238586.

A class of queries of great signi�cance is conjunctive queries (select-project-
join queries and Cartesian products). These queries are widely used in many
database applications. Often, users need to pose queries with arithmetic com-
parisons (e.g., year > 2000, price � 5000). Thus testing for containment of con-
junctive queries with arithmetic comparisons becomes very important. Several
algorithms have been proposed for testing containment in this case (e.g., [5, 6]).
These algorithms �rst normalize the queries by replacing constants and shared
variables, each with new unique variables and add arithmetic comparisons to
equate those new variables to the original constants or shared variables. Then,
they test the containment by checking a logical implication using multiple con-
tainment mappings. (See Section 2 for detail.)

We study how to test containment of conjunctive queries with arithmetic
comparisons. In particular, we focus on the following two problems: (1) In what
cases is the normalization step not needed? (2) In what cases does the homomor-
phism property hold, i.e., the containment test is based on a single containment
mapping [6]?

We study these problems for three reasons. The �rst is the eÆciency of this
test procedure. Whereas the problem of containment of pure conjunctive queries
is known to be NP-complete [7], the problem of containment of conjunctive
queries with arithmetic comparisons is �P

2
-complete [6, 8]. In the former case,

the containment test is in NP, because it is based on the existence of a single
containment mapping, i.e., the homomorphism property holds. In the latter case,
the test needs multiple containment mappings, which signi�cantly increases the
problem complexity. We �nd large classes of queries where the homomorphism
property holds; thus we can reduce the problem complexity to NP. Although
the saving on the normalization step does not put the problem in a di�erent
complexity class (i.e., it is still in NP), it can still reduce the sizes of the queries
and the number of containment mappings in the containment test.

The second reason is that the homomorphism property can simplify many
problems such as that of answering queries using views [9], in which we want to
construct a plan using views to compute the answer to a query. It is shown in [10]
that if both the query and the views are conjunctive queries with arithmetic
comparisons, and the homomorphism property does not hold, then a plan can
be recursive. Hence, if we know the homomorphism property holds by analyzing
the query and the views, we can develop eÆcient algorithms for constructing a
plan using the views.

The third motivation is that, in studying realistic queries (e.g., in TPC bench-
marks), we found it hard to construct examples that need multiple mappings in
the containment test. We observed that most real query pairs only need a sin-
gle containment mapping to test the containment. To easily detect such cases,
we want to derive syntactic conditions on queries, under which the homomor-
phism property holds. These syntactic conditions should be easily checked in
polynomial time. In this paper, we develop such conditions.

The following are our contributions of this work. (Table 1 is a summary of
results.)

Contained Query Containing Query Complexity References

CQ CQ NP [7]

CQ with closed LSI CQ with closed LSI NP [5, 6]

CQ with open LSI CQ with open LSI NP [5, 6]

CQ with AC CQ with closed LSI NP Section 4

CQ with AC CQ with LSI NP Section 4
Constraints (i)-lsi, (ii)-lsi, (iii)-lsi Theorem 4

CQ with SI CQ with LSI, RSI NP Section 4
Constraints (i)-lsi,rsi, (ii)-lsi,rsi, (iii)-lsi,rsi, (iv) Theorem 5

CQ with SI CQ with LSI, RSI, PI NP Section 4
Constraints as above and (v),(vi),(vii) Theorem 6

CQ with AC CQ with AC �P

2 [8]
Table 1. Results on containment test. The classes in NP have the homomorphism
property. (See Table 2 for symbol de�nitions.)

1. We show cases where the normalization step is not needed (Section 3).
2. When the containing query Q1 has only arithmetic comparisons between a

variable and a constant (called \semi-interval," or \SI" for short), we present
cases where the homomorphism property holds (Section 4). If the homomor-
phism property does not hold, then some \heavy" constraints must be sat-
is�ed. Such a constraint could be: An ordinary subgoal of Q1, an ordinary
subgoal of Q2, an open-left-semi-interval subgoal of Q2, and a closed-left-
semi-interval subgoal of Q2 all use the same constant. (See Table 1 for the
de�nitions of these terms.) Notice that these conditions are just syntactic
constraints, and can be checked in time polynomial in the size of the queries.

3. We further relax the conditions of the homomorphism property using prac-
tical domain knowledge that is easily obtainable (Section 5).

4. We conducted experiments on real queries, and show many of them satisfy
the conditions under which the homomorphism property holds (Section 6).

Due to space limitation, we leave theorem proofs and more experimental
results in the complete version [11].

1.1 Related Work

For conjunctive queries, restricted classes of queries are known for which the
containment problem is polynomial. For instance, if every database predicate
occurs in the contained query at most twice, then the problem can be solved
in linear time [12], whereas it remains NP-complete if every database predicate
occurs at least three times in the body of the contained query. If the containing
query is acyclic, i.e., the predicate hypergraph has a certain property, then the
containment problem is polynomial [13].

Klug [6] has shown that containment for conjunctive queries with compari-
son predicates is in�P

2
, and it is proven to be �P

2
-hard in [8]. The reduction only

used 6=. This result is extended in [14] to use only 6= and at most three occur-
rences of the same predicate name in the contained query. The same reduction

shows that it remains �P
2
-complete even in the case where the containing query

is acyclic, thus the results in [13] do not extend to conjunctive queries with 6=.
The complexity is reduced to co-NP in [14] if every database predicate occurs
at most twice in the body of the contained query and only 6= is allowed.

