
Staying Alive as Cheaply as Possible

Patricia Bouyer1�, Ed Brinksma2, and Kim G. Larsen3

1 LSV – CNRS & ENS de Cachan – UMR 8643 – France
bouyer@lsv.ens-cachan.fr

2 Department of Computer Science – University of Twente – The Netherlands
brinksma@cs.utwente.nl

3 BRICS – Aalborg University – Denmark
kgl@cs.auc.dk

Abstract. This paper is concerned with the derivation of infinite schedules for
timed automata that are in some sense optimal. To cover a wide class of optimality
criteria we start out by introducing an extension of the (priced) timed automata
model that includes both costs and rewards as separate modelling features. A
precise definition is then given of what constitutes optimal infinite behaviours for
this class of models. We subsequently show that the derivation of optimal non-
terminating schedules for such double-priced timed automata is computable. This
is done by a reduction of the problem to the determination of optimal mean-cycles
in finite graphs with weighted edges. This reduction is obtained by introducing
the so-called corner-point abstraction, a powerful abstraction technique of which
we show that it preserves optimal schedules.

1 Introduction

In the past years the application of model-checking techniques to scheduling problems
has become an established line of research. Scheduling problems can often be reformu-
lated in terms of reachability, viz. as the (im)possibility to reach a state that improves on a
given optimality criterion.Although there exists a wide body of literature and established
results on (optimal) scheduling in the fields of real-time systems and operations research,
the model-checking approach is interesting on two accounts. First of all, it serves as a
benchmarking activity in which the effectivity and efficiency of model-checking can
be compared to the best known results obtained by other techniques. Second, most
classical scheduling solutions have good properties only in the context of additional
assumptions that may or, quite often, may not apply in actual practical circumstances.
Here model-checking techniques have the advantage of offering a generic approach for
finding solutions in a model, in much the same way that, say, numerical integration
techniques may succeed where symbolic methods fail.

Of course, model-checking comes with its own restrictions and stumbling blocks, the
most notorious being the state-space explosion. A lot of research, therefore, is devoted
to the containment of this problem by sophisticated techniques, such as data struc-
tures for compact state space representation, smart state space search strategies, etc.
� This work has been mostly done while visiting CISS at Aalborg University in Denmark and

has been supported by CISS and by ACI Cortos, a program of the french ministry of research.

R. Alur and G.J. Pappas (Eds.): HSCC 2004, LNCS 2993, pp. 203–218, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

204 P. Bouyer, E. Brinksma, and K.G. Larsen

An interesting idea for the model-checking of reachability properties that has received
more attention recently is to somehow “guide” the exploration of the (symbolic) state
space such that “promising” sets of states are visited first. In a number of applications
[Feh99,HLP00,NY01,BMF02] model-checkers have been used to solve a number of
non-trivial scheduling problems. Such approaches are different from classical, full state
space exploration model-checking algorithms. They are used together with, for example,
branch-and-bound techniques [AC91] to prune parts of the search tree that are guaran-
teed not to contain optimal solutions. This development has motivated research into the
extension of model checking algorithms with optimality criteria. They provide a basis
for the guided exploration of state spaces, and improve the potential of model-checking
techniques for the resolution of scheduling problems. Work on extensions for application
of the real-time model-checker Uppaal [LPY97,BLL+98] to optimal scheduling prob-
lems is reported in [BFH+01b,BFH+01a,LBB+01]; related work is reported in [AM99,
ALTP01]. A closely related activity is reported in [AM01,AM02], where specific search
algorithms on timed automata models are defined to solve classes of scheduling prob-
lems, such as job-shop and task graph scheduling.

The formulation of scheduling synthesis as a reachability problem is not accurate
in cases of reactive behaviours, where actually an infinite (optimal) schedule must be
determined in case of reactive behaviours. In this case, not the (optimal) reachability of
a good final state, but the reachability of good (optimal) infinite behaviours is relevant.
Borrowing terminology from performance analysis, we can say that we are interested
in the stationary behaviours of the system. In the discrete case, stationary behaviours
are cyclic behaviours. Assuming cyclic behaviour the cost of reaching a cycle will be
insignificant compared to the infinite cost related to non-terminating cyclic behaviours
(assuming a single cycle execution has some positive cost). Approximating infinite be-
haviours by finite ones can yield good and even optimal solutions if it is possible to
search sufficiently “deep”, but costly pre-ambles may also obscure limit optimal be-
haviours [Mad03].

In this paper we study optimal infinite behaviour in the context of priced timed
automata1. In a discrete setting the detection of optimal behaviours goes back to Karp’s
algorithm [Kar78], which determines the minimal mean cost of the cycles in a finite graph
with weighted edges. Our contribution in this paper is that we show the computability
of the corresponding symbolic question for priced timed automata using a reduction to
a discrete problem à la Karp based on the so-called corner-point abstraction.

A second contribution is that we will not only establish computability of the problem
in the original setting of priced timed automata [BFH+01b,BFH+01a,ALTP01], but
also in an extension that features two price parameters, viz. costs and rewards. This
is motivated by the fact that the optimality of infinite behaviours is usually expressed
as a limit ratio between accumulated costs and rewards. In practical terms they may
involve measures such as units of money, production, consumption, time, energy, etc.,
as in throughput (units/time), production cost (units/money), efficiency (units/energy),
etc. In principle all of such measures could count both as cost and reward depending on
the particular problem. In this paper the difference between cost and reward is merely a

1 Called linearly priced timed automata in [BFH+01b,BFH+01a,LBB+01] and weighted timed
automata in [ALTP01].

Staying Alive as Cheaply as Possible 205

technical one: for infinite behaviour we insist that accumulated rewards diverge (tend to
positive infinity), whereas the accumulation of cost has no such constraint. Optimality
is then interpreted as maximizing or minimizing the cost/reward ratio.

