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Abstract. The joint spectral radius of a set of matrices is a measure of
the maximal asymptotic growth rate that can be obtained by forming
long products of matrices taken from the set. This quantity appears in a
number of application contexts, in particular it characterizes the growth
rate of switched linear systems. The joint spectral radius is notoriously
difficult to compute and to approximate. We introduce in this paper
the first polynomial time approximations of guaranteed precision. We
provide an approximation ρ̂ that is based on ellipsoid norms, that can be
computed by convex optimization, and that is such that the joint spectral
radius belongs to the interval [ρ̂/

√
n, ρ̂], where n is the dimension of the

matrices. We also provide a simple approximation for the special case
where the entries of all the matrices are non-negative; in this case the
approximation is proved to be within a factor at mostm (m is the number
of matrices) of the exact value.

1 Introduction

Let M be a set of square real matrices. The trajectories associated to the
discrete-time switched linear system generated by the set M are given by
the vector sequences (xi) defined by the discrete linear inclusion:

xk+1 ∈ {Aixk : Ai ∈M} ∀k.

A switched linear system is said to be stable if all its trajectories converge
to the origin. This condition is equivalent to the condition that all infinite
products of matrices taken from the setM converge to zero. Stability can
be equivalently expressed by requiring the joint spectral radius of the set
M to be less than one. The joint spectral radius of a set of matrices is a
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quantity, introduced by Rota and Strang in the early 60’s, that measures
the maximal asymptotic growth rate that can be obtained by forming
long products of matrices taken from the set; see [16]. More formally, the
joint spectral radius of the set M is defined by:

ρ(M) := lim sup
k→∞

ρk(M),

where ρk(M) = sup
A1,...,Ak∈M

‖Ak · · ·A1‖1/k.

The values of ρk(M) do in general depend on the chosen norm but one
can show that the limit value ρ(M) does not. When the set M consists
of only one matrix A, the joint spectral radius coincides with the usual
notion of spectral radius of a single matrix, which is equal to the maximum
magnitude of the eigenvalues of the matrix. In the previous definition, if
we had used the spectral radius instead of the norm, we would have
obtained the generalized spectral radius:

ρ′(M) = lim sup
k→∞

ρ′k(M),

where ρ′k(M) = sup
A1,...,Ak∈M

ρ(Ak · · ·A1)
1/k.

This quantity appears for the first time in [5], where it is also conjectured
that in the case of bounded sets of matrices (and in particular for finite
sets of matrices), the joint and generalized spectral radii are equal. This
conjecture is proved to be correct in [2].

Questions related to the computability of the joint spectral radius of
sets of matrices have been posed in [19] and [13]. The joint spectral radius
can easily be approximated to any desired accuracy. Indeed, the following
bounds, proved in [13],

ρ′k(M) ≤ ρ(M) ≤ ρk(M)

can be evaluated for increasing values of k and lead to arbitrary close ap-
proximations of ρ. These are however expensive calculations. It is proved
in [20] that, unless P = NP , there is in fact no polynomial-time approx-
imation algorithm for the joint spectral radius of two matrices.

In this paper, we provide two easily computable approximations of the
joint spectral radius for finite sets of matrices. The first approximation
that we provide, ρ̂, is based on the computation of a common quadratic
Lyapunov function, or, equivalently, on the computation of an ellipsoid



norm. This approximation has the advantage that it can be expressed as
a convex optimization problem for which efficient algorithms exist. This
first approximation satisfies

1√
n
ρ̂ ≤ ρ ≤ ρ̂

where n is the dimension of the matrices. For the special case of symmetric
matrices, triangular matrices, or for sets of matrices that have a solvable
Lie algebra, we prove equality between the joint spectral radius and its
approximation, ρ = ρ̂.
We then prove a result of independent interest: the largest spectral

radius of the matrices in the convex hull of M = {A1, . . . , Am} is a lower
bound on the joint spectral radius of M :

max
0≤λi≤1,

∑

λi=1
ρ(
∑

i

λiAi) ≤ ρ(M).