The most relevant to our setting is the work in [5, 6]. It is shown that if
only left or right semi-interval comparisons are used, the containment problem
is in NP. It is stated as an open problem to search for other classes of con-
junctive queries with arithmetic comparisons for which containment is in NP.
Furthermore, query containment has been studied also for recursive queries. For
instance, containment of a conjunctive query in a datalog query is shown to be
EXPTIME-complete [15, 16]. Containment among recursive and nonrecursive
datalog queries is also studied in [17, 18].

In [10] we studied the problem of how to answer a query using views if
both the query and views are conjunctive queries with arithmetic comparisons.
Besides showing the necessity of using recursive plans if the homomorphism
property does not hold, we also developed an algorithm in the case where the
property holds. Thus the results in [10] are an application of the contributions
of this paper. Clearly testing query containment eÆciently is a critical problem
in many data applications as well.

2 Preliminaries

In this section, we review the de�nitions of query containment, containment
mappings, and related results in the literature. We also de�ne the homomorphism
property.

De�nition 1. (Query containment) A query Q2 is contained in a query Q1,
denoted Q2 v Q1, if for any database D, the set of answers to Q2 is a subset of
the answers to Q1. The two queries are equivalent, denoted Q1 � Q2, if Q1 v Q2

and Q2 v Q1.

We consider conjunctive queries that are in the following form:
h(�X) :- g1(�X1); : : : ; gk(�Xk). In each subgoal gi(�Xi), predicate gi is a base rela-
tion, and every predicate argument �Xi is either a variable or a constant. Chandra
and Merlin [7] showed that for two conjunctive queries Q1 and Q2, Q2 v Q1 if
and only if there is a containment mapping from Q1 to Q2, such that the map-
ping maps a constant to the same constant, and maps a variable to either a
variable or a constant. Under this mapping, the head of Q1 becomes the head of
Q2, and each subgoal of Q1 becomes some subgoal in Q2.

Let Q be a conjunctive query with arithmetic comparisons (CQAC). We con-
sider the following arithmetic comparisons: <, �, >, �, and 6=. We assume that
database instances are over densely totally ordered domains. In addition, with-
out loss of generality, throughout the paper we make the following assumptions
about the comparisons. (1) The comparisons are not contradictory, i.e., there
exists an instantiation of the variables such that all the comparisons are true.
(2) All the comparisons are safe, i.e., each variable in the comparisons appears

in some ordinary subgoal. (3) The comparisons do not imply equalities. If they
imply an equality X = Y , we rewrite the query by substituting X for Y .

We denote core(Q) as the set of ordinary (uninterpreted) subgoals of Q that
do not have comparisons, and denote AC(Q) as the set of subgoals that are
arithmetic comparisons in Q. We use the term closure of a set of arithmetic
comparisons S, to represent the set of all possible arithmetic comparisons that
can be logically derived from S. For example, for the set of arithmetic compar-
isons S = fX � Y; Y = cg, we have Closure(S) = fX � Y; Y = c;X � cg. In
addition, for convenience, we will denote Q0 as the corresponding conjunctive
query whose head is the head of Q, and whose body is core(Q). See Table 2
for a complete list of de�nitions and notations on special cases of arithmetic
comparisons such as semi-interval, point inequalities, and others.

Symbol Meaning

CQ Conjunctive Query

AC Arithmetic Comparison (X � Y)

CQAC Conjunctive Query with ACs

core(Q) Set of ordinary subgoals of query Q

AC(Q) Set of arithmetic-comparison subgoals of query Q

SI Semi-interval: X � c, � 2 f<;�; >;�g

LSI Left-semi-interval: X � c, � 2 f<;�g

closed-LSI X � c

open-LSI X < c

PI Point Inequalities (X 6= c)

SI-PI Some subgoals are SI, and some are PI

Table 2. Symbols used in the paper. X denotes a variable and c is a constant. The
RSI cases are symmetrical to those of LSI.

2.1 Testing Containment

LetQ1 andQ2 be two conjunctive queries with arithmetic comparisons (CQACs).
Throughout the paper, we study how to test whether Q2 v Q1. To do the test-
ing, according to the results in [5, 6], we �rst normalize both queries Q1 and Q2

to Q0

1 and Q
0

2 respectively as follows.

{ For all occurrences of a shared variable X in the normal subgoals except the
�rst occurrence, replace the occurrence of X by a new distinct variable Xi,
and add X = Xi to the AC's of the query; and

{ For each constant c in the query, replace the constant by a new distinct
variable Z, and add Z = c to the AC's of the query.

The testing is illustrated in Figure 1. For simplicity, we denote �1 = AC(Q1),
�2 = AC(Q2), �

0

1 = AC(Q0

1), and �0

2 = AC(Q0

2). Let �1; : : : ; �k be all the con-
tainment mappings from Q0

1;0 to Q0

2;0. Let
1; : : : ;
l be all the containment

Q1 :

Q1;0

z }| {

ans() : � G1; : : : ; Gm1
;

�1=AC(Q1)
z }| {

C1; : : : ; Cn1

Q2 :

Q2;0

z }| {

ans() : �H1; : : : ; Hm2
;

�2=AC(Q2)
z }| {

D1; : : : ; Dn2 Q0

2 :

Q0

2;0

z }| {

ans() : �H 0

1; : : : ; H
0

m2
;

�0

2
=AC(Q0

2
)

z }| {

D1; : : : ; Dn2; Dnew

Q0

1 :