The structure of the rest of this paper is as follows. In section 2 we define double-
priced transition systems, and on that basis introduce the model of double-priced timed
automata. Section 3 states the main technical result of the paper together with the as-
sumptions that must be made. Section 4 introduces the central notion of corner-point
abstraction related to the region automaton construction for timed automata. Section 5
contains the proof of a necessary result, which states that quotients of affine functions
over regions (and more generally zones) attain their extreme values in corner points.
In section 6 we show the corner-point abstraction to be sound, and in section 7 to be
complete w.r.t. optimal behaviours. In section 8, finally, we draw our conclusions and
give indications for future work.

For lack of space, proofs are not detailed in this article, but can be found in [BBL04].

2 Models and Problems

Double-Priced Transition Systems. A Double-Priced Transition System (DPTS for
short) is a tuple (S, s0, T, cost, reward) where S is a set of states, s0 ∈ S is the initial
state, T ⊆ S×S is the set of transitions, and cost, reward : T → R are price functions.
If (s, s′) is a transition then cost(s, s′) and reward(s, s′) are two prices (the cost and
the reward) associated with the transition (s, s′). We shall use the notation s → s′

whenever (s, s′) ∈ T , and s
c,r−→ s′ whenever (s, s′) ∈ T with cost(s, s′) = c and

reward(s, s′) = r.
Let γ = s0 → s1 · · · → sn be a finite execution of a DPTS (S, s0, T, cost, reward).

The price functions extend to γ in a natural way:

Cost(γ) =
n∑

k=1

cost(sk−1, sk) and Reward(γ) =
n∑

k=1

reward(sk−1, sk) .

Moreover, for a finite execution γ the ratio Ratio(γ) is defined as

Ratio(γ) =
Cost(γ)

Reward(γ)

if this quotient does exist (i.e. if Reward(γ) �= 0). Now consider an infinite execution
Γ . Denote by Γn the finite prefix of length n of Γ . The ratio of Γ is defined as

Ratio(Γ) = lim
n→+∞ Ratio(Γn)

provided this limit exists. Otherwise, we consider the infimum ratio and the supremum
ratio (denoted respectively as Ratio and Ratio) defined by

Ratio(Γ) = lim inf
n→+∞ (Ratio(Γn)) and Ratio(Γ) = lim sup

n→+∞
(Ratio(Γn)) .

Given a DPTS A, we define the optimal ratio µ∗
A as

µ∗
A = inf{ Ratio(Γ) | Γ is an infinite execution of A }

206 P. Bouyer, E. Brinksma, and K.G. Larsen

An infinite execution (also called schedule) Γ ∗
A ofA is ratio-optimal if Ratio(Γ ∗

A) = µ∗
A.

Note that (for infinite-state DPTSs) a ratio-optimal run may not exist. In this case, we
will say that

(
Γ ∗,ε

A
)
ε>0 is a ratio-optimal family of runs whenever for every ε > 0,

|Ratio(Γ ∗,ε
A)− µ∗

A| < ε.

The optimal ratio problem consists then in computing µ∗
A and, if it does exist, Γ ∗

A, or a
family

(
Γ ∗,ε

A
)
ε>0.

Example 1. Consider a DPTS with states {A, B, C} and transitions A
1,1−→ B, B

1,0−→ B,

B
2,1−→ C, C

1,0−→ B, C
2,1−→ C and C

1,1−→ A, and with A initial state. To see that the
ratio is not always defined consider the execution B → C → B2 → C2 → B4 →
C4 → · · · → B2n → C2n · · · . Computing ratios of finite prefixes, we get respectively

Ratio(B → C → B2 → C2 → · · · → B2n

) = 3
whereas Ratio(B → C → B2 → C2 → · · · → B2n → C2n

) = 5

On the other hand, the execution consisting in an infinite repetition of the cycle A →
B → C → A has a well-defined ratio, 4

3 , which is in fact the optimum ratio of the given
DPTS. ��

Double-Priced Timed Automata. For finite-state DPTSs the optimal ratio µ∗ is obvi-
ously computable. Karp’s Theorem [Kar78] provides an algorithm with time complexity
O(V.E) (V being the number of states and E the number of edges) in the case that the
reward of each transition is 1. Extensions of Karp’s algorithm have been proposed for
computing µ∗ in the general case, see for example [DG98,DIG99]. In the remainder of
this paper we shall settle the computability of µ∗ for infinite-state DPTS derived from so-
called double-priced timed automata being timed automata extended with price(-rates)
for determining cost and reward of discrete and delay transitions.

Given a set of clocks X , the set of clock constraints C(X) is defined inductively by
the following rules:

g ::= x �� c | g ∧ g

where x ∈ X , c ∈ N and ��∈ {<,≤, =,≥, >}.
Definition 1. A Double-Priced Timed Automaton (DPTA for short) over a set of clocks
X is a tuple (L, �0, E, I, c, r), where L is a finite set of locations, �0 is the initial location,
E ⊆ L × C(X) × 2X × L is the set of edges2, I : L −→ C(X) assigns invariants to
locations and c, r : (L ∪ E) −→ Z assign price-rates to locations and prices to edges.