By using this inequality, we prove a simple bound for the joint spectral
radius of sets of matrices that have non-negative entries. The spectral
radius of the matrix S whose entries are the componentwise maximum of
the entries of the matrices in M satisfies

ρ(S)

m
≤ ρ(M) ≤ ρ(S)

where m is the number of matrices in the set. In this expression, M is a
set of matrices, whereas S is a single matrix.
The problem of computing approximations of the joint spectral radius

is raised and analyzed in a number of recent contributions. In [15], the
exponential number of products that appear in the naive computation of
ρ′k is reduced by avoiding duplicate computation of cyclic permutations;
the total number of product to consider remains however exponential. In
[7], an algorithm based on the above idea is presented. The algorithm
gives arbitrarily small intervals for the joint spectral radius, but no rate
of convergence is proved.
This paper gives the first polynomial-time approximations of guaran-

teed precision. The paper is organized as follows. In the next section, we
define the joint spectral radius approximation based on ellipsoid norms. In
Section 3, we describe situations for which this approximation is exact,
and situations for which it is not. In Section 4, we prove the inequal-
ity ρ̂(M)/

√
n ≤ ρ by using a geometrical property of ellipsoids known

as John’s ellipsoid theorem. Finally, in Section 5 we provide an under-
approximation of the joint spectral radius based on the spectral radius of



all convex combinations of the matrices in the set M and use this result
to prove an approximation for sets of non-negative matrices.

2 The ellipsoid norm approximation

The joint spectral radius can be defined by an extremal norm property.
The statement of the following theorem is compiled from results in [12]
and also [1].

Theorem 1. Let ρ(M) be the joint spectral radius of the finite set of
matrices M . Then:

1. There exists a vector norm ‖.‖∗ for which ‖Aix‖∗ ≤ ρ(M) ‖x‖∗, ∀x
and ∀Ai ∈M ;

2. ρ(M) = inf‖.‖ (maxAi∈M ‖Ai‖).

The joint spectral radius is thus given by the infimum over all possi-
ble matrix norms of the largest norm of the matrices in the set. A norm
achieving this infimum is said to be extremal for the set (not every set
of matrices possesses an extremal norm, see [21] for a discussion of this
issue). In [12], Kozyakin describes the theoretical construction of such an
extremal norm. This method is not explicit and partly relies on the a-
priori knowledge of the numerical value of the joint spectral radius. One
can of course not hope enumerating all possible matrix norms for com-
puting the joint spectral radius, but we can enumerate particular sets of
norms. Our first approximation of the joint spectral radius is obtained by
finding, among all ellipsoid norms ‖ · ‖P , one that minimizes maxi ‖Ai‖P .
Let us briefly recall the definition of the ellipsoid norm. Let P be a

positive definite matrix1; the vector P -norm is defined as ‖x‖P =
√
xTPx.

Associated to this vector norm, there is an induced matrix norm:

|||Ai|||P = sup
x

‖Aix‖P
‖x‖P

= sup
x

√

xTAT
i PAix

√
xTPx

. (1)

Further on, we will use the notation ‖.‖P for both the vector and matrix
norms. Let us now define the ellipsoid norm approximation of the joint
spectral radius by:

ρ̂(M) = inf
PÂ0

max
Ai∈M

‖Ai‖P .

The infimum on all quadratic norms cannot be lower than the infimum
on all possible norms and so it immediately follows from Theorem 1 that

1 Positive definiteness is denoted Â 0 and positive semi-definiteness is denoted º 0.



ρ(M) ≤ ρ̂(M). The ellipsoid norm approximation can be computed as
follows. Notice first that the definition implies that

∀x,
√

xTAT
i PAix ≤ ‖Ai‖P

√
xTPx

∀x, xT (AT
i PAi − ‖Ai‖2PP )x ≤ 0
AT
i PAi − ‖Ai‖2PP ¹ 0 .

One can therefore think of ‖Ai‖P as the smallest scalar value γ for which
AT
i PAi ¹ γ2P for some P Â 0. The ellipsoid norm approximation of a
set M = {A1, . . . , Am} is thus equal to the smallest scalar γ for which
there is a solution P Â 0 to AT

i PAi ¹ γ2P, ∀i; a problem that can be
solved efficiently by convex optimization.

A natural question to ask is how good this approximation is in the
general case. In the next section, we describe situations for which the
approximation is equal to the joint spectral radius, and we provide an
example for which the approximation is larger than the joint spectral
radius.