Q0

1;0

z }| {

ans() : � G0

1; : : : ; G
0

m1
;

�0

1
=AC(Q0

1
)

z }| {

C1; : : : ; Cn1; Cnew

Containment
mappings

1; : : : ;
l

After normalization

Containment
mappings
�1; : : : ; �k

Fig. 1. Containment testing ([5, 6]).

mappings from Q1;0 to Q2;0. There are a few important observations: (1) The
number of ordinary subgoals in Q1 (resp. Q2) does not change after the nor-
malization. Each subgoal Gi (resp. Hi) has changed to a new subgoal G0

i (resp.
H 0

i). (2) While the comparisons C1; : : : ; Cn1 (resp. D1; : : : ; Dn2) are kept after
the normalization, we may have introduced new comparions Cnew (resp. Dnew)
after the normalization. Note Cnew and Dnew contain only equalities. (3) There
can be more containment mappings for the normalized queries than the original
queries, i.e., k � l. The reason is that a containment mapping cannot map a con-
stant to a variable, nor map di�erent instances of the same variable to di�erent
variables. However, after normalizing the queries, their ordinary subgoals only
have distinct variables, making any variable in Q0

1 mappable to any variable in
Q0

2
(for the same position of the same predicate).

Theorem 1. Q2 v Q1 if and only if the following logical implication � is true:

� : �0

2
) �1(�

0

1
) _ : : : _ �k(�

0

1
)

That is, the comparisons in the normalized query Q0

2
logically implies (denoted

\)") the disjunction of the images of the comparisons of the normalized query
Q0

1
under these mappings [5, 6].

Example 1. These two queries show that the normalization step in Theorem 1
is critical [19].

Q1 : h(W) :- q(W); p(X;Y; Z; Z 0; U; U); X < Y;Z > Z 0:

Q2 : h(W) :- q(W); p(X;Y; 2; 1; U; U); p(1; 2; X; Y; U; U); p(1; 2; 2; 1; X; Y).

There are two containment mappings from Q1;0 to Q2;0.

�1 :W !W;X ! X;Y ! Y; Z ! 2; Z 0 ! 1; U ! U:

�2 :W !W;X ! 1; Y ! 2; Z ! X;Z 0 ! Y; U ! U:

Notice we do not have a containment mapping from the p subgoal in Q1 to the
last p subgoal in Q2, since we cannot map the two instances of variable U to
both X and Y .

We can show Q2 v Q1, but the following implication

TRUE) �1(X < Y;Z > Z 0) _ �2(X < Y;Z > Z 0)

is not true, since it is possible X = Y . However, when X = Y , we would have a
new \containment mapping" from Q1 to Q2:

�3 :W !W;X ! 1; Y ! 2; Z ! 2; Z 0 ! 1; U ! X = Y

After normalizing the two queries, we will have three (instead of two) contain-
ment mappings from the normalized query of Q1 to that of Q2.

Example 2. These two queries show that the _ operation in the implication in
Theorem 1 is critical.

Q1 : ans() :- p(X; 4); X < 4:
Q2 : ans() :- p(A; 4); p(3; A); A � 4:

Their normalized queries are:

Q0

1
: ans() :- p(X;Y); X < 4; Y = 4:

Q0

2 : ans() :- p(A;B); p(C;D); A � 4; B = 4; C = 3; A = D:

There are two containment mappings from Q0

1;0 to Q
0

2;0: �1 : X ! A; Y ! B,
and �2 : X ! C; Y ! D. We can show that:

A � 4; B = 4; C = 3; A = D) �1(X < 4; Y = 4) _ �2(X < 4; Y = 4)

Thus, Q2 v Q1. Note both mappings are needed to prove the implication.

There are several challenges in using Theorem 1 to test whether Q2 v Q1. (1)
The queries look less intuitive after the normalization. The computational cost
of testing the implication � increases since we need to add more comparisons.
(2) The implication needs the disjunction of the images of multiple containment
mappings. In many cases it is desirable to have a single containment mapping to
satisfy the implication. (3) There can be more containment mappings between
the normalized queries than those between the original queries. In the rest of the
paper we study how to deal with these challenges. In Section 3 we study in what
cases we do not need to normalize the queries. That is, even if Q1 and Q2 are
not normalized, we still have Q2 v Q1 if and only if �2)
1(�1) _ : : : _
l(�1).

2.2 Homomorphism Property

De�nition 2. (Homomorphism property) Let Q1, Q2 be two classes of queries.
We say that containment testing on the pair (Q1;Q2) has the homomorphism
property if for any pair of queries (Q1; Q2) with Q1 2 Q1 and Q2 2 Q2, the fol-
lowing holds: Q2 v Q1 i� there is a homomorphism � from core(Q1) to core(Q2)
such that AC(Q2)) �(AC(Q1)). If Q1 = Q2 = Q, then we say containment
testing has the homomorphism property for class Q.

Although the property is de�ned for two classes of queries, in the rest of
the paper we refer to the homomorphism property holding for two queries when
the two classes contain only one query each. The containment test of Theorem

1 for general CQACs considers normalized queries. However, in Theorem 3, we
show that in the cases where a single mapping suÆces to show containment
between normalized queries, it also suÆces to show containment between these
queries when they are not in normalized form and vice versa. Hence, whenever
the homomorphism property holds, we need not distinguish between normalized
queries and non-normalized ones.