Example 2. Consider a production system consisting of a number of machines
M1, . . . Mn all attended to by a single operator O. Each machine Mi has two production
modes: a high (H) and a low (L) mode, characterized by the amount of goods produced
per time-unit (G respectively g) and the amount of power consumed per time-unit (P re-
spectively p). From the producers point of view the high production mode is preferable as
it has a better (i.e. smaller) P/G-ratio than the low production mode. Unfortunately, each

2 In case (�, g, r, �′) ∈ E, we write �
g,r−−−→ �′.

Staying Alive as Cheaply as Possible 207

machine can only operate in the high production mode for a certain amount of time (D)
without being attended to by the operator. The operator, in turn, needs a minimum time-
seperation (S) between attending machines. The figure on the right provides DPTA’s for
a typical machine and an operator.3In Fig. 1 we consider a production system obtained
as the product of a machine M1 with parameters D = 3, P = 3, G = 4, p = 5, g = 2,
a machine M2 with parameters D = 6, P = 3, G = 2, p = 5, g = 2 and a single
operator with seperation time S = 4. In the product construction a cost (reward) rate of
a composite location is obtained as sum of the cost (reward) rates of the corresponding
component locations. ��

The semantics of a DPTA is given as a DPTS. In-
tuitively, there are two types of transitions: delay tran-
sitions with cost and reward obtained by applying the
rates c and r of the source location, and discrete tran-
sitions with cost and reward given by the values of c
and r of the corresponding edge. Before formally stat-
ing the semantics, we introduce a few definitions. A
clock valuation u ∈ RX

≥0 is a function which assigns
values to clocks. If d ∈ R>0 is a delay, then u + d
denotes the clock valuation such that for each clock x,
(u + d)(x) = u(x) + d. If r is a set of clocks then
[r ← 0]u is the clock valuation u′ with u′(x) = 0 if
x ∈ r and u′(x) = u(x) otherwise. Finally we write
u |= g if and only if the clock valuation u satisfies the
guard g (defined in the natural way).

Definition 2. The semantics of a DPTA A =
(L, �0, T, I, c, r) over set of clocks X is the DPTS
(S, s0,−→, cost, reward)overX , whereS = L×RX

≥0,
s0 = (�0,0) (where 0 assigns 0 to each clock of X),
and −→ is defined as follows:

– (�, u)
c,r−−→ (�, u + d) if u + t |= I(�) for every 0 ≤ t ≤ d, c = c(�) · d and

r = r(�) · d
– (�, u)

c,r−−→ (�′, u′) if there exists a transition �
g,r−−−→ �′ in T such that u |= g,

u′ = [r ← 0]u, u′ |= I(�′), c = c
(
�

g,r−−−→ �′
)

, and r = r
(
�

g,r−−−→ �′
)

.

Example 3. Reconsider the Production System from Fig. 1. The following is an infinite
execution providing a scheduling policy for the operator with the cost-reward ratio
96/66 ≈ 1, 455:

3 The cost and reward rates are both zero in the single location of the Operator.

208 P. Bouyer, E. Brinksma, and K.G. Larsen

Fig. 1. Production System with Two Machines M(D = 3, P = 3, G = 4, p = 5, g = 3) and
M(D = 6, P = 3, G = 2, p = 5, g = 2) and an Operator O(4).

((H, H), x1 = x2 = z = 0)
18,18−−−−→ ((L, H), x1 = x2 = z = 3)

8,5−−−→
((L, H), x1 = x2 = z = 4) −→ ((H, H), x1 = z = 0, x2 = 4) (∗)

12,12−−−−→
((H, L), x1 = z = 2, x2 = 6)

8,6−−−→ ((L, L), x1 = z = 3, x2 = 7)
10,5−−−→

((L, L), x1 = z = 4, x2 = 8) −→ ((H, L), x1 = z = 0, x2 = 8)
24,18−−−−→

((L, L), x1 = z = 3, x2 = 11)
10,5−−−→ ((L, L), x1 = z = 4, x2 = 12) −→

((L, H), x1 = 4, x2 = z = 0)
32,20−−−−→ ((L, H), x1 = 8, x2 = z = 4)

−→ ((H, H), x1 = z = 0, x2 = 4) (∗)

Fig. 2(a) illustrates this schedule as a Gantt chart.An other execution providing a schedul-
ing policy with the cost-reward ratio 68/46 ≈ 1, 478 is given in Fig. 2(b). ��
Remark. Let us point out several interesting subclasses of DPTAs. The reward will be said
impulse-based whenever all reward-rates in locations are zero. This class corresponds
roughly to the mean ratio as in classical finite-state systems [DIG99].An other interesting
class is the one where the reward corresponds to the elapsing of time, that is when all
location reward-rates are 1 and all transition rewards are 0. This last class corresponds
to the usual intuitive notion of stationary behaviours where the measure is the cost by
unit of time.