3 The joint spectral radius and its approximation

We prove in this section that the joint spectral radius and the ellipsoid
norm approximation are equal (and are equal to the maximal spectral
radius) in the following situations: all matrices are symmetric, all matri-
ces are triangular or, more generally, the Lie algebra associated to the
matrices is solvable. We close the section with an example for which the
joint spectral radius and its approximation are different. We start with
the case of symmetric matrices:

Proposition 1. For a set of symmetric matrices, the joint spectral radius
and its ellipsoid norm approximation are equal and are equal to the largest
spectral radius of the matrices in the set.

Proof. Using the identity I as matrix P , we get A2
i ¹ ‖Ai‖2II, so that

ρ(Ai) = ‖Ai‖I . Knowing that ρ(Ai) ≤ infPÂ0 ‖Ai‖P , we have actually
ρ(Ai) = infPÂ0 ‖Ai‖P , which finally yields maxi ρ(Ai) = ρ̂(M). ut

In order to derive our result for triangular matrices, we first establish a
discrete-time analog to a continuous-time result established in [14] on the
existence of a common quadratic Lyapunov function for switched linear
systems.



Lemma 1. LetM be the set {A1, . . . , Am} and consider the discrete-time
switched linear system

xk+1 = Aik xk Aik ∈M.

If the switched system is stable and the matrices are upper-triangular,
then there exists a common quadratic Lyapunov function in the form of
a diagonal matrix.

Proof. Let {Ai, . . . , Am} be a set of upper-triangular (possibly complex)
matrices and P the candidate Lyapunov function (diagonal, real):

Ai =











ai11 a
i
12 . . . a

i
1n

0 ai22 . . . a
i
2n

...
...
. . .

...
0 0 . . . ainn











, P =











p1 0 . . . 0
0 p2 . . . 0
...
...
. . .

...
0 0 . . . pn











, pk > 0, ∀k .

For P to be a Lyapunov function of xk+1 = Aixk (fixed Ai), the following
relation has to hold:

P −A∗iPAi Â 0 .

Developing P −A∗iPAi, we get:











p1 0 . . . 0
0 p2 . . . 0
...
...
. . .

...
0 0 . . . pn











−











ai11
∗
0 . . . 0

ai12
∗
ai22

∗
. . . 0

...
...
. . .

...

ai1n
∗
ai2n

∗
. . . ainn

∗





















p1 0 . . . 0
0 p2 . . . 0
...
...
. . .

...
0 0 . . . pn





















ai11 a
i
12 . . . a

i
1n

0 ai22 . . . a
i
2n

...
...
. . .

...
0 0 . . . ainn











=











p1 0 . . . 0
0 p2 . . . 0
...
...
. . .

...
0 0 . . . pn











−











ai11
∗
p1 0 . . . 0

ai12
∗
p1 a

i
22
∗
p2 . . . 0

...
...

. . .
...

ai1n
∗
p1 a

i
2n
∗
p2 . . . a

i
nn
∗
pn





















ai11 a
i
12 . . . a

i
1n

0 ai22 . . . a
i
2n

...
...
. . .

...
0 0 . . . ainn











which yields











(1− |ai11|2)p1 −ai11
∗
ai12p1 . . .

−ai11ai12
∗
p1 −|ai12|2p1 + (1− |ai22|2)p2 . . .

...
...

. . .

−ai11ai1n
∗
p1 −ai12ai1n

∗
p1 − ai22a

i
2n
∗
p2 . . .











Â 0 . (2)

The first thing to note is that this matrix is Hermitian, and so its
leading principal minors are real (see [9]).



As Ai is assumed to be stable, a
i
jj < 1, ∀j. The first diagonal element

in (2) is therefore positive, for any value of p1. Let it be chosen as 1.
Moreover, the value of p2 can be chosen in such a way that the (2 × 2)
leading principal minor is positive. Indeed, p2 only appears in its last
diagonal element, and its coefficient (1 − |ai22|2) is positive, as ai22 < 1.
So, taking p2 such that

∣

∣

∣

∣

(1− |ai11|2) −ai11
∗
ai12

−ai11ai12
∗ −|ai12|2 + (1− |ai22|2)p2

∣

∣

∣

∣

> 0

is possible, and simple developments give the following condition:

p2 >
1

(1− |ai22|2)

[

(

|ai11||ai12|
)2

(1− |ai11|2)
+ |ai12|2

]

.

