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Abstract. In this paper, we use the constructs of branching tempogat [
formalize reasoning about a class of general flow systensfjding discrete-
time transition systems, continuous-time differentialirsions, and hybrid-time
systems such as hybrid automata. We introduce Full GenknallFogic, GFL ™,
which has essentially the same syntax as the well-knownGathputation Tree
Logic,CTL *, but generalizes the semantics to general flow systems hignaay
time-lines. We propose an axiomatic proof system@&¥L* and establish its
soundness w.r.t. the general flow semantics.

1 Introduction

Recent work in set-valued dynamical systems [4, 5], inges#is a general class known
asevolutionary systemJhese are described by a set-valued Saphich maps each
stater € X to thesetS(x) of all possiblefuture evolutionsy from initial statex, where

v :]0,00) — X, v(0) = z. These systems ar®n-deterministicfrom an initial state,
there may be none, exactly one, or many possible futuresdéfieing condition of
these systems is that the family of s&{s:) must be closed under the operations of tak-
ing asuffixof an evolution, and of taking theisionof the two evolutions at a common
state. It includes as examples the solution maps over maldf differential equations
with inputs, and of differential inclusions and their impedhybrid extensions [4, 7].
In the discrete time case, these same closure properties aprn the study of sets
computation sequenceis automata theory and the semantics of branching temporal
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RIX236. The work has benefited from discussions with paéiots of the Logic Seminar at
the University of Melbourne, particularly B. HumberstoheHumberstone and G. Restall.



logics such a€TL * [1, 17, 16]. The same closure properties appear again irekivdl
Behavioural Systems thedd8], under the nametime invarianceandaxiom of state
with the time domain the reats the integers. In the analysis of evolutionary systems,
there is particular interest in the area\éébility Theory[7, 4], where a central concept
is that of an evolution beingviable in K until capturing targetC”, which means that
the path starts at a state Ifi, andeitherremains inK for all time, or it reaches” in
finite time, and remains withi&” until it does so. From a computer science perspective,
this concept corresponds to tbiatil construct on paths in temporal logic.

The purpose of this paper is to generalize the class of egoluty systems to give
an adequate semantics for non-deterministic temporat kbgi is uniform for discrete-
time transition systems, continuous-time differentialusions, and hybrid systems,
where the time domains of evolutions lie in the lexicography orderedl. = N x R3.
There are three novelties in our woFKrst, we take a minimalist approach to the notion
of atime-line: for the suffix and fusion-closure propertith& minimal structure needed
on a linear order are translation or shift maps, which is wedkan a semi-group.
Second, we don't take as primitive objects evolutions or paths d=fion the entire
time line; that perspective gives something of a “god’s exietv of the system, looking
forward from now to eternity. Instead, our basic object @adh describes &ounded-
time segment of a possible evolution of or signal within a systérstarts somewhere
at relative timed with some valuer € X, and then progresses with an ordering given
by the underlying time-lind. to end somewhereat some time-point > 0, with a
valuez’ € X. We then build up a theory of infinitary extensions with unbded time
domains.Third, we don'’t restrict to pathy : 7" — X with boundedinterval time
domainsT = [0,7] C L, but rather allow “gaps” ifl". Over L = N x R, finite
hybrid trajectories are functions taking values in sakhewith time domaing” C L of
the form T = (J,_n [ (4,0), (i, 4;) ], with A; € R3 the duration of the-th interval.
Within T', time (i + 1, 0) is the immediateliscrete successarf time (i, A;), but in the
underlying lineL, there is a continuum-length open interval “gap” in between

The body of the paper is as follows. Section 2 covers prelm@s on set-valued
maps and linear orders, and develops some basic theory o path "gappy” time
domains. We introduce general flow systems in Section 3, medgamples in discrete,
continuous and hybrid time. In Section 4, we give an infigigompletion construction,
and relate our model class to evolutionary systems and bmiral systems. Section 5
introduces Full General Flow LogiGFL *, with basically the same syntax as the well-
known Full Computation Tree Logi€GTL *, developed for discrete-time models, but
semantics w.r.t. general flow systems over arbitrary timeSéction 6, we propose an
axiomatic proof system foGFL* and sketch soundness w.r.t. general flow semantics.

2 Preliminaries: set-valued maps, time-lines and paths

When we writeY” C X for setsX, Y, we will meanY” is apropersubset ofX, and so
Y CXiffY Cc XorY = X.Wewriter : X ~» Ytomean : X — 2V is aset-valued
map with set-values:(xz) C Y for everyz € X (possiblyr(z) = ©@); equivalently,
r C X x Yis arelation. Let[ X ~» Y| := 2X*Y denote the set of all maps, partially
ordered byC, sor C 7' iff r(z) C 7/(x) forall z € X, with least element the empty



mapo. Every mapr : X ~» Y has aconverse:~! : Y ~» X given by z € r~1(y) iff
y € r(x). Thedomainof a set-valued map igom(r) := {z € X | r(z) # @}, and the
rangeis ran(r) := dom(r~') CY.Amapr : X ~ Y istotal on X if dom(r) = X.
We distinguish several sub-classes of maps. We writ& — Y to meanr is a (total)
function with values written(z) = y. We also distinguisipartial functions and write
r : X --» Y to mean that is single-valued on its domaidom(r) C X, and write
r(z) = y whenz € dom(r), andr(z) = UNDEF whenz ¢ dom(r).