3 Result

Restrictions. In the remainder of this paper, we do several restrictions on the models
we consider. We first restrict ourselves to reward functions that are non-negative. We

Staying Alive as Cheaply as Possible 209

(a) Schedule with ratio 1,455 (b) Schedule with ratio 1,478

Fig. 2. Schedules for the Production System with ratios 1,455 and 1,478.

also restrict ourselves to double-priced timed automata where the reward is strongly
reward-diverging in the following sense:

A DPTA A is strongly reward-diverging if, closing all the constraints of A (that is
replacing in A each constraint x < c by x ≤ c and each constraint x > c by x ≥ c),
every infinite path Γ of the new closed automaton should satisfy that Reward(Γ) = +∞.

Example 4. The following DPTA does not meet the previous restriction. Indeed consider
the path γn,d that takes the first transition at date d and then takes n times the loop. We
have that Reward(γn,d) = 2 + d.n. Thus, the ratio of any real infinite path is +∞
(because for those states d is positive). Now, if we consider the infinite path where d is
0 (this path is a path of the automaton where all constraints have been closed), we get
that Reward(γn,0) = 2 �= +∞.

Notice that this restriction implies in particular that all executions in timed automata
we consider are non-zeno because the reward is inO(time elapsed). As we will see later,
this assumption will have an other important implication, see Proposition 2.

Assumption for the following. We assume that timed automata are bounded, that is
there exists a constant M such that for every reachable extended state (�, v), for every
clock x, v(x) ≤M . This is not a restriction as every DPTA can be transformed into an
“equivalent” bounded timed automaton (strongly bisimilar and with the same costs and
rewards).

We can now state the main result of this paper.

Theorem 1. The optimal ratio problem is computable for strongly reward-diverging
DPTAs with non-negative rewards.

210 P. Bouyer, E. Brinksma, and K.G. Larsen

A more precise statement of the above theorem is obtained by notions of soundness
and completeness. Given two DPTSs S and S ′ we say that S ′ is sound w.r.t S whenever
µ∗

S′ ≤ µ∗
S and we say that S ′ is complete w.r.t. S whenever µ∗

S ≤ µ∗
S′ . Theorem 1 is

now a corollary of the following Proposition:

Proposition 1. Let A be a bounded and strongly reward-diverging DPTA with non-
negative rewards. Then there exists a finite-state DPTS S which is sound and complete
w.r.t. the DPTS defined by A.

The finite-state DPTS we will prove sound and complete w.r.t. to a bounded DPTA
A is the so-called corner-point abstraction of A that we define in the next section.

4 Regions and Corner-Point Abstraction

The aim of this section is to propose a discretization of timed automata behaviours based
on an extension of the region automaton construction [AD90,AD94]. We fix a DPTA A
and we assume that it is bounded by M . Moreover, we denote by k its number of clocks.

Regions and Corner-Points. In this paper, we will use the standard notion of regions, as
initially defined by Alur and Dill [AD90]. As we consider only bounded timed automata,
we only need bounded regions. A region (bounded by M) over a (finite) set of clocks X
is a tuple r = (h, [X0, ..., Xp]) where h : X −→ N ∩ [0, M] assigns to each clock an
integer value between 0 and M , p is some integer, and (Xi)i=0,...,p forms a partition of
X such that for all i > 0, Xi �= ∅ and h(x) = M implies x ∈ X0.

Given a valuation v, we say that v is in the region r whenever:

– for any clock x ∈ X , the integer part of v(x) is h(x),
– for any clock x, x ∈ X0 ⇐⇒ v(x) = h(x),
– for all clocks (x, y), {v(x)} ≤ {v(y)} ⇐⇒ x ∈ Xi and y ∈ Xj with i ≤ j.

where {·} represents the fractional part.
A(n M -)corner-point is an element α = (aj)1≤j≤k of Nk such that for every 1 ≤

j ≤ k, 0 ≤ aj ≤M . Let R be a region. A corner-point α is associated with R whenever
it is in the closure of R (for the usual topology of Rk). Let r = (h, [X0, ..., Xp]) be a
region. It has p + 1 corner-points, (αi)0≤i≤p, such that:

αi(x) =
{

h(x) if x ∈ Xj with j ≤ i
h(x) + 1 if x ∈ Xj with j > i

Corner-Point Abstraction. We will construct a finite state DPTSAcp called the corner-
point abstraction of A where states are of the form (�, R, α) with � being a location,
R a region and α a corner-point of R. Transitions of Acp are defined in the following
manner:

Discrete transitions. If e = �
g,r−−−→ �′ is a transition of A, there will be transitions

e′ = (�, R, α) −→ (�′, R′, α′) in Acp with R ⊆ g, R′ = [r ← 0]R, α corner-point
associated with R, α′ corner-point associated with R′ and α′ = [r ← 0]α. We set
cost(e′) = cost(e) and reward(e′) = reward(e).

Staying Alive as Cheaply as Possible 211

Idling transitions. There are two types of idling transitions.

– There are transitions e′ = (�, R, α) −−−→ (�, R, α′) whenever α and α′ are distinct
corner-points of R and α′ is the time successor of α (in which case, α′ = α+1). We
set cost(e′) = cost(�) and reward(e′) = reward(�) (intuitively the delay between
the corner-points is precisely one time unit).

– There are transitions e′ = (�, R, α) −−−→ (�, R′, α) whenever R′ is the time suc-
cessor region of R and α is a corner-point associated with both R and R′. We set
cost(e′) = 0 and reward(e′) = 0

The following proposition is an important consequence of the strongly reward-divergence
hypothesis.