We can define in this way a p2 that satisfies this for all matrices Ai of the
set by choosing

p2 > max
i

1

(1− |ai22|2)

[

(|ai11||ai12|)2
(1− |ai11|2)

+ |ai12|2
]

.

The same argument shows that we can successively choose the values
of p3, . . . , pn in a way such that the leading principal minors of (2) are
all positive, and this for any matrix Ai of the set. Indeed, let the leading
principal minor of order k be > 0. Then, the leading principal minor of
order k + 1 can be made > 0 too, because pk+1 only appears in its last
diagonal term, with a strictly positive coefficient. So, taking pk+1 large
enough is sufficient. The finiteness of the elements of Ai guarantees us
that such a value pk+1 exists and is finite.
A Hermitian matrix H is positive definite if and only if all its leading

principal minors are positive ([9]), and so we can deduce that the Hermi-
tian matrix appearing in (2) is indeed positive definite, for any i. So, the
P matrix built in this way is a common quadratic Lyapunov function for
the set M . ut

Corollary 1. For a set of triangular matrices, the joint spectral radius
and its ellipsoid norm approximation are equal. Their value is the largest
spectral radius of the matrices in the set.

Proof. From lemma 1, it turns out that, for a set of stable upper-triangular
matrices Ai, there exists a positive definite P∗ such that ‖Ai‖P∗ < 1, ∀i.
This is equivalent to expressing

max
i

ρ(Ai) < 1⇒ ∃P∗ Â 0 : max
i
‖Ai‖P∗ < 1 .



By linearity, this implies that maxi ρ(Ai) ≥ maxi ‖Ai‖P∗ . Indeed, let us
pose maxi ρ(Ai) = r, so that ∀y > r, maxi ρ

(

Ai

y

)

< 1 . This implies

that ∀y > r, ∃P∗ : maxi ‖Ai‖P∗

y < 1 or again, ∀y > maxi ρ(Ai), ∃P∗ :
maxi ‖Ai‖P∗ < y. So, maxi ‖Ai‖P∗ is arbitrarily close (from above) to
maxi ρ(Ai) and the announced inequality maxi ρ(Ai) ≥ maxi ‖Ai‖P∗ holds.
On the other hand, we know that the joint spectral radius is greater

or equal to the largest spectral radius of the matrices in the set, that is
ρ(M) ≥ maxi ρ(Ai). So, summing up, we have

ρ(M) ≥ max
i

ρ(Ai) ≥ max
i
‖Ai‖P ≥ ρ̂(M) .

As ρ̂ is an over-approximation of ρ(M), this yields ρ(M) = maxi ρ(Ai)
and ρ̂(M) = ρ(M). ut

We now generalize the previous result to a more general class of sets
of matrices. This development is very similar to the one presented in
[14]. Let us recall the following notations and definitions. The Lie algebra
{A0, A1}LA is the linear span of

{A0, A1, [A0, A1], [A0, [A0, A1]], [A1, [A0, A1]], . . .}

and all possible combinations of commutators.
The commutator series of a Lie algebra g is the sequence of subalge-

bras recursively defined by g
k+1 = [gk, gk], and g

0 = g. Noting [a, b] the
linear span of elements of the form [A,B], where A ∈ a,B ∈ b, we have

g
1 = [g0, g0] = span{[A0, A1], [A0, [A0, A1]], [A1, [A0, A1]], . . .} ,

g
2 = [g1, g1] = span{[[A0, A1], [A0, [A0, A1]]], [[A0, A1], [A1, [A0, A1]]], . . .},

g
3 = [g2, g2] = . . . .