In cases where the homomorphism property holds, we have the following
non-deterministically polynomial algorithm that checks if Q2 v Q1. Guess a
mapping � from core(Q1) to core(Q2) and check whether � is a containment
mapping with respect to the AC subgoals too (the latter meaning that an AC
subgoal g maps on an AC subgoal g0 so that g0) g holds). Note that the number
of mappings is exponential on the size of the queries.

Klug [6] has shown that for the class of conjunctive queries with only open-
LSI (open-RSI respectively) comparisons, the homomorphism property holds.
In this paper, we �nd more cases where the homomorphism property holds.
Actually, we consider pairs of classes of queries such as (LSI-CQ, CQAC) and
we look for constraints which, if satis�ed, the homomorphism property holds.

De�nition 3. (Homomorphism property under constraints) Let Q1, Q2 be two
classes of queries and C be a set of constraints. We say that containment testing
on the pair (Q1;Q2) w.r.t. the constraints in C has the homomorphism property
if for any pair of queries (Q1; Q2) with Q1 2 Q1 and Q2 2 Q2 and for which
the constraints in C are satis�ed, the following holds: Q2 v Q1 i� there is a
homomorphism � from core(Q1) to core(Q2) such that AC(Q2)) �(AC(Q1)).

The constraints we use are given as syntactic conditions that relate subgoals,
in both queries. The satisfaction of the constraints can be checked in polynomial
time in the size of the queries. When the homomorphism property holds, then
the query containment problem is in NP.

3 Containment of Non-normalized Queries

To test the containment of two queries Q1 and Q2, using the result in Theorem 1,
we need to normalize them �rst. Introducing more comparisons to the queries in
the normalization can make the implication test computationally more expen-
sive. Thus, we want to have a containment result that does not require the queries
to be normalized. In this section, we present two cases, in which even if Q1 andQ2

are not normalized, we still have Q2 v Q1 if and only if �2)
1(�1)_: : :_
l(�1).

Case 1: The following theorem says that Theorem 1 is still true even for
non-normalized queries Q1, if two conditions are satis�ed by the queries: (1) �1
contains only � and �, and (2) �1 (correspondingly �2) do not imply equalities.
In this case we can restrict the space of mappings because of the monotonicity
property: For a query Q whose AC's only include �;�, if a tuple t of a database
D is an answer to Q, then on any database D0 obtained from D, by identifying
some elements, the corresponding tuple t0 is in the answer to Q(D0). Due to
space limitations, we give the proofs of all theorems in [11].

Theorem 2. Consider two CQAC queries Q1 and Q2 shown in Figure 1 that
may not be normalized. Suppose �1 contains only � and �, and �1 (correspond-
ingly �2) do not imply \=" restrictions. Then Q2 v Q1 if and only if:

�2)
1(�1) _ : : : _
l(�1)

where
1; : : : ;
l are all the containment mappings from Q1;0 to Q2;0.

Case 2: The following theorem shows that we do not need to normalize the
queries if they have the homomorphism property.

Lemma 1. Assume the comparisons in Q1 and Q2 do not imply equalities. If
there is a containment mapping � from Q0

1;0 to Q0

2;0, such that �0

2
) �(�0

1
), then

there must be a containment mapping
 from Q1;0 to Q2;0, such that �2)
(�1).

Using the lemma above, we can prove:

Theorem 3. Suppose the comparisons in Q1 and Q2 do not imply equalities.
The homomorphism property holds between Q1 and Q2 i� it holds between Q0

1

and Q0

2
.

4 Conditions for Homomorphism Property

Now we look for constraints in the form of syntactic conditions on queries Q1

and Q2, under which the homomorphism property holds. The conditions are
suÆciently tight in that, if at least one of them is violated, then there exist
queries Q1 and Q2 for which the homomorphism property does not hold. The
conditions are syntactic and can be checked in polynomial time. We consider
the case where the containing query (denoted by Q1 all through the section) is
a conjunctive query with only arithmetic comparisons between a variable and a
constant; i.e., all its comparisons are semi-interval (SI), which are in the forms
of X > c, X < c, X � c, X � c, or X 6= c. We call X 6= c a point inequality (PI).

This section is structured as follows. Section 4.1 discusses technicalities on
the containment implication, and in particular in what cases we do not need
a disjunction. In Section 4.2 we consider the case where the containing query
has only left-semi-interval (LSI) subgoals. We give a main result in Theorem 4.
In Section 4.3, we extend Theorem 4 by considering the general case, where
the containing query may use any semi-interval subgoals and point inequality
subgoals. In Section 4.4, we discuss the case for more general inequalities than
SI. Section 4.5 gives an algorithm for checking whether these conditions are
met. In [11], we include many examples to show that the conditions in the main
theorems are tight.

4.1 Containment Implication

In this subsection, we will focus on the implication

� : �0

2
) �1(�

0

1
) _ : : : _ �k(�

0

1
)

in Theorem 1. We shall give some terminology and some basic technical obser-
vations. The left-hand side (lhs) is a conjunction of arithmetic comparisons (in
Example 2, the lhs is: A � 4^B = 4^C = 3^A = D). The right-hand side (rhs)
is a disjunction and each disjunct is a conjunction of arithmetic comparisons.
For instance, in Example 2, the rhs is: (A < 4 ^ B = 4) _ (C < 4 ^ D = 4),
which has two disjuncts, and each is the conjunction of two comparisons. Given
an integer i, we shall call containment implication any implication of this
form: i) the lhs is a conjunction of arithmetic comparisons, and ii) the rhs is a
disjunction and each disjunct is a conjunction of i arithmetic comparisons.