Proposition 2. LetA be a bounded, strongly reward-diverging DPTA with non-negative
rewards. Then there exist two constants λ > 0 and µ ≥ 0 such that for any infinite path
Π of Acp

Reward(Πn) ≥ λ.n− µ

where Πn denotes the prefix of length n of Π .

Note that the above λ and µ only depend on the automaton A, not on the paths.

Let γ : (�0, u0) −→ (�1, u1) −→ . . . be a real (finite or infinite) path in A. The set
of all paths

π : (�0, R0, α0,0) −→ (�0, R0, α0,1) . . . (�0, R0, α0,p0) −→ (�1, R1, α1,0) . . .

in Acp such that for every i, ui ∈ Ri and for every j, αi,j is a corner-point associated
with Ri is denoted projcp(γ). Note that if γ : (�0, u0) −→ (�1, u1) −→ . . . and
γ′ : (�0, v0) −→ (�1, v1) −→ . . . are two “region-equivalent” real-paths (i.e. for every
i, ui and vi are region-equivalent), then projcp(γ) = projcp(γ′).

In the remainder of the paper, we will prove that the optimal ratio of the corner-point
abstraction is the same as the optimal ratio of the original DPTA. As the corner-point
abstraction can be effectively constructed and as computing optimal ratios in finite-
state DPTSs (the corner-point abstraction is a finite-state DPTS) is effective (see for
example [Kar78,DG98,DIG99]), we get that µ∗

A is effectively computable for DPTAs
A satisfying the strongly reward-divergence hypothesis.

Example 5. If we come back to the automaton of Example 4, as we have already seen,
it does not meet the strongly reward-divergence restriction. It is easy to compute that
for any real infinite path Γd (where d denotes the date the first transition is taken),
Ratio(Γd) = 11. However if we consider the path Π of the corner-point abstraction
where d would be 0, we get that Ratio(Π) = 3

2 . We see that we could change the costs
and rewards on the transitions, and we would get that there is no relation between the
ratio of paths in the original automaton and ratio of paths in the corner-point abstraction.
This shows that strongly reward-divergence is necessary.

212 P. Bouyer, E. Brinksma, and K.G. Larsen

5 Quotient of Affine Functions

This section contains technical results that will be useful in the following. Let A be a
closed set. The border of A is denoted by Bordern(A) and is defined as A \ Å where
Å denotes the interior of A. Let A be a closed set and x a point in Rn. The following
statements are equivalent and characterize the border of A:

– x ∈ Bordern(A)
– x ∈ A and for every ε > 0, there exists y �∈ A such that ‖x− y‖∞ < ε. 4

The proofs of the two following lemmas can be found in the appendix.

Lemma 1. Let f be a function defined on a compact convex set A ⊂ Rn (where n ≥ 1)
such that

f(x1, ..., xn) =
∑n

i=1 cixi + c∑n
i=1 rixi + r

We assume in addition that A is included in the definition set of f . Then the minimum of
f on A is obtained on the border of A.

In the remainder of the section, we will use the standard notion of zone. A zone over
the set of clocks X is a convex set of valuations defined by constraints of the forms
x �� c and x− y �� c where x and y are in X , �� ∈ {≤, <, =, >,≥} and c is an integer.
For example, the constraints {x ≤ 3, y ≥ 4, x−y < −5} represent the set of valuations
v such that v(x) ≤ 3, v(y) ≥ 4 and v(x)− v(y) < −5.

Lemma 2. Let f be a function defined on a bounded zone Z ⊂ Rn (where n ≥ 1) by

f(x1, ..., xn) =
∑n

i=1 cixi + c∑n
i=1 rixi + r

We assume in addition that Z (the closure of Z for the usual topology) is included in the
definition set of f . Then the infimum of f on Z is obtained on a point of Z with integer
coordinates.

The two lemmas above together imply that the infimum of such a function f on a
bounded zone Z is obtained in one of the corner-points of the zone. The result could be
easily generalized to general bounded convex polyhedra, and not only bounded zones.
The result would then be that the function f is minimized in one of the corner-points of
the polyhedron, a corner-point representing intuitively an extremal point .

6 Soundness of the Corner-Point Abstraction

The aim of this section is to prove that the corner-point abstraction is sound, that is for all
the infinite paths in the timed automaton, we can find an infinite path in the corner-point
abstract automaton with a smaller ratio. The proof will be done in two steps: first, we
will consider finite paths, and then we will extend the result to infinite paths.

Theorem 2. Let A be a bounded, strongly reward-diverging DPTA with non-negative
rewards. Then, µ∗

Acp
≤ µ∗

A.

4 Note that ‖ · ‖∞ denotes the infinite norm in every dimension.

Staying Alive as Cheaply as Possible 213

Considering Finite Paths

Proposition 3. LetA be a bounded, stronly reward-diverging DPTA and let γ be a finite
execution in A. Then there exists an execution π ∈ projcp(γ) such that

Ratio(π) ≤ Ratio(γ) .

The special case where the reward is impulse-based may be obtained as a direct
consequence of previous works on cost-optimality in timed automata (cf for exam-
ple [BFH+01b,BFH+01a,LBB+01]). The general case however requires a new proof.
It will require the technical results developed in section 5.