These sets are such that g
0 ⊇ g

1 ⊇ g
2 ⊇ . . . , and if g

k = g
k+1 then all

subsequent g
k+p (p ∈ N) are also equal to g

k. A Lie Algebra is solvable if
its commutator series g

k vanishes for some k.
An often used example of solvable Lie algebra is the vector space

of upper-triangular matrices. It is easy to check that the sequence of
subalgebras g

k is the set of upper-triangular matrices whose elements on
the diagonal at distance less than k from the main diagonal are all zero.
We make use of the following result (cited in [14], referring to [17]):

Lemma 2. Let g be a solvable Lie algebra over an algebraically closed
field, and let ρ be a representation of g on a vector space V of finite



dimension n. Then there exists a basis {v1, . . . , vn} of V such that for
each X ∈ g the matrix of ρ(X) in that basis takes the upper-triangular
form







λ1(X) . . . ∗
...

. . .
...

0 . . . λn(X)






,

where the λ1, . . . , λn denote the eigenvalues of the matrix ρ(X).

Theorem 2. Let M = {A1, . . . , Am} and consider the switched linear
system

xk+1 = Aikxk, Aik ∈M.

If all matrices in M have a spectral radius less than 1 and the Lie algebra
associated to M is solvable, then the system has a common quadratic
Lyapunov function.

Proof. So, if {Ai : Ai ∈ M}LA is solvable, then there exists a (possibly
complex) invertible matrix T such that

Ai = T−1ÃiT , with Ãi upper-triangular, ∀i .

This introduction of complex values does not change the main argument.
Lemma 1 shows that there exists a real common quadratic Lyapunov

function P̃ in diagonal form for such a set of matrices M̃ = {Ã1, . . . , Ãn}.
¿From this P̃ , we can deduce the form of the corresponding P for the
non-upper-triangular set M = {A1, . . . , An}:

Ãi
∗
P̃ Ãi − P̃ ≺ 0

(TAiT
−1)∗P̃ TAiT

−1 − P̃ ≺ 0
T ∗−1A∗iT

∗P̃ TAiT
−1 − P̃ ≺ 0

A∗i (T
∗P̃ T )Ai − (T ∗P̃ T ) ≺ 0 .

And we get P = T ∗P̃ T . As P̃ is positive definite, so is P . Moreover, P̃
being diagonal, T ∗P̃ T is actually Hermitian, but is not guaranteed to be
real. Let us then denote

−R := A∗i (T
∗P̃ T )Ai − (T ∗P̃ T )

where R is, by construction, Hermitian positive definite. We can write,
by separating the real and imaginary parts,

P = R(P ) + iI(P ) and R = R(R) + iI(R) .



As P and R are Hermitian, R(P ), R(R) are symmetric positive definite
and I(P ), I(R) are skew-symmetric. We can rewrite

A∗i (R(P ) + iI(P ))Ai − (R(P ) + iI(P )) = −(R(R) + iI(R))

and taking the real part,

A∗iR(P )Ai − R(P ) = −R(R) .

As a consequence, R(P ) is a real common quadratic Lyapunov func-
tion for the solvable Lie algebra {Ai : Ai ∈M}LA. ut

Corollary 2. If the Lie algebra associated to the set M = {A1, . . . , Am}
is solvable, then the joint spectral radius of M is equal to maxi ρ(Ai) and
also to its ellipsoid norm approximation.

Proof. Indeed, Theorem 2 allows us to deduce that ρ(M) < 1⇒ ρ̂(M) <
1, which yields ρ(M) ≥ ρ̂(M), allowing to deduce the strict equality,
thanks to the already known ρ(M) ≤ ρ̂(M). Here again, we already know
that ρ(M) ≥ maxi ρ(Ai), and Theorem 2 teaches us that maxi ρ(Ai) <
1⇒ ρ(M) < 1, so maxi ρ(Ai) ≥ ρ(M). And we deduce ρ(M) = maxi ρ(Ai).

ut

We have equality between the joint spectral radius and its ellipsoid
norm approximation when the Lie algebra is solvable. One could wonder
whether the solvability of the Lie algebra is necessary for this equality to
hold. This is not the case. In order to exhibit a counter-example, we first
prove a property of independent interest.

Proposition 2. The joint spectral radius of {A,AT } is equal to its ellip-
soid norm approximation and to the largest singular value of A.