Let (L, <,0) be alinear orderwith least elemen® and no largest element, ard
the reflexive closure of. For elements, b € L, the sefa,b] :={l € L | a <1 < b}
is aclosed, bounded intervah L, and(a,b) :== {l € L | a < I < b} is anopen
bounded intervalsimilarly for half-open/half-closed bounded intervalsb) and(a, b].
For right unbounded intervalswe write [a,00) := {l € L | a < [}. Any subset
T C L gives alinear ordefT’, <), where<p:=< N(T x T). Define a partial function
succy, : L --» L, fora,b € L, by succy(a) := b iff a < b and there doesot
exists anl € L such thatu < [ < b. A linear orderL is calleddiscreteif succy, is a
total function (dom(succyr) = L), and isdensef succy, if dom(succy) = @. Given
two linear order§ L, <) and (L', <’), a functiong : L — L’ is called:strictly order-
preservingf (VI,k € L), I < k implies g(I) <’ g(k); and anorder isomorphisnif it
bijective and botly andg—" are strictly order-preserving.

Definition 1. Let (L, <,0) be alinear orderwith least elemend and no largest el-
ement. We calll a (future) time lineif L is shift invariant in the sense that if for
eacha € L, there exists an order isomorphisaT® : [a,00) — L, with inverse
ot = (671 L — [a,00), ando~° = idy. We call the functiong ¢ left a-
shift maps and the inverses ™ right a-shift maps

The discrete time lin&N, and the dense continuum time lif := [0, 00), are
considered with their usual orderings. The hybrid time spag R{ is linearly ordered
lexicographically i.e. (i,t) <ix (J,5) iff i < jori = j andt < s. The least element
is 0 := (0,0). This ordering does not admit any natural addition opendaitomake it a
linearly ordered semi-group, but its shift invariance isn@ssed by the following order
isomorphisms: for each = (k,r) € L, definec%: [a,00) — L by o~ %(i,t) :=
(0,t —r)ifi = kando~%(i,t) := (i — k,t) if i > k, forl = (i,t) € [a,00). Then
ot L — [a,00) satisfiess™(i,t) = (k,t +r) if i = 0ando™(i,t) = (i + k, 1)
if 7 > 0. The full hybrid time lineN x R{ is everywhere dense. In the "gappy” time
domainsT’ C L considered below, the partial functisnccr may be defined at some
time points inT" and not at others, s is a “hybrid” of discrete and dense.

Definition 2. Let (L, <,0) be a time line. Abounded time domaim L is a proper
subsefl” C L with least elemeri and a largest elemeit- such thatl’ is a finite union
of closed intervals irL, of the formT" =  J, _ y [as, b;], whereN € N andag = 0 and
a; < b; < ajqqfori < N —1,andby_; = by. LetBT(L) C 2 denote the set of all
bounded time domains ib. Also defindBI(L) := {T' € BT(L) | (3be L)T =[0,b] }
to be the subset of interval time domains. Over any set (bgpace)X # @, define
the set ofL-paths inX, by Path(L, X) := {v : L --» X | dom(y) € BT(L) },
and definelPath(L, X) to be the subsenterval pathswith dom(v) € BI(L). For



v € Path(L, X), defineb, := bgom(y) to be the largest element iom (), so that
~(0) € X is the start-value ofy and~(b,) € X is the end-value of.

Proposition 1. For L any time line, the séBT(L) is closed under the following oper-
ations: forT, 7" € BT(L) andt € L,
e intersection: T'NT" € BT(L); in particular, [0,t]NT € BT(L) ift € T;
o leftt-shift: o~ *([t,by]NT) e BT(L) ift € T;
e union with right¢-shift: TU o™ (T) € BT(L) if t > br.
The subseBI(L) of bounded initial closed intervals is closed under the tinsi oper-
ations, and is also closed under union with right shift reérd tot = b.

For X any value space, the following operations are well-defimeBaith(L, X):
forv,~’ € Path(L, X) andt € dom(v),
e t-end prefix: v|; € Path(L, X'), where v|; := v [{0,4n dom(+)
e t-start suffix: ;|y € Path(L, X), where (;|v)(l) := ~(c (1)) forall

L € dom(¢]y) := o~ '([t,by] N dom (7))
e fusion: v x 4" € Path(L, X), provided thaty'(0) = ~(b,), where

(v *~4)(1) :==~() forl € dom(y) and

(v %)) =~ (0> (1)) forl € o (dom(~")).

For each valuer € X, define thetrivial path 6, : [0,0] — X by 6,(0) = z. In
Path(L, X), the trivial pathd,, functions as a point-wise identity with respect to fusion:
05 v = iff v starts at value = v(0), andy * 6, = ~ iff v ends at value = ~v(b,).

Definition 3. Let (L, <,0) be a time line andX a value space. Define a partial order
on Path(L, X') from the underlying linear order ofl (re-using notation) by:y < +/

iff v C 7/ andt < ¢/ forall t € dom(y) andt’ € dom(y') — dom(y). If v < v/, we
say the path)’ is a (proper)extensiorof v, or v is a properprefix of v/.

In general, the path extension orderirgis a proper subordering of the subset
relation, but when restricted to the d€ath(L, X), it collapses to the subset relation.
The following proposition characterizes the path extemgiartial order in terms of the
fusion operation.