Observe that the rhs can be equivalently written as a conjunction of dis-
junctions (using the distributive law). Hence this implication is equivalent to a
conjunction of implications, each implication keeping the same lhs as the orig-
inal one, and the rhs is one of the conjuncts in the implication that results
after applying the distributive law. We call each of these implications a partial
containment implication.4 In Example 2, we write equivalently the rhs as:
(A < 4_C < 4) ^ (A < 4_D = 4) ^ (B = 4_C < 4)^ (B = 4_D = 4). Thus,
the containment implication in Example 2 can be equivalently written as

(A � 4; B = 4; C = 3; A = D) A < 4 _ C < 4) ^
(A � 4; B = 4; C = 3; A = D) A < 4 _D = 4) ^
(A � 4; B = 4; C = 3; A = D) B = 4 _ C < 4) ^
(A � 4; B = 4; C = 3; A = D) B = 4 _D = 4).

Here we get four partial containment implications.
A partial containment implication �) (�1 _ �2 _ : : :_ �k) is called a direct

implication if there exists an i, such that if this implication is true, then �) �i
is also true. Otherwise, it is called a coupling implication. For instance,

(A � 4; B = 4; C = 3; A = D) B = 4 _D = 4)

is a direct implication, since it is logically equivalent to (A � 4; B = 4; C =
3; A = D) B = 4). On the contrary, (A � 4; B = 4; C = 3; A = D) A <

4 _D = 4) is a coupling implication. The following lemma is used as a basis for
many of our results.

Lemma 2. Consider a containment implication �) (�1 _�2_ : : :_�k) that is
true, where each of the � and �i's is a conjunction of arithmetic comparisons. If
all its partial containment implications are direct implications, then there exists
a single disjunct �i in the rhs of the containment implication such that �) �i.

We give conditions to guarantee direct implications in containment test.

Corollary 1. Consider the normalized queries Q0

1 and Q0

2 in Theorem 1. Sup-
pose all partial containment implications are direct. Then there is a mapping �i
from Q0

1;0 to Q0

2;0 such that �0

2
) �i(�

0

1
).

4 Notice that containment implications and their partial containment implications are
not necessarily related to mappings and query containment, only the names are
borrowed.

4.2 Left Semi-interval Comparisons (LSI) for Q1

We �rst consider the case where Q1 is a conjunctive query with left semi-interval
arithmetic comparison subgoals only (i.e., one of the form X < c or X � c or
both may appear in the same query). The following theorem is a main result
describing the conditions for the homomorphism property to hold in this case.

Theorem 4. Let Q1 be a conjunctive query with left semi-interval arithmetic
comparisons and Q2 a conjunctive query with any arithmetic comparisons. If
they satisfy all the following conditions, then the homomorphism property holds:

{ Condition (i)-lsi: There do not exist subgoals as follows which all share the
same constant: An open-LSI subgoal in AC(Q1), a closed-LSI subgoal in
closure of AC(Q2), and a subgoal in core(Q1).

{ Condition (ii)-lsi: Either core(Q1) has no shared variables or there do not
exist subgoals as follows which all share the same constant: An open-LSI
subgoal in AC(Q1), a closed-LSI subgoal in the closure of AC(Q2) and, a
subgoal in core(Q2).

{ Condition (iii)-lsi: Either core(Q1) has no shared variables or there do not
exist subgoals as follows which all share the same constant: An open-LSI
subgoal in AC(Q1) and two closed-LSI subgoals in the closure of AC(Q2).

It is straightforward to construct corollaries of Theorem 4 with simpler con-
ditions. The following is an example.

Corollary 2. Let Q1 be a conjunctive query with left semi-interval arithmetic
comparisons and Q2 a conjunctive query with any arithmetic comparisons. If
the arithmetic comparisons in Q1 do not share a constant with the closure of the
arithmetic comparisons in Q2, then the homomorphism property holds.

The results in Theorem 4 can be symmetrically stated for RSI queries as
containing queries. The symmetrical conditions of Theorem 4 for the RSI case
will be referred to as conditions (i)-rsi, (ii)-rsi, and (iii)-rsi, respectively.

4.3 Semi-Interval (SI) and Point-Inequalities (PI) Queries for Q1

Now we extend the result of Theorem 4 to treat both LSI and RSI subgoals
occurring in the same containing query. We further extend it to include point
inequalities (of the form X 6= c). The result is the following.

SI Queries for Q1: We consider the case where Q1 has both LSI and RSI
inequalities called \SI inequalities," i.e., any of the <, >, �, and �. In this case
we need one more condition, namely Condition (iv), in order to avoid coupling
implications. Thus Theorem 4 is extended to the following theorem, which is the
second main result of this section.

Theorem 5. Let Q1 be a conjunctive query with left semi-interval and right
semi-interval arithmetic comparisons and Q2 a conjunctive query with SI arith-
metic comparisons. If they satisfy all the following conditions, then the homo-
morphism property holds:

{ Conditions (i)-lsi, (ii)-lsi, (iii)-lsi, (i)-rsi, (ii)-rsi, and (iii)-rsi.
{ Condition (iv)-si: Any constant in an RSI subgoal of Q1 is strictly greater

than any constant in an LSI subgoal of Q1.