Proof. Let γ = (�0, u0) −→ (�0, u0 + d0) −→ (�1, u1) −→ (�1, u1 + d1) · · · −→
(�n, un) be a finite execution in A (with alternating delay and discrete transitions). We
set for any 1 ≤ i ≤ n, ti =

∑
0≤j<i dj . We moreover assume that this execution is read

on the sequence of transitions �0
g1,C1−−−−→ �1 · · · gn,Cn−−−−−→ �n in A. The ratio of γ is:

f(t1, ..., tn) =
∑n

i=1 ci(ti − ti−1) + c∑n
i=1 ri(ti − ti−1) + r

where ci, ri are the cost and reward of the transition �i−1
gi,Ci−−−−→ �i and c, r are the sum

of all the discrete costs and rewards along γ.
We want to minimize this function with the constraints that for all i, v′

i ∈ Ri where:

– v′
i(x) = ti − tj where j = max{k ≤ i | x ∈ Ck}

– Ri is the region to which belongs vi

The set of constraints {v′
i ∈ Ri | i = 1...n} defines a zone Z on the variables

(ti)i=1...n.We can apply Lemma 2 and we get that the infimum of f on Z is obtained in (at
least) a point with integer coordinates, say (αi)i=1...n. Note that this point is in the closure
of Z, and thus that it satisfies in particular the set of constraints {v′

i ∈ Ri | i = 1...n}.
We define the valuations (σi)i=1...n by σi(x) = αi − αj where j = max{k ≤ i |

x ∈ Ck}. Each valuation σi is in Ri and has integer coordinates. It is thus a corner-point
of Ri. Moreover, the sequence of valuations (σi)i would be an accepted sequence if we
replace the constraints Ri by Ri. In addition, the time elapsed in each state �i would
then be αi+1 − αi.

It is now easy to build a path π in projcp(γ) (see associated research report) which
goes through the states (�i, αi+1 − αi) and whose ratio is:

Ratio(π) =
∑n

i=1 ci(αi − αi−1) + c∑n
i=1 ri(αi − αi−1) + r

We thus get that Ratio(π) ≤ Ratio(γ) and we are done. ��

Extension to Infinite Paths. We will now prove that the previous property, restricted to
finite executions, can be extended to infinite executions.

214 P. Bouyer, E. Brinksma, and K.G. Larsen

Proposition 4. LetA be a bounded, strictly reward-diverging DPTA with non-negative
rewards, and let Γ be a non-zeno infinite real path in A. Then, there exists an infinite
path Π in Acp such that

Ratio(Π) ≤ Ratio(Γ) . (�)

Notice that, on the contrary to Proposition 3 the path Π may not be in projcp(Γ). In
addition, for any finite prefix γ of Γ , it may happen that no finite prefix of Π satisfies
the property described in Proposition 3, which means that we will not solve the problem
just by extending paths given by Proposition 3.

Proof. Let Γ : (�0, u0) −→ (�1, u1) . . . be an infinite path in A. In the following, we
will denote by Γn the prefix of length n of Γ .

Let α be the value of the minimal ratio for a reachable cycle in Acp. Let n be an
integer. From Proposition 3, there exists a path Πn in projcp(Γn) such that Ratio(Πn) ≤
Ratio(Γn). Using Proposition 2, we get that Reward(Πn) ∈ Ω(n), which implies in
particular that limn→+∞ Reward(Πn) = +∞.

We decompose Πn into cycles, i.e. we write Πn = π0,n.C1,n.π1,n . . . Cpn,n.πpn,n

where πi,n are simple paths and Ci,n are cycles.We assume in addition that this decompo-
sition is maximal in the sense that the path π0,n.π1,n . . . πpn,n is acyclic. The maximality
property of our decomposition implies that the total length of π0,n.π1,n . . . πpn,n is less
than the number of nodes in Acp.

We set C(n) =
∑pn

i=0 Cost(πi,n) and R(n) =
∑pn

i=0 Reward(πi,n) and we compute
now the difference between Ratio(Πn) and α:

Ratio(Πn)− α =
∑pn

i=1 Cost(Ci,n) + C(n)∑pn

i=1 Reward(Ci,n) + R(n)
− α

=

∑pn
i=1 Cost(Ci,n)

∑pn
i=1 Reward(Ci,n) + C(n)∑pn

i=1 Reward(Ci,n)

1 + R(n)∑pn
i=1 Reward(Ci,n)

− α

We set β(n) =
∑pn

i=1 Cost(Ci,n)
∑pn

i=1 Reward(Ci,n) and we have that β(n) ≥ α because α is the ratio of

the minimal reachable cycle.5 We get that

Ratio(Γn)− α ≥ Ratio(Πn)− α =
β(n)− α + C(n)−αR(n)∑pn

i=1 Reward(Ci,n)

1 + R(n)∑pn
i=1 Reward(Ci,n)

(��)

Observe now that R(n) and C(n) are bounded and that
limn→+∞

∑pn

i=0 Reward(Ci,n) = +∞. We can now take the infimum limit of
Equation (��), and we get:

limn→+∞(Ratio(Γn))− α ≥ limn→+∞β(n)− α ≥ 0

Hence, the infimum ratio of Γ is greater than the ratio of the optimal reachable cycle
in Acp. ��

5 Remind the property that if b > 0 and d > 0, then min
(

a
b
, c

d

) ≤ a+c
b+d

≤ max
(

a
b
, c

d

)
.