Proposition 2. For L a time line,X a value space, and for af, " € Path(L, X),
v < o iff v/ =vx+" for somey” € Path(L, X) with~” £ 6, and~"(0) = (b, ).

We now return to the hybrid time line = N x R{ for a more detailed discussion
of some of its paths. DefinB.S := IPath(N, R}) to be the set of all (finitejluration
sequences.e. A € DS is a finite sequence of value$; := A(i) € RS fori < N
for N = length(A) € N. For duration sequence$ € DS, defineHT(A) to be the
hybrid time domairdetermined byA:

HT(A) = Ui<lcngth(A) [(270)7 (Z>Al)]
HT := {HT(A) e BT(L) | Ae DS} (1)
HPath(X) := {y € Path(N x R}, X) | dom(v) € HT }

For hybrid pathsy € HPath(X), define theduration sequencef v by ds(y) = A
iff dom(y) = HT(A) for A € DS, and define theliscrete lengttof v by dl(y) :=

length(ds(y)) € N. Also define theotal durationof by td(vy) := >, () Ai-



Proposition 3. For all v,+" € HPath(X),
v Siex 7 iff dl(y) < dl(y') and (Vi < N :=dl(y) = 1) v; = 7; andyy < vy

With hybrid paths, we have to deal with the product structurghe time line. We
also encounter product structure on the value spacerntet (X x Y) — X and
7y : (X xY) — Y be the standard coordinate projection functions on a prtaufisets
X xY. These can be lifted to give projection functions on paths Path(L, X xY) —
Path(L, X) and to projections on functions; : [L — (X xY)] — [L — X ], by
defining (mx¢)(t) := mx(¢(t)) fort € dom(¢) and{ € Path(L,X xY)or¢: L —
(X x Y); and symmetrically forry in the other coordinate.

3 General flow systems

The general dynamical system model we develop here is ésbeAubin’s model of
an evolutionary system, generalized to arbitrary timedihgand “deconstructed”, so
that the basic objects are bounded length paths, hakingy) C [0, b,].

Definition 4. Let(L, <,0) be atimeline, and leX # & be an arbitrary value space. A
general flow systeraver X with time lineL isamap ®: X ~ Path(L, X) satisfying,
for all z € dom(®), for all v € &(z), and for allt € dom(~):

(GFO) initialization:  ~(0) =«
(GF1) suffix-closure: |y € &(v(t))
(GF2) fusion-closure: | x+" € &(x) forall v’ € &((t))

& hasinterval pathsif ran(®) C IPath(L, X);

& hashybrid paths if ran(®) C HPath(X) and L = N x R¢;

& isreflexive if 0, € &(z) forall z € dom(P);

& isblocked atr if ¢(z) = {0, } , andnon-blockingif not blocked at any: € X;
& is prefix-closed if |, € &(x) forall z € dom(P), vy € ¢(x) andt € dom(7);
& is deterministic if for all z € dom(®), the setb(x) is linearly ordered by.

In terms ofBehavioural Systems theof$8], the suffix-closure conditiogGF1)
corresponds to thigme invarianceproperty, while the fusion-closure conditi¢GF2)
corresponds to the so-calléaixiom of state” principle, that‘the state should contain
sufficient information about the past so as to determineuhed behaviour, because
the various possible extensions of a trajectory at ttraee exactly those which would
have been possible if we had observed only the state atttisred not the past of the
trajectory prior to that point.

Proposition 4. Let (L, <,0) be a time line, letX # & be a value space, and let
@: X ~ Path(L, X) be a general flow system ov&rwith respect ta.. Then:
(1.) The setdom(®) C X is closed under reachability b-paths:
if z € dom(®) and~y € &(z), andt € dom(7), theny(t) € dom(®).
(2.) @ is reflexive iffd is prefix-closed.
(3.) @ is non-blocking iff for alle € dom(®P), v € ¢(x), thereisay’ € &(z) : v < 7.



Example 1.If g : L; — Lo is an order embedding, arél: X ~» Path(L,,X) is a
general flow system, then the m@p : X ~» Path(L,, X) is also a general flow, where
for x € dom(®P,) = dom(P), define &,(z) := {n € Path(Lq, X) | Iy € &(x) :
dom(n) = g(dom(y)) A (Vt € dom(n)) n(t) = (g~ () }-

Example 2.A (basic)state transition systeis a structurd X, R) whereX # & is the
state space, an® : X ~ X is any set-valued map (the one-step transition relation).
The mapR determines a general flow system with interval paths ovesdine L = N:
Pp(x) == {y€TPath(N,X) |v(0) =z A (Vi<by—1) v(i+1) € R(v(9)) }.It

is easily verified thatbr(x) = {0, } iff = ¢ dom(R). Hence®y is non-blocking iff

the mapR is total onX, and®p, is deterministic iff the magk is a partial function.