We refer to the last conditin as (iv)-si.
PI Queries for Q1: If the containing query Q1 has point inequalities, three

more forms of coupling implications can occur. Thus Theorem 5 is further ex-
tended to Theorem 6, which is the third main result of this section.

Theorem 6. Let Q1 be a conjunctive query with left semi-interval and right
semi-interval and point inequality arithmetic comparisons and Q2 a conjunctive
query with SI arithmetic comparisons. If Q1 and Q2 satisfy all the following
conditions, then the homomorphism property holds:

{ Conditions (i)-lsi, (ii)-lsi, (iii)-lsi, (i)-rsi, (ii)-rsi, (iii)-rsi and (iv)-si.
{ Condition (v)-pi: Either Q1 has no repeated variables, or it does not have

point inequalities.
{ Condition (vi)-pi: Point-Inequality(Q1) does not have a constant that occurs

in core(Q1), or Closed-LSI(Q1), or Closed-RSI(Q1).

4.4 Beyond Semi-Interval Queries for Q1

Our results have already captured subtle cases where the homomorphism prop-
erty holds. There is not much hope beyond those cases, unless we restrict the
number of subgoals of the contained query, which is known in the literature (e.g.,
[14]). Couplings due to the implication:

TRUE)
�
(X � Y) _ (Y � X)

�

indicate that if the containing query has closed comparisons, then the homomor-
phism does not hold. The following is such an example:

Q1 : ans() :- p(X;Y); X � Y .
Q2 : ans() :- p(X;Y); p(Y;X):

Clearly Q2 is contained in Q1, but the homomorphism property does not hold.

4.5 A Testing Algorithm

We summarize the results in this section in an algorithm shown in Figure 2. Given
two CQAC queriesQ1 andQ2, the algorithm tests if the homomorphism property
holds in checking Q2 v Q1. Queries may not satisfy these conditions but still the
homomorphism property may hold. For instance, it could happen if they do not
have self-joins, or if domain information yields that certain mappings are not
possible (see Section 5). Hence, in the diagram, we can also put this additional
check: Whenever one of the conditions is not met, we also check whether there
are mappings that would enable a coupling implication. We did not include the
formal results for this last test for brevity, as they are a direct consequence of
the discussion in the present section.

Homomorphism
property holds

Repeat for RSI
comparisons (symmetric)

No

No

May not hold

Yes

Yes

Yes

Yes

Are there an LSI(Q1) and an RSI(Q1) that
share a constant with PI(Q2), and the
variables in the Q1 subgoals can map to the
variables in the Q2 subgoals?

Is there a constant in Core(Q1) that appears

and the variables in PI(Q1) can map to the
same variable in Q2?

in PI(Q1) and both the constant in Core(Q1)

Is there a constant in a CLSI(Q1) that appears
in PI(Q1), and both the variables in the two
subgoals can map to the same variable in Q2?

in PI(Q1), and both the variables in the two
subgoals can map to the same variable in Q2?

Is there a constant in a CRSI(Q1) that appears

No

No

No

May not hold

Are there an LSI(Q1) and an RSI(Q1) such
that the constant in the RSI subgoal is greater than
the LSI subgoal, and the variables in the subgoals
can be mapped to the same variable in Q2?

Yes

Check PI comparisons

repeated variable?
core(Q1) has a

No

Start (queries Q1 and Q2)

Yes

No

No May not hold

Yes

Are there an OLSI(Q1), a CLSI AC in Closure(Q2), and
Yes

Are there an OLSI(Q1) and two CLSI AC's in Closure(Q2)
that share a constant, and the variables in the OLSI(Q1)

Core(Q2) that share a constant, and the variable in the
OLSI(Q1) subgoal and the repeated variable can map to a
variable of the CLSI AC that shares the constant?

CLSI AC's that share the constant?
and the repeated variable can map to a variable in the

Yes

Are there an OLSI(Q1), a CLSI AC in Closure(Q2), and
Core(Q1) subgoal that share a constant and, the constant and

in the CLSI AC that shares the constant?
variable in the OLSI(Q1) subgoal and can map to the variable

No

Check SI comparisons

Check LSI comparisons

Fig. 2. An algorithm for checking homomorphism property in testing Q2 v Q1.

5 Improvements Using Domain Information

So far we have discussed in what cases we do not need to normalize queries in
the containment test, and in what cases we can reduce the containment test to
checking the existence of a single homomorphism. If a query does not satisfy
these conditions, the above results become inapplicable. For instance, often a
query may have both < and � comparisons, not satisfying the conditions in
Theorem 2. In this section, we study how to relax these conditions by using
domain knowledge of the relations and queries.

The intuition of our approach is the following. We partition relation at-
tributes into di�erent domains, such as \car models," \years," and \prices."
We can safely assume that for realistic queries, their conditions respect these
domains. In particular, for a comparisonX � A, whereX is a variable,A is a vari-
able or a constant, the domain of A should be the same as that ofX . For example,
it may be meaningless to have conditions such as \carYear = $6,000." Therefore,
in the implication of testing query containment, it is possible to partition the
implication into di�erent domains. The domain information about the attributes
is collected only once before queries are posed. For instance, given the following
implication �: year > 2000 ^ price � $5; 000) year > 1998 ^ price � $6; 000.
We do not need to consider implication between constants or variables in dif-
ferent domains, such as between \1998" and \$6; 000," and between \year" and
\price." As a consequence, this implication can be projected to the following
implications in two domains:

Year domain �y: year > 2000) year > 1998.
Price domain �p: price � $5; 000) price � $6; 000.