Staying Alive as Cheaply as Possible 215

7 Completeness of the Corner-Point Abstraction

The aim of this section is to state the completeness of the corner-point abstraction. More
precisely, we will prove that for every infinite path of the corner-point abstraction, there
are real paths in the original automaton whose ratio is as close as we want to the ratio
of the given path in the corner-point abstraction.

Theorem 3. Let A be a bounded, strongly reward-diverging DPTA with non-negative
rewards. Then, µ∗

A ≤ µ∗
Acp

.

The proof of this theorem will be done in two steps: we will first prove that we can
approximate paths in Acp by paths in A which are as close as we want to the original
path (proposition 5). It will be sufficient to prove that for each infinite path inAcp, under
the strongly reward-divergence assumptions, we can find a real path inA whose ratio is
as close as we want to the ratio of the given path in Acp (proposition 6).

Proposition 5. Let A be a bounded DPTA. Let π : (�0, R0, α0) −→
· · · (�n, Rn, αn) · · · be a (possibly infinite) path in Acp. Let 0 < ε < 1

2 . There exists a
real path γε : (�0, u0) −→ · · · (�n, un) · · · inA such that ui ∈ Ri and ‖ui−αi‖∞ < ε
for every i6.

Proof. Let v be a valuation. For any clock x, we define µv(x) = min{|v(x) − p| |
p integer} and for any pair of clocks (x, y),νv(x, y) = min{|v(x)−v(y)−p| | p integer}.
We define the diameter of v as

δ(v) = max ({µv(x) | x clock} ∪ {νv(x, y) | x, y clocks})

Proposition 5 will be a direct consequence of the following technical lemma.

Lemma 3. Consider a transition (�, R, α) −→ (�′, R′, α′) in Acp, take a valuation
v ∈ R such that δ(v) < ε and |v(x)−α(x)| = µv(x). There exists a valuation v′ ∈ R′

such that (�, v) −→ (�′, v′) in A, δ(v′) < ε and |v′(x)− α′(x)| = µv′(x).

Using this lemma, we construct inductively a path γε as described above, at each
step of the construction we have that ‖vi−αi‖∞ ≤ δ(vi). This concludes the proof. ��

We now use this result on paths to prove the following proposition on ratios.

Proposition 6. LetA be a bounded, strongly reward-diverging DPTA with non-negative
rewards. Let Π be an infinite path in Acp such that Ratio(Π) is defined. Then the
following holds: for any ε > 0, there exists a real path Γ ε such that |Ratio(Π) −
Ratio(Γ ε)| < ε.

6 ‖.‖∞ represents the usual infinite norm defined as ‖(xi)i=1...n‖∞ = max{|xi| | i = 1...n}.

216 P. Bouyer, E. Brinksma, and K.G. Larsen

Note that in case we have only non-strict constraints along the path accepting Γ in
A, Π corresponds to a real path in A, it thus corresponds to Γ ∗

A. Otherwise, the paths
constructed in the following will give us a family

(
Γ ∗,ε

A
)
ε>0 of optimal schedules.

Note also that inAcp (which is a finite automaton), optimal schedules are cycles for
which the ratio is defined [Kar78,DG98,DIG99]. The previous proposition thus proves
the completeness of the corner-point abstraction and concludes this section.

8 Future Work and Conclusion

In this paper, we have shown that the optimal infinite scheduling problem is computable
for double-priced timed automata (and Pspace-complete, see [BBL04]). We have re-
duced the problem to the computation of optimal infinite schedules in (weighted) finite-
state graphs. This problem is equivalent to finding optimal cycles in finite-state graphs,
which can be done using algorithms like Karp’s algorithm [Kar78] and some of its
extensions and improvements [DG98,DIG99].

However, there is still a number of issues which are open for future work. The
proof of computability, based on regions and corner-points, does not provide a realistic
implementation strategy. We would like to obtain an efficient implementation based on
zones and on-the-fly exploration of the symbolic state-space. A restriction to a setting
where one of the prices (cost or reward) is uniform (same rate in all locations) may be
particularly useful. Implementations for this specific case could be much more efficient
than those for the general problem. An idea would then be to approximate optimal
infinite schedules by working with (repeated) cost horizons or by applying partitioning
and refinement techniques, as done in the tool Rapture [DJJL01,DJJL02].

An extension of our present work would be to address the problem in the presence
of adversaries, even if it seems very difficult, more difficult than that of cost-optimal
winning strategies for (single-)priced timed automata with adversaries [LTMM02]. In
the finite-state setting, however, the problem has been solved [ZP96].

References

[AC91] D. Applegate and W. Cook. A Computational Study of the Job-Shop Scheduling
Problem. OSRA Journal on Computing, vol. 3:pp. 149–156, 1991.

[AD90] R. Alur and D. Dill. Automata for Modeling Real-Time Systems. In Proc. 17th Int.
Coll. Automata, Languages and Programming (ICALP’90), vol. 443 of LNCS, pp.
322–335. Springer, 1990.

[AD94] R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer Science
(TCS), vol. 126(2):pp. 183–235, 1994.

[ALTP01] R. Alur, S. La Torre, and G. J. Pappas. Optimal Paths in Weighted Timed Automata.
In Proc. 4th Int. Work. Hybrid Systems: Computation and Control (HSCC’01), vol.
2034 of LNCS, pp. 49–62. Springer, 2001.