Example 3.A differential inclusionis a structurg X, F') whereX C R" is a finite di-
mensional vector space with the Euclidean norm, EndX ~» R" is a set-valued map.
DefineAC(X) := {y € IPath(R$, X) | ~ absolutely continuous ofv, b,] }. Solu-
tions to the inclusion:(t) € F(x(t)) starting at a state are defined bySolp(z) :=
{veACX) | v(0) =z A (L4)(1) € F(v(1)) a.e.forl € [0,b,] } . Itisimmediate
that Sol is reflexive and is suffix-closed and fusion, hence is a géfilema system
with interval paths ovel, = R{. For the non-blocking property, to ensure the exis-
tence of non-trivial solutions from each € cl(dom(F)), one needs to impose some
regularity assumptions (e.gipschitzor Marchaudconditions) on the map’ [7, 3, 6].

If F: X — R"is actually a function and the differential equatioft) = F(x(t))
has a unique maximal solution : [0,c,) — X starting from eachx € X, with

¢z € RS U {oo}, thenSolp(z) = {n|: | t € [0,¢,) } is linearly ordered, hence deter-
ministic at everyr € X.

Example 4.A hybrid automatorl5, 2,14, 1] is a structure = (Q, E, X, F, D, R):

e () is a finite set of control modes;

e F: ) ~ (@ is the discrete transition relation;

e X C R™ is the continuous state space;

e F:Q — [X ~ R"™] maps eacly € Q to a set-valued vector fiel#(g) : X ~ R"
with differential inclusion solution mafolg := Solp(g) : X ~» IPath(Rg, X);

e D:(Q~ X mapseacl € QtoasetD, := D(q) C X, the domain of mode;

e R:E—[X~ X]maps(q,¢) € Etoaresetmai, , := R(¢,¢') : X ~ X.

Define a maplrajy : (Q x X) ~ HPath(Q x X) by:

Trajy (q,z) := {~v € HPath(Q x X) |
© 7(0,0) = (g,2) A (Vi<dl(y))[for4;:=ds(y)()) A g; :=mq(0)
(1) mxy; € Solg; (mxv;(0)) A ran(y;) € {g;} x Dg; N
@ (4,941) € E N 7x7j4,(0) € qu>qz‘+1(7TX'Yz'(Ai)> ifi <dl(y) -1 ] }
Paths inTraj, are called fjnite) trajectoriesof H. Direct from the definition, we can
see thatlom(Trajy) = D = {(¢,z) € @ x X |z € D,}.
We will say a hybrid automatof is well-constitutedf all of the following hold:

(4) Q#9, and E : Q ~ Q is total;
(B) X C R™is a hon-empty finite dimensional vector space with the Eeelh norm;



(©) D:Q~ Xistotal, soD, # @ for eachg € Q;

(p) foreachy € Q, domainD, C dom(Solg) andSolg is not blocked at any € D,;

(e) for each transition paifq, ¢') € E, the reset relatiol, ,» : X ~ X satisfies the
constraintslom (R, ) # @ anddom(R, ) C D, andran(Ry 4 ) C Dy.

Any assumptions will do on the set-valued vector fieltlg) : X ~ R™, provided they

give non-trivial solution paths i6ol; on the mode domainB,.

Proposition 5. Let H = (Q, E, X, F, D, R) be a hybrid automaton. Then the trajec-
tory mapTrajy : (Q x X) ~ HPath(Q x X) is a general flow system ové€) x X
with time lineN x R¢. If H is well-constituted thefiraj; is also prefix-closed.

The conditions o being well-constituted rule out all “trivial” ways thatraj;
may become blockedol is not blocked at any: € Dy € dom(Solg); sinceE is
total, everyg € @ has a discrete successor; and for each discrete trangitioh) € E,
thetransition guardsetdom(R, . ) is non-empty and contained i, and under the
reset relation, the image sein (R, ) lies in D, . So in attending to the possibility of
blocking, we need to focus only on states D, that are not in any transition guard
set, so no discrete transition is possible frgmz), and statexr € D, from which
every non-trivialg-solution leaved), “immediately after now”, so there are no hybrid
trajectories from(q, ) with non-trivial continuous evolution in modg

Proposition 6. If a hybrid automator¥ is well-constituted, and

Outy :={z € Dy | (V7 € Solg(z))(Vt € dom(y), t>0)(Is < t) y(s) ¢ Dy }
Grdg = Uy ep(g) dom(Rqq)
then Traj is non-blocking on its domaib iff Out, C Grd, for eachg € Q.

The setsOut, and the conditiorOut, C Grd, are identified in [15], for systems
with deterministic continuous dynamics. In virtue of thetiouity of paths irSolg (),
the setOut, is contained in the topological boundaut, C bd(Dg) := cl(D,) —
int(D,). An immediate corollary is that for well-constituted systeH, Traj, will be
non-blocking onD if for all ¢ € @, either(bd(D,) N Dy) C Grdg, or D, is open.

We can also show thienpulse differential inclusiomodel of hybrid systems from
[7] to be an example of a general flow system over the hybrié fime; this example
and others will be discussed in a separate paper.

4 Infinitary extensions of general flow systems

From Proposition 4, we know that if a general flénis non-blocking, then for each
x € dom(P) andy € &(z), there exists an infinite sequence of paths} with vo = v
and~, € &(z) and~y, < 7,41 for all n. Motivated by this fact, we view “maximal
extensions” or “completions” of paths as infinitary objeetgsing as limits of infinite
ordered sequences of finitary bounded paths. In this pagetake limits over ordered
sequences of order type (ordinat) the order type oN, but we want to leave open the
possibility, for later work, of dealing with sequences @litsfinite length, with ordinals
greater thaw (for formalizing the notion of a continuation of a Zeno hybtiajectory



that has discrete stagesw + 1, w + 2, ... up to some limit ordinal > w). We need
access to maximal length paths in order to formalizeUnél construct in temporal
logic, but we also want to “go to infinity” in order to be abledoectly compare our
class of dynamical systems with those developed in termsraftfons over the whole
time lineL = N or L = R¢; in particular, Aubin’s model of arvolutionary systerb,
4], and also Willem'drehavioural systemmodel [18].