We can show that � is true i� both �y and �p are true. In this section, we �rst
formalize this domain idea, and then show how to partition an implication into
implications of di�erent domains.

5.1 Domains of Relation Attributes and Query Arguments

Assume each attribute Ai in a relation R(A1; : : : ; Ak) has a domainDom(R:Ai).
Consider two tables: house(seller, street, city, price) and
crimerate(city, rate). Relation house has housing information, and rela-
tion crimerate has information about crime rates of cities. The following table
shows the domains of di�erent attributes in these relations. Notice that attributes
house.city and crimerate.city share the same domain: D3 = fcity namesg.

Attribute Domain
house.seller D1 = fperson namesg
house.street D2 = fstreet namesg
house.city D3 = fcity namesg
house.price D4 = f
oat numbers in dollarsg
crimerate.cityD3 = fcity namesg
crimerate.rateD5 = fcrime-rate
oat numbersg

We equate domains of variables and constants using the following rules:

{ For each argument Xi (either a variable or a constant) in a subgoal
R(X1; : : : ; Xk) in query Q, the domain ofXi, Dom(Xi), is the corresponding
domain of the j-th attribute in relation R.

{ For each comparison X � c between variable X and constant c, we set
Dom(c) = Dom(X). Constants from di�erent domains are always treated
as di�erent constants. For instance, in two conditions carY ear = 2000 and
carPrice = $2000, constants \2000" and \$2000" are di�erent constants.

We perform this process on all subgoals and comparisons in the query. In
this calculation we make the following realistic assumptions: (1) If X is a shared
variable in two subgoals, then the corresponding attributes of the two arguments
of X have the same domain. (2) If we have a comparison X � Y , where X and
Y are variables, then Dom(X) and Dom(Y) are always the same.

Consider the following queries on the relations above.

P1: ans(t1; c1) :- house(s1; t1; c1; p1); crimerate(c1; r1); p1 � $300; 000; r1 � 3:0%:
P2: ans(t2; c2) :- house(s2; t2; c2; p2); crimerate(c2; r2); p2 � $250; 000; r2 � 3:5%:

The computed domains of the variables and constants are shown in the table
below. It is easy to see that the domain information as de�ned in this section
can be obtained in polynomial time.

P1: Variable/constant P1: Domain P2: Variable/constant P2: Domain
s1 D1 s2 D1

t1 D2 t2 D2

c1 D3 c2 D3

p1 D4 p2 D4

r1 D5 r2 D5

$300; 000 D4 $250; 000 D4

3:0% D5 3:5% D5

5.2 Partitioning Implication into Domains

According to Theorem 1, to test the containment Q1 v Q2 for two given queries
Q1 and Q2, we need to test the containment implication in the theorem. We want
to partition this implication to implications in di�erent domains, since testing
the implication in each domain is easier. Now we show that this partitioning
idea is feasible. We say a comparison X � A is in domain D if X and A are in
domain D. The following are two important observations.

{ If a mapping �i maps an argument X in query Q1 to an argument Y in
query Q2, based on the calculation of argument domains, clearly X and Y

are from the same domain.
{ In query normalization, each new introduced variable has the same domain
as the replaced argument (variable or constant).

De�nition 4. Consider the following implication � in Theorem 1:

�0

2
) �1(�

0

1
) _ : : : _ �k(�

0

1
):

For a domain D of the arguments in �, the projection of � in D, denoted �D,
is the following implication:

�0

2;D) �1(�
0

1;D) _ : : : _ �k(�
0

1;D):

�0

2;D includes all comparisons of �0

2
in domain D. Similarly, �0

1;D includes all
comparisons of �0

1
in domain D.

Suppose we want to test P2 v P1 for the two queries above. There is only
one containment mapping from P1 to P2, and we need to test the implication:

� : p2 � $250; 000; r2 � 3:5%) p2 � $300; 000; r2 � 3:0%:

The projection of � on domain D4 (
oat numbers in dollars) �D4
is p2 �

$250; 000) p2 � $300; 000. Similarly, �D5
is r2 � 3:5%) r2 � 3:0%.

Theorem 7. Let D1; : : : ; Dk be the domains of the arguments in the implication
�. Then � is true i� all the projected implications �Di

; : : : ; �Dk
are true.

In the example above, by Theorem 7, � is true i� �D4
and �D5

are true.
Since the latter two are true, � is true. Thus P2 v P1. In general, we can test
the implication in Theorem 1 by testing the implications in di�erent domains,
which are much cheaper than the whole implication. [11] gives formal results
that relax the conditions in the theorems of the previous section to apply only
on elements of the same domain.

6 Experiments

In this section we report on experiments to determine whether the homomor-
phism property holds for real queries. We checked queries in many introductory
database courses available on the Web, some data-mining queries provided by
Microsoft Research, and the TPC-H benchmark queries [20]. We have observed
that, for certain applications (e.g., the data-mining queries), usually queries do
not have self-joins; thus the homomorphism property holds. In addition, among
the queries that use only semi-interval (SI) and point inequality (PI) compar-
isons, the majority have the homomorphism property.

For a more detailed discussion, we focus on our evaluation results on the
TPC-H benchmark queries [20], which represent typical queries in a wide range
of decision-support applications. To the best of our knowledge, our results are
the �rst evidence that containment is easy for those queries. The following is a
summary of our experiments on the TPC-H benchmark queries.