Proof. In such a particular case, we use the inequalities ρ(A,AT ) ≤
ρ̂(A,AT ) ≤ σ(A) , which can be seen by using P = I in the definition of
ρ̂, so that we get AT IA ≤ γ2I, holding for γ ≥ σ(A). And finally,

ρ(A,AT ) ≥ ρ(AAT )1/2 = σ(A)

yields ρ(A,AT ) = ρ̂(A,AT ) = σ(A) .

ut

Consider now the matrices

A =

(

1 1
0 1

)

, AT =

(

1 0
1 1

)



It is easy to check that the Lie algebra associated to these matrices is not
solvable. On the other hand it follows from the above proposition that
for this pair of matrices the joint spectral radius and its ellipsoid norm

approximation are equal (and are equal to σ(A) = 1+
√

5
2 ' 1.618).

We close this section with a numerical example of two matrices for
which we do not have equality between the joint spectral radius and
its ellipsoid norm approximation. Let us consider the following matrices
(inspired by [6]):

A1 =

(

1 2 a1

−2/a1 1

)

, A2 =

(

1 2 a2

−2/a2 1

)

.

Assuming that a2 ≥ a1 ≥ 1, extensive calculations that are not repro-
duced here (see the Technical Report [18] for more details) show that the
approximation ρ̂ is such that

ρ̂(A1, A2) ≥
√

1 + 4 a2/a1 .

For a1 = 1, a2 = 2, the joint spectral radius can be shown to be strictly less
than 2.8584 by using an exhaustive calculation of all the products of 5 ma-
trices (2.783 if 16 matrices). This is strictly less than

√

1 + 4× 2/1 = 3,
so here ρ < ρ̂. The gap between the joint spectral radius and its approx-
imation can be seen on figure 1 for a1 = 1 and varying a2.
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Fig. 1. The spectral radius and its ellipsoid norm approximation as functions of the
real parameter a2 (a1 is fixed to 1). The two lowest curves (dashed) represent upper
and lower bounds on the exact value of the spectral radius (computed with words
of length 6). The middle curve (solid) represents

√
1 + 4a2. The two highest curves

(dotted) represent upper and lower bounds on the approximation.



4 Guaranteed precision of the approximation

The ellipsoid norm approximation of the joint spectral radius can be
shown to have a guaranteed precision. The argument for this is simple:
Let ρ be the joint spectral radius of the set {A1, . . . , Am}; we know by
Theorem 1 that there exists a vector norm ‖.‖∗ for which ‖Aix‖∗ ≤ ρ‖x‖∗
for all x and i. The level curves of this norm define closed convex set that
can be approximated by ellipsoids, the quality of these approximations
can be measured and provides a guaranteed precision for the approxima-
tion.
We start by describing the quality of best possible ellipsoids (the result

below is known as John’s theorem; it is stated in [10], referring to [11]).

Theorem 3. Let K ⊂ R
n be a compact convex set with nonempty inte-

rior. Then there is an ellipsoid E with center c such that the inclusions
E ⊆ K ⊆ n(E − c) hold. If K is symmetric about the origin (K = −K),
the constant n can be changed into

√
n.

Knowing this, we can now prove:

Theorem 4. Let ρ be the joint spectral radius of a finite set of matrices
of dimension n. Let ρ̂ be the ellipsoid norm approximation of the joint
spectral radius. Then ρ̂/

√
n ≤ ρ ≤ ρ̂.

Proof. The norm mentioned above is symmetric about the center, as
‖x‖∗ = ‖ − x‖∗, ∀x. So, the above theorem guarantees us that, what-
ever the norm ‖.‖∗ is, there exists a quadratic norm ‖x‖P = xTPx (of
which level curves are ellipsoids) such that

‖x‖P ≤ ‖x‖∗ ≤
√
n‖x‖P .

As, ∀q > ρ(M), the norm ‖.‖∗ satisfies ‖Aix‖∗ ≤ q‖x‖∗, ∀x, ∀i, we can
now write

∀x, ∀i, ‖Aix‖P ≤ ‖Aix‖∗ ≤ q‖x‖∗ ≤ q‖x‖P
√
n

∀x, ∀i, ‖Aix‖P ≤ q‖x‖P
√
n

∀x, ∀i, xTAT
i PAix ≤ q2n xTPx

∀i, AT
i PAi − q2nP ¹ 0 .