Definition 5. For any path seP C Path(L, X), define thev-extensiorof P by:
Ext“(P) :={n:L--+X | (37 :w — Path(L, X)) (Vk <w)[ v :=7(k) A
WEP A Ak <ts1 A n=Upcw %]}

DefineEPath” (L, X ) := Ext“( Path(L, X) ); EIPath® (L, X) := Ext*( IPath(L, X) ).
Pathsn € Ext”(P) will be calledw-pathsof P.

Thus thew-extensionExt” (P) contains all the partial functiong: L --» X that
can arise as the union or limit of amrlength strictly extending sequence of paths in
the setP. The path extension orderirg on bounded paths induced by the linear order
on L can be lifted tow-paths. For pathg,n’ € Path(L, X) U EPath*(L, X), we
extend Definition 3 to define) < ' if n C ' andt < t' for all t € dom(n) and
t' € dom(n') — dom(n). If n <1 thendom(n) must be @oundedsubset ofL.

For a general flow system, we want to pick out thpathsy € Ext”(®(z)) that are
maximalin the sense that there are no real paths of the systdruipextending.

Definition 6. Given a general flow systedn X ~» Path(L, X), define thenaximized
w-extensiorof & to be the set-valued map“®: X ~» EPath”(L, X) given by:

(E“®P)(z) := {n € Ext®(P(x)) | (Vy € P(x)) n£7}

A systemd will be calledw-extendibleif for everyz € dom(®) and everyy € &(x),
there exists) € (E“®)(z) such thaty < 7.

In general,dom(E“®) C dom(®P); ¢ is w-extendible iff dom(E“®) = dom(QP).
In reasoning about the behaviour of arextendible systen®, we can safely replace
quantification over all possible pathsdr(z), with quantification ove(E“®)(z), the
maximalw-paths; this is crucial for the semantics of the tempubkatil construct.

Proposition 7. For any general flowp: X ~» Path(L, X),
(1.) @ isw-extendible iff @ is non-blocking.
(2.) If # non-blocking, then & is deterministic iff E“® is a partial function.

The non-trivial direction is® is non-blocking implie is w-extendible; the proof
uses Zorn’s Lemma to obtain a maximum of any strictly extegdiequence af-paths.

We are now in a position to formalize the relationship betwaabin’s model of an
evolutionary systerfb, 4], and the general flow systems defined here. An evolation
system, over time linef = R or L = N, isamap? : X ~ [ L — X | such that, for
whole line paths) : L — X, 7(0) = z foralln € ¥(x) and¥ is closed under the suffix
and fusion operations (the natural extensions to unboupéd#ts of the operations in
Proposition 1), in the same sense as which general flow sgstétmbounded paths are
closed under these operations, as required by cld@ek) and(GF2) of Definition 4.



Proposition 8. Let the time line be eithek = Nor L = R, and X # &.
U: X ~ [L — X] is an evolutionary system in the sense of Aubin

iff  there exists an interval path general flow sys#mX ~» [Path(L, X)
that is non-blocking and satisfigs= E“®.

Thus evolutionary systems are a subclass of non-blockimgrgé flow systems.
In Willem’s Behavioural Systemmodel [18], with time linesL = Nor L = R{, a
behaviouris a set of function®8 C [L — X . It can also be established tt8tis
a time-invariant and complete state behaviour iff therestsxan interval path, non-
blocking general flow systeda: X ~» IPath(L, X) such that8 = ran(E“®).

WhenL = N, then allw-pathsy € EPath® (N, X') have infinite time domain, so we
will always have(E¥®)(x) = Ext”(2¢(x)) for any non-blocking general flod.

When L. = RY, we know that everyw-pathn € ElIPath”(R$, X) must have
dom(n) = [0,c) for somec € RS U {oo}. For a non-blocking flow?, suppose
n € Ext”(®(x)) is anyw-path. Thenc = co automatically gives) € (E“®)(x). If
¢ < oo, then we will have a maximally extendedpathn € (E“®)(x) exactly when
nl: € ®(x) forallt € [0, ¢) but the limit ast — ¢ of 7(t) does not exist, or does exist
but is not indom(®); i.e. n hasfinite escape timeThe analysis for the--extensions
of general bounded pathse EPath”(R¢, X) is similar. For the differential inclusion
systems inExample 3the Marchaud conditions of' in [3, 7] constitute a property
stronger than non-blocking: they imply thé&dm (n) = [0, o) for all n € (E¥Solr)(z),
so there are n@-paths with finite escape time.

WhenL = N x R is the hybrid time line, we can characterize the maximalaths
of a non-blocking system as follows.