1. All, except two (Q4 and Q21) of the 22 queries use semi-interval comparisons
(SI's) and point inequalities (PI's) only.

2. When the homomorphism property may not hold, it is always because of the
following situation: a variable X (usually of \date" type) is bounded in an
interval between two constants. In such a case, the property is guaranteed
to hold if the contained query does not contain self-joins of the subgoal that
uses a variable that X can map to.

3. As a consequence, if the contained query is also one of the 22 queries, since
they do not have self-joins of relations that share a variable with SI predi-
cates, the homomorphism property holds.

The detailed experimental results are in [11]. Here we use the following query
adapted from TPC-H query Q3 as an example. (For simplicity we call this query
Q3.) We show how to apply the results in the earlier sections to test the following:
in testing if Q3 is containing another CQAC query, does the homomorphism
property hold in the test?

SELECT l_orderkey, l_extendedprice, l_discount, o_orderdate, o_shippriority

FROM customer, orders, lineitem

WHERE c_mktsegment = '[SEGMENT]'

AND c_custkey = o_custkey AND l_orderkey = o_orderkey

AND o_orderdate < date '[DATE]' AND l_shipdate > date '[DATE]';

Consider the case where we check for the containment of any conjunctive
query with semi-interval arithmetic comparisons in the above query Q3. We shall
apply Theorem 5. Notice that the above query has shared variables (expressed
by the equality c custkey = o custkey in the WHERE clause), as well as it contains
both LSI and RSI arithmetic comparisons. However the variables o orderdate
(used in a comparison) and c custkey (a shared variable) are obviously of di�er-
ent domains. Hence conditions (ii)-lsi, (ii)-rsi, (iii)-lsi, (iii)-rsi are satis�ed. Also
using domain information, we see that (i)-lsi and (i)-rsi are satis�ed.

In general, the condition (iv) in Theorem 5 may not be satis�ed, but the
scenario in which it is not satis�ed either uses a query with a self-join on relation
lineitem or a self-join on relation orders. Such a query (a) is not included in
the benchmark, and (b) would ask for information that is not natural or is of
a very speci�c and narrow interest (e.g., would ask of pairs of orders sharing
a property). Consequently, to test containment of any natural SI query in Q3,
we need only one containment mapping. Notice that without using the domain
information, we could not derive this conclusion.

7 Conclusion

In this paper we considered the problem of testing containment between two
conjunctive queries with arithmetic comparisons. We showed in what cases the
normalization step in the algorithm [5, 6] is not needed. We found various syn-
tactic conditions on queries, under which we can reduce considerably the number
of mappings needed to test containment to a single mapping (homomorphism
property). These syntactic conditions can be easily checked in polynomial time.

Our experiments using real queries showed that many of these queries pass this
test, so they do have the homomorphism property, making it possible to use
more eÆcient algorithms for the test.

Acknowledgments: We thank Microsoft Research for providing us their
data-mining queries to do our experiments.

References

1. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim, K.: Optimizing queries
with materialized views. In: ICDE. (1995) 190{200

2. Theodoratos, D., Sellis, T.: Data warehouse con�guration. In: Proc. of VLDB.
(1997)

3. Ullman, J.D.: Information integration using logical views. In: ICDT. (1997) 19{40
4. Halevy, A.: Answering queries using views: A survey. In: Very Large Database

Journal. (2001)
5. Gupta, A., Sagiv, Y., Ullman, J.D., Widom, J.: Constraint checking with partial

information. In: PODS. (1994) 45{55
6. Klug, A.: On conjunctive queries containing inequalities. Journal of the ACM 35

(1988) 146{160
7. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in

relational data bases. STOC (1977) 77{90
8. van der Meyden, R.: The complexity of querying inde�nite data about linearly

ordered domains. In: PODS. (1992)
9. Levy, A., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using

views. In: PODS. (1995) 95{104
10. Afrati, F., Li, C., Mitra, P.: Answering queries using views with arithmetic com-

parisons. In: PODS. (2002)
11. Afrati, F., Li, C., Mitra, P.: On containment of conjunctive queries with arithmetic

comparisons (extended version). Technical report, UC Irvine (2003)
12. Saraiya, Y.: Subtree elimination algorithms in deductive databases. Ph.D. Thesis,

Computer Science Dept., Stanford Univ. (1991)
13. Qian, X.: Query folding. In: ICDE. (1996) 48{55
14. Kolaitis, P.G., Martin, D.L., Thakur, M.N.: On the complexity of the containment

problem for conjunctive queries with built-in predicates. In: PODS. (1998) 197{204
15. Chandra, A., Lewis, H., Makowsky, J.: Embedded implication dependencies and

their inference problem. In: STOC. (1981) 342{354
16. Cosmadakis, S.S., Kanellakis, P.: Parallel evaluation of recursive queries. In:

PODS. (1986) 280{293
17. Chaudhuri, S., Vardi, M.Y.: On the equivalence of recursive and nonrecursive

datalog programs. In: PODS. (1992) 55{66
18. Shmueli, O.: Equivalence of datalog queries is undecidable. Journal of Logic

Programming 15 (1993) 231{241
19. Wang, J., Maher, M., Toper, R.: Rewriting general conjunctive queries using views.

In: 13th Australasian Database Conf. (ADC), Melbourne, Australia, ACS (2002)
20. TPC-H: http://www.tpc.org/tpch/ (2003)