Thus, the approximation ρ̂ defined by ρ̂(M) = infPÂ0maxAi∈M ‖Ai‖P is
≤ q
√
n. So, at worst, the approximation will result in the value ρ(M)

√
n.

Summing up, this gives:

ρ(M) ≤ ρ̂(M) ≤ ρ(M)
√
n .

ut



5 Matrices with non-negative entries

In this section, we introduce an approximation of the joint spectral radius
for matrices with non-negative entries. We first provide a result for general
matrices that is of independent interest.

Proposition 3. Let M = {A1, . . . , Am}. Then

max
∑m

i=0 αi=1, αi≥0
ρ
(

∑

αiAi

)

≤ ρ(M).

Proof. We have, using the inequality ρ(.) ≤ ‖.‖ (for any valid matrix
norm ‖.‖) and the subadditivity of the norm,

ρ̃(M) := ρ

(

∑

i

αiAi

)

≤
∥

∥

∥

∥

∥

∑

i

αiAi

∥

∥

∥

∥

∥

≤
∑

i

‖αiAi‖ =
∑

i

αi ‖Ai‖

≤ max
i
(‖Ai‖) , as

∑

i αi = 1 .

Now, if the system converges to the origin, that is ρ(M) < 1, we know
there exists a norm ‖.‖∗ such that ∀i, ‖Ai‖∗ < 1 (see [12]). We can then
deduce from the previous inequality that ρ̃(M) < 1. So,

ρ(M) < 1⇒ ρ̃(M) < 1 ,

and we deduce, using linearity, that ρ̃(M) ≤ ρ(M) . ut

For deriving the approximation of this section we need one more property.

Lemma 3. Let M1 and M2 be matrices with non-negative entries. If
(M2)ij ≥ (M1)ij, then ρ(M2) ≥ ρ(M1).

We are now ready to prove:

Theorem 5. Let M = {A1, . . . , Am} be a set of matrices with non-
negative entries and define Sij = max1≤k≤m(Ak)ij. We have

ρ(S)

m
≤ ρ(M) ≤ ρ(S). (3)

Proof. For the first inequality of (3), non-negativity, Lemma 3 and Propo-
sition 3 give

S ≤
m
∑

k=1

Ak ⇒ ρ(S) ≤ ρ

(

m
∑

k=1

Ak

)

= mρ

(∑m
k=1 Ak

m

)

≤ mρ(M) .



To prove the second inequality of (3), we may note that, as the ele-
ments are non-negative, for any sequence ω of k indices, the product Aω

satisfies (Sk)ij ≥ (Aω)ij . Lemma 3 allows us to deduce, ∀ω : |ω| = k,

Sk ≥ Aω ⇒ lim sup
k→∞

‖Sk‖1/k ≥ lim sup
k→∞

(

max
|ω|=k

‖Aω‖1/k
)

⇒ ρ(S) ≥ ρ(M) .

ut
For all set cardinalities m, the equality ρ(S)/m = ρ(M) is achieved

for some particular matrices. For m = 2 consider the following pair:
{

A =

(

1 0
1 0

)

, B =

(

0 1
0 1

)}

for which ρ(S) = 2. On the other hand, we see that A2 = A, B2 = B,
AB = B and BA = A. Any product generated by {A,B} is either A or
B, so ρ(A,B) = 1 and we indeed have ρ̂/2 = ρ. A similar construction is
immediate for the cases m ≥ 3.

6 Conclusion

We introduce in this paper a polynomial-time approximation of the joint
spectral radius that is easy to compute and that is guaranteed to be within
a factor

√
n of the exact value, where n is the dimension of the matrices.

We describe particular classes of matrices for which our approximation is
equal to the joint spectral radius. The problem of characterizing exactly
the sets of matrices for which equality holds is a question that remains
open. We also provide an easy way of approximating the joint spectral
radius of matrices with non-negative entries, and show that this approx-
imation is within a factor at most n of the exact value, where n is the
number of matrices in the set. This last result does not depend on the size
of the matrices. The question remains open to find better approximations
at a reasonable computational cost. In particular, both approximations
presented in this paper have relative errors that increase with the size or
number of the matrices. It is yet unclear if a polynomial time approxima-
tion is possible that gives a fixed guaranteed relative error.
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