Proposition 9. For any X # @ and non-blocking general flo& : X ~» HPath(X),
everyw-pathn € (E“®)(z) is of one of two forms:

(i) n=v*vwherey € &(x) andv : {0} x [0,¢) — X withc € RS U {co} and
v = U, <, 7n and eachy, € ¢(v(0,0)) hasdl(vy,) = 1, hencen has finite discrete
lengthdl(n) = dl(v) € N, and total durationtd(n) = td(v) + ¢, which may be finite
or infinite, depending on; or

(i) 7 = U,<cw o Wheredl(y,) < dl(v,41), hencey has infinite discrete length, and
total durationtd(n) = 5 __ td(v,), which may be finite or infinite;

n<w

The non-blockingl-extendibility property here allows for two cases among ex-
tensions of hybrid paths that are typically consideredHpkgical”: Zenoextended
hybrid pathsy € (E¥®)(x) that have infinite discrete length but finite total duration
td(n) < oo; and livelockedextended hybrid paths € (E¥®)(x) that have finite
discrete lengthll(n) = k£ + 1 and finite total duration. Livelocked; are maximal
with the last path segment havinpm(n,) = [0, ¢); this & path would “die” atk-
local timet = ¢ (hybrid time (%, ¢)) if it ever got there, but it never can, as for every
extension ofy;, to domain|0, ¢], the resulting hybrid path is not i&(x). For a non-
blocking hybrid automatoi, the general flowlraj;; will exhibit livelock on an ex-
tended trajectory) € (E“Trajy)(z) with dl(n) = k+ 1 iff the last path segment
e : [0,¢) — (Q x X) is such that, forg, := mqn,(0) andxy = wxnx(0), there
exists a solution path € Solg, (zx) such thatdom(y) = [0,b,], with b, > c and



7 l[0,c)= 7xn, that eventually leaves the mode domalp, but never passes through
Grd, on the wayxy(c) ¢ D, andv(t) € D, — Grd, forall t € [0, c).

5 Full General Flow Logic GFL*: syntax and semantics

We now turn to the syntax and semantics of a logic we [Eall General Flow Logi¢
GFL*, which generalizes to general flow models the semantidsuifComputation
Tree Logi¢ CTL *, introduced by Emerson and Halpern in 1983 [10] for formagz
reasoning about executions of concurrent programs inetistime. The syntax here is
a labelled variant of that dETL *, allowing for semantic models consisting of a finite
family of non-blocking general flow systems.

Definition 7. A signatures a pair X = (Sys, Prp), whereSys is a finite set of system
labels, andPrp is a countable set of atomic propositions. The temporalddgiguage
L(X) consists of the set of all formulaegenerated by the grammar:

pu=plople1Ver | prlaps | Vap
for atomic propositiong € Prp, and system labels € Sys.

The other propositional (Boolean) connectives and logicaistantdrue, T, and
false L, are defined in a standard way, and the path quantifieteve classical nega-
tion dualsd,, as follows:

P1Apa B = (mp1 V pa) 01— 2 E =1 Vo
01— 02 Z (o1 — p2) Ap2 — ©1) Jap & Voo 2
T & pv-p foranyp € Prp 1 &7

The temporal operators{,, for a € Sys, refer to thew-path space of a non-blocking
general flow systend,. The formulay U, 1, read “p until v, for a-type paths”, will
hold along anyv-pathn of typea if at some time in the future (along the formulag)
holds, and at all intermediate times (alopgbetween now and theg, holds. The uni-
versal quantifie¥/,, applied to a path formula produces a state formula, én@ U, )
holds at a state if everyw-pathn € (E¥®,)(x) satisfies the path formula U4, .
Dually, 3,(¢U,v) holds at a state: if there existanw-pathn € (E“®,)(z) which
satisfies the path formula /1. The until construct on paths can be formulated in
several distinct ways; we shall take as primitive iectestversion ofuntil, and then
define weaker variants in terms of it. In particular, an imtgotdifferencebetween the
logic here, and the usual presentatiorcdfi. * developed for discrete time paths, is that
instead of taking thaext-timediscrete successor operator as a syntactic and semantic
primitive, we use a known method tefinenext-time in terms of the stricteantil [8,
13]. Our semantics covers arbitrary time lines, so in gdribmimmediate successor
map is only a partial function on the domain of a path, and éendaise of interval paths
in a dense time line, may be everywhere undefined.

Definition 8. A general flow logic model (logic modelor shor of signatureX’ =
(Sys, Prp) is a structuredt = (X, L, 8, P), where:



e X # o isthe state space, of arbitrary cardinality;

e L is afunction mapping each symhok Sys to a time lineL, := L(a);

¢ Sis afunction mapping each symhok Sys to an non-blocking general flow system
D, :=8(a) : X ~ Path(L,, X) over the spaceX, with time lineL,;

e P:Prp~ X maps eachp € Prpto asetP(p) C X of states.