[AM99] E. Asarin and O. Maler. As Soon as Possible: Time Optimal Control for Timed
Automata. In Proc. 2nd Int. Work. Hybrid Systems: Computation and Control
(HSCC’99), vol. 1569 of LNCS, pp. 19–30. Springer, 1999.

[AM01] Y. Abdeddaim and O. Maler. Job-Shop Scheduling using Timed Automata. In Proc.
13th Int. Conf. Computer Aided Verification (CAV’01), vol. 2102 of LNCS, pp.
478–492. Springer, 2001.

Staying Alive as Cheaply as Possible 217

[AM02] Y. Abdeddaïm and O. Maler. Preemptive Job-Shop Scheduling using Stopwatch
Automata. In Proc. 8th Int. Conf. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’02), vol. 2280 of LNCS, pp. 113–126. Springer,
2002.

[BBL04] P. Bouyer, E. Brinksma, and K. G. Larsen. Staying Alive as Cheaply as Possible.
Research Report LSV–04–2, LSV, ENS de Cachan, France, 2004.

[BFH+01a] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. Vaandrager. Efficient Guiding Towards Cost-Optimality in Uppaal. In Proc.
7th Int. Conf. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’01), vol. 2031 of LNCS, pp. 174–188. Springer, 2001.

[BFH+01b] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. Vaandrager. Minimum-Cost Reachability for Priced Timed Automata. In Proc.
4th Int. Work. Hybrid Systems: Computation and Control (HSCC’01), vol. 2034 of
LNCS, pp. 147–161. Springer, 2001.

[BLL+98] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, W. Yi, and C. Weise. New
Generation of Uppaal. In Proc. Int. Work. Software Tools for Technology Transfer
(STTT’98), BRICS Notes Series, pp. 43–52. 1998.

[BMF02] E. Brinksma, A. Mader, and A. Fehnker. Verification and Optimization of a PLC
Control Schedule. Journal of Software Tools for Technology Transfer (STTT),
vol. 4(1):pp. 21–33, 2002.

[DG98] A. Dasdan and R. K. Gupta. Faster Maximum and Minimum Mean Cycle Algorithms
for System Performance Analysis. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 17(10):pp. 889–899, 1998.

[DIG99] A. Dasdan, S. Irani, and R. K. Gupta. Efficient Algorithms for Optimum Cycle
Mean and Optimum Cost to Time Ratio Problems. In Proc. 36th ACM/IEEE Design
Automation Conf. (DAC’99), pp. 47–42. ACM, 1999.

[DJJL01] P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen. Reachability Analysis
of Probabilistic Systems by Successive Refinements. In Proc. 1st Int. Work. Pro-
cess Algebra and Probabilistic Methods, Performance Modeling and Verification
(PAPM-PROBMIV’01), vol. 2165 of LNCS, pp. 39–56. Springer, 2001.

[DJJL02] P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen. Reduction and
Refinement Strategies for Probabilistic Analysis. In Proc. 2nd Int. Work. Pro-
cess Algebra and Probabilistic Methods, Performance Modeling and Verification
(PAPM-PROBMIV’02), vol. 2399 of LNCS, pp. 57–76. Springer, 2002.

[Feh99] A. Fehnker. Scheduling a Steel Plant with Timed Automata. In Proc. 6th Int. Conf.
Real-Time Computing Systems and Applications (RTCSA’99), pp. 280–286. IEEE
Computer Society Press, 1999.

[HLP00] T. Hune, K. G. Larsen, and P. Pettersson. Guided Synthesis of Control Programs
Using Uppaal. In Proc. IEEE ICDS Int. Work. Distributed Systems Verification
and Validation, pp. E15–E22. IEEE Computer Society Press, 2000.

[Kar78] R. M. Karp. A Characterization of the Minimum Mean-Cycle in a Digraph. Discrete
Mathematics, vol. 23(3):pp. 309–311, 1978.

[LBB+01] K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and
J. Romijn. As Cheap as Possible: Efficient Cost-Optimal Reachability for Priced
Timed Automata. In Proc. 13th Int. Conf. Computer Aided Verification (CAV’01),
vol. 2102 of LNCS, pp. 493–505. Springer, 2001.

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Journal of Software
Tools for Technology Transfer (STTT), vol. 1(1–2):pp. 134–152, 1997.

218 P. Bouyer, E. Brinksma, and K.G. Larsen

[LTMM02] S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-Reachability and Control
for Acyclic Weighted Timed Automata. In Proc. 2nd IFIP Int. Conf. Theoretical
Computer Science (TCS 2002), vol. 223 of IFIP Conf. Proc., pp. 485–497. Kluwer,
2002.

[Mad03] A. Mader. Deriving Schedules for a Smart Card Personalisation System, 2003.
Submitted.

[NY01] P. Niebert and S. Yovine. Computing Efficient Operations Schemes for Chemical
Plants in Multi-batch Mode. European Journal of Control, vol. 7(4):pp. 440–453,
2001.

[ZP96] U. Zwick and M. Paterson. The Complexity of Mean Payoff Games on Graphs.
Theoretical Computer Science (TCS), vol. 158(1–2):pp. 343–359, 1996.

	Introduction
	Models and Problems
	Result
	Regions and Corner-Point Abstraction
	Quotient of Affine Functions
	Soundness of the Corner-Point Abstraction
	Completeness of the Corner-Point Abstraction
	Future Work and Conclusion