Thew-path spacef a modebt is defined byEPath(9) := | EPath® (L., X).

a€Sys

Let GF(X) denote the class of all general flow logic models of signatiirand for
the case of a single time link, let GF(L, X) denote the subclass of all logic models
9 such thatC(a) = L for all a € Sys. For the further special case whéfgs| = 1
andPrp is countably infinite, [etTR(N) denote the subclass of all discrete time logic
modelsDt with one general flowb : X ~» IPath(N, X) from a total transition relation
R: X ~ X (also calledk-generable modeld. 2, 10, 16]). For the case of deterministic
systems, letDFF(L) denote the subclass of all logic models where the time fire
the non-negative half of a linearly ordered abelian groum the one general flow
& : X ~ IPath(L, X) is deterministic, total, interval path, and non-blocki8{ [

Definition 9. For ¢ € L(X) andw-pathn € EPath(91), the relation %y is satisfied
along pathy in modelOt”, written 90, = ¢, is defined by induction on the structure
of formulae, withp € Prp anda € Sys:

M= p iff n(0) € P(p)

Mn = - iff 9M,n K Y

M0 =1V it DMy = or My = P

M, = v1Us e iff neEPath”(L,, X) and 3t € dom(n) with t >0 :
M, |n E e and Vs € (0,t) N dom(n) : M, s|n E ¢

M, E Vot iff V€€ (E®a)(n(0)): M E | o

For formulasy € £(X), thew-path denotation sdty ]™ C EPath(91), and thestate
denotation sef» |2 C X, are defined by:

[¢]™ :={n € EPath(9M) | M,n = ¢}
[e]2:={x € X | In € EPath(9M) : M, = » and z =n(0) }

For a logic modebt € GF(X), class of logic model§’ C GF(X'), and for formulas
p € L(X), we say:

e issatisfiabldn 0, if [ |2 # o;

e pistruein M, written M = ¢, if M, n = ¢ for everyn € EPath(M);

e pis C-valid, written =¢ ¢, if MM = ¢ foreverydt € C.

Define Valid(C) := {¢ € L(X) | ¢ ¢} to be the set of alC-valid formulas,
and defineCTL* := Valid( TR(N) ) and GFL* := Valid(GF(X)).

def

Thewhile...alwayperator is a negation dualofitil: ¢ A, = —(pU, (-)),
which can be read as “if a typepath, therwhile ¢, alwaysy”. The semantics are:

Mn = oA, iff if n e EPath®(L,, X) then V¢ € dom(n) with ¢ >0,
if (Vs € (0,t)Ndom(n)) M, sln = ¢ then M, [y = ¥



Other one-place operators are defineasy £ TU,¢, o £ TA, o,
Ou & 1U,p, and ©,¢ & -pA,L, where

Oa ¢ typea paths along whickp will eventuallybe true in theuture

U, ¢ type- paths along whickp will alwaysbe true in thduture, plus non-typez paths;
®q ¢ typew paths along which timé has a discrete successor, ans truethen

©q ¢ typea-paths along whiclp is trueimmediately after nowplus non-types paths.

In particular, thenext-timeoperators®,, come out asht,n = ©, ¢ Iff
for T := dom(n) and0 € dom(succr) andk := succy(0) andd, x|n = ¢

Different versions ofintil come by varying the constraints on end-values of the bounded
paths that satisfy until they satisfy,) :

PUSY E o N pUa(p A) pUF Y E o AUy (3)
We briefly illustrate the expressivity of the logic in two ase

Viability Theory: In the recent work of Aubin and co-workers¥mbility Theory[3, 7,
4], the key concept is of paths beingidble in K until capturing targetC”. Define:

Vot E (TUT Ao ADap A GO0 T) VU Y 4

The formulay V, ¢ is satisfied by aw-pathn € EPath®(L,, X) iff either is true
now and at all times in the future alomg and the time domain af is unboundedor
there is a finite time along at whichy becomes true, andis true at all times between
now and then (inclusive). Thugis eitherviable forever in the sef¢ ]™ or viable in

[ ]™ until it captures the target sdty |™ in finite time. Applying the path quantifiers
3. andV, restricts taw-paths of the systes“®,, and this can be used to formalize in
the logic the two-place state set operators known asitislity kernel with targetand
theinvariance kernel with target

Dynamical properties of hybrid automata: Given a hybrid automatof/, assume that
H is well- constituted, and define a logic modati with state space&X C R" the
continuous state space Hf. Let the system label s&ys’! := Q, and for eachy € Q,
the time line isL(¢q) := RS and the general flow systems &) = &, := Sol,,.
Assume the atomic proposition getp” includes constants, andG, for eachg € Q,
and the valuatiof? : Prp” ~» X satisfiesP(D,) = D, , and P(G,) = Grd, .

e Trajy isnon-blocking iff MY = A, ((0,-D;) — G))
e If Trajy isnon-blocking, then Trajy has no livelock iff
im% F /\qu Vg ((Dg A ©qmDy) — (DyUy (G AC—Dy)))

We can, of course, also form a logic mo@#t? with state spac€ x X, and have a sin-
gle system labedys™ := {0} with the general flow syster, := Traj,;, and formalize
with the operatoréf, andv, quite sophisticated temporal and dynamic properties of
as a single system. We can also reason about multiple systeansa common state
space, and express comparative properties.



Definition 10. Given a class of logic models C GF(X), thevalidity problem forC

is to determine, for any given formujac £(X), whether or noty € Valid(C). The
validity problem forC' is decidableif there is a recursive procedure for determining
membership oValid(C) that finitely terminates on all input formulage £(X).

Proposition 10. [12, 11] The validity problem is decidabl€TL* (the classTR(N)
of discrete time models), with complexity double expoaktithe in the length of the
formula.

We conjecture that the validity problem is decidable fortlassDF(RS) of deter-
ministic, total, interval path, non-blocking flows deserkby functiong) : X xR — X
satisfying the group action laws. These models are studi¢@l,i where they are used
to give semantics fountil andsince(the time-reversal or past tense correlate) in the
language oLinear Temporal LogiqLTL), with no path quantifiers, and the validity
problem for that logic is decidable.

6 Axiomatisation and soundness

We seek formal deductive proof systems @iFL* := Valid(GF(X)), or for the
validity set of distinguished subclasses of general flow emdrhesoundnessr ade-
guacyof a proof system for a semantically characterized formula set sucta#d.”,

is the property that ifp is provable in4, then o € GFL*. For soundness proofs, the
larger the class of semantic models, the stronger the rgsulte do rather well here on
that score). The technically much more challenging tas establistcompletenessf

a proof systemi, which in our case is the property: f € GFL*, then ¢ is provable
in A. Proofs of completeness proceed via the contrapositivéjrathat form, are es-
sentially amodel realization problenif ¢ is A-consistent (i.e. the formula— ¢ is not
provable inA), then there exists a logic mod®t € GF(X') in which ¢ is satisfiable.
Generally speaking, the smaller the class from which thiizegeon models are drawn,
the stronger or tighter the completeness result.

An axiomatic proof systeml consists of a recursive list akioms usually given by
taking all instances in the language of some finite sé&whula schemesogether with
a finite list ofinference rulesof the form: if ¢ is provable inA, then 1 is provable
in A. A formula is provable in/ if it is an axiom of A or is derivable from provable
formulas by a finite sequence of applications of inferendestuwe writet-, ¢ to
mean thatp is provable in the system.

A sound and complete axiomatic proof system for the Io@EL* remained an
open problem for almost 20 years, and was solved by Reynalids gecently [16].
That axiomatization lays side by side a list of axioms folhgarmulae, obtained from
axiomatizingLTL together with a list of axioms for universal quantificatioreopaths.
In addition, Reynolds’ proof system includes the axiad¥ T, which asserts that the
underlying time line is discrete, or equivalently, the déte successor map is total. It
also includes an additional inference rule, which isiregtuction rulefor “recursively
unwinding” Until formulae in terms of thanext-timeoperator. The axiomatic proof
system we present f@&FL* consists of Reynolds’ system f@TL*, minusthose last
two “discrete” items, the axiom and rule.



Let A be the proof system having as axioms all formulag(8ig) that are instances
of propositional tautologies, or are instances of the s&sR1)— (P6)and(Q1) —(Q5)
below, and having as rules of inference the propositional ofiModus PonengMP)
along with three monotonicity rules:

(Monold-1) : if Fx o1 — w2 then 4 o1 U0 — o Usp
(Monolf-2) : if Fx 1 — e then Fp U1 — UL
(MonoV): if 4 p—¢ then b4 Voo — V.0

(PL): V. (TUT)

(PZ)Z ﬁ(TUaJ_)

(P3) (@Z/{awl A _‘(@Z/{a’(/)g)) - Soua(wl A _‘w2)

(P4): (prlhath A =(palharh)) — p1lha(p1 A =2 A p1lda))
(P5): Uy — (P N pUaP)Uat)

(P6): QU (0 N pUa) — U

(P7): (prlhathr A paldatpa) — ((p1 A p2) Ua(1h1 A 22)

V(o1 A p2) Ua(p2 A1)
V(o1 A p2)Ua(pr AN 1h2))

(QL): Y, T

(Q2): va(‘ﬂ/\d}) - (va@/\vaw)
(Q3): Vap = VaVayp
(Q4): Vap — ¢

(Q5) Y — vaaaw

Proposition 11. (Soundness of Axiomatisatiofpr every formulay € L£(Sig),
Fa o = v € GFL*

The verification of soundness of an axiom schem@nsists of showing thait =
¢ for every modebnt € GF(X), and for an inference rule of the forih -, ¢ then
F4 1, one needs to show thatlft = ¢, then9t = ), for all modelst € GF(X).

We give some verbal explanation for a selection of the axidrhe first axiom(P1),
asserts that the union ovenf all typew paths is equal to the whole-path space of the
model. To understan@P5), supposey is ana-path satisfyingp U, 1. Then there must
be some positive timealong~y at which the suffix path|~ satisfies) and at all strictly
intermediate points along the suffix paths satisfy. In particular at all those strictly
intermediate points, the suffix paths satigfandp U, 1), meaning that satisfieq o A
U, ) U, . The axiom(P6) is sound because of the fusion closure of dhpath
space since the antecedent contains embelddéboperators. The axiom§1-Q5) all
follow directly from the meaning of the universal (and egigial) quantification. The
three rules all express the monotonicity of the operatotis kgspect to subset inclusion.



7 Summary and discussion

In this paper, we propose and develop a quite general claggamical system models
we callgeneral flow systemshich include and extend the broad class of evolutionary
systems identified by Aubin, and the complete state behewvioliWillems. The ad-
vance specifically consists in modellihgbrid time pathss entities in their own right.
We take the syntactic constructs of the non-deterministick@anching temporal logic
CTL" originally developed for discrete time models, and re+intet them in a seman-
tics over general flow systems and with respect to arbitriamg tines. We propose a
first candidate for an axiomatic proof system for the clasgesferal flow models, and
establish the soundness or adequacy of the proof system.
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