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Abstract. In this paper, we use the constructs of branching temporal logic to
formalize reasoning about a class of general flow systems, including discrete-
time transition systems, continuous-time differential inclusions, and hybrid-time
systems such as hybrid automata. We introduce Full General Flow Logic, GFL⋆,
which has essentially the same syntax as the well-known FullComputation Tree
Logic,CTL ⋆, but generalizes the semantics to general flow systems over arbitrary
time-lines. We propose an axiomatic proof system forGFL⋆ and establish its
soundness w.r.t. the general flow semantics.

1 Introduction

Recent work in set-valued dynamical systems [4, 5], investigates a general class known
asevolutionary systems. These are described by a set-valued mapS which maps each
statex ∈ X to thesetS(x) of all possiblefuture evolutionsγ from initial statex, where
γ : [0,∞) → X, γ(0) = x. These systems arenon-deterministic: from an initial state,
there may be none, exactly one, or many possible futures. Thedefining condition of
these systems is that the family of setsS(x) must be closed under the operations of tak-
ing asuffixof an evolution, and of taking thefusionof the two evolutions at a common
state. It includes as examples the solution maps over real time of differential equations
with inputs, and of differential inclusions and their impulse/hybrid extensions [4, 7].
In the discrete time case, these same closure properties come up in the study of sets
computation sequences, in automata theory and the semantics of branching temporal
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logics such asCTL ⋆ [1, 17, 16]. The same closure properties appear again in Willems’
Behavioural Systems theory[18], under the namestime invarianceandaxiom of state,
with the time domain the realsor the integers. In the analysis of evolutionary systems,
there is particular interest in the area ofViability Theory[7, 4], where a central concept
is that of an evolution being “viable inK until capturing targetC”, which means that
the path starts at a state inK, andeither remains inK for all time, or it reachesC in
finite time, and remains withinK until it does so. From a computer science perspective,
this concept corresponds to theUntil construct on paths in temporal logic.

The purpose of this paper is to generalize the class of evolutionary systems to give
an adequate semantics for non-deterministic temporal logic that is uniform for discrete-
time transition systems, continuous-time differential inclusions, and hybrid systems,
where the time domains of evolutions lie in the lexicographically orderedL = N×R+

◦
.

There are three novelties in our work.First, we take a minimalist approach to the notion
of a time-line: for the suffix and fusion-closure properties, the minimal structure needed
on a linear order are translation or shift maps, which is weaker than a semi-group.
Second, we don’t take as primitive objects evolutions or paths defined on the entire
time line; that perspective gives something of a “god’s eye”view of the system, looking
forward from now to eternity. Instead, our basic object of apathdescribes abounded-
timesegment of a possible evolution of or signal within a system;it starts somewhere,
at relative time0 with some valuex ∈ X, and then progresses with an ordering given
by the underlying time-lineL to end somewhere, at some time-pointτ > 0, with a
valuex′ ∈ X. We then build up a theory of infinitary extensions with unbounded time
domains.Third, we don’t restrict to pathsγ : T → X with boundedinterval time
domainsT = [0, τ ] ⊆ L, but rather allow “gaps” inT . OverL = N × R+

◦
, finite

hybrid trajectories are functions taking values in someX, with time domainsT ⊆ L of
the form T =

⋃

i<N [ (i, 0), (i,∆i) ], with ∆i ∈ R+

◦
the duration of thei-th interval.

Within T , time(i+ 1, 0) is the immediatediscrete successorof time (i,∆i), but in the
underlying lineL, there is a continuum-length open interval “gap” in between.

The body of the paper is as follows. Section 2 covers preliminaries on set-valued
maps and linear orders, and develops some basic theory of paths with ”gappy” time
domains. We introduce general flow systems in Section 3, and give examples in discrete,
continuous and hybrid time. In Section 4, we give an infinitary completion construction,
and relate our model class to evolutionary systems and behavioural systems. Section 5
introduces Full General Flow Logic,GFL⋆, with basically the same syntax as the well-
known Full Computation Tree Logic,CTL ⋆, developed for discrete-time models, but
semantics w.r.t. general flow systems over arbitrary time. In Section 6, we propose an
axiomatic proof system forGFL⋆ and sketch soundness w.r.t. general flow semantics.

2 Preliminaries: set-valued maps, time-lines and paths

When we writeY ⊂ X for setsX,Y , we will meanY is apropersubset ofX, and so
Y ⊆ X iff Y ⊂ X orY = X. We writer : X ; Y to meanr : X → 2Y is aset-valued
map, with set-valuesr(x) ⊆ Y for everyx ∈ X (possiblyr(x) = ∅); equivalently,
r ⊆ X × Y is arelation. Let [X ; Y ] := 2X×Y denote the set of all maps, partially
ordered by⊆, so r ⊆ r′ iff r(x) ⊆ r′(x) for all x ∈ X, with least element the empty



map∅. Every mapr : X ; Y has aconverser−1 : Y ; X given by x ∈ r−1(y) iff
y ∈ r(x). Thedomainof a set-valued map isdom(r) := {x ∈ X | r(x) 6= ∅}, and the
rangeis ran(r) := dom(r−1) ⊆ Y . A mapr : X ; Y is total onX if dom(r) = X.
We distinguish several sub-classes of maps. We writer : X → Y to meanr is a (total)
function, with values writtenr(x) = y. We also distinguishpartial functions, and write
r : X 99K Y to mean thatr is single-valued on its domaindom(r) ⊆ X, and write
r(x) = y whenx ∈ dom(r), andr(x) = UNDEF whenx /∈ dom(r).

Let (L,<, 0) be alinear orderwith least element0 and no largest element, and6
the reflexive closure of<. For elementsa, b ∈ L, the set[a, b] := {l ∈ L | a 6 l 6 b}
is a closed, bounded intervalin L, and(a, b) := {l ∈ L | a < l < b} is anopen
bounded interval; similarly for half-open/half-closed bounded intervals[a, b) and(a, b].
For right unbounded intervals, we write [a,∞) := {l ∈ L | a 6 l}. Any subset
T ⊆ L gives a linear order(T,<T ), where<T :=< ∩(T ×T ). Define a partial function
succL : L 99K L, for a, b ∈ L, by succL(a) := b iff a < b and there doesnot
exists anl ∈ L such thata < l < b. A linear orderL is calleddiscreteif succL is a
total function (dom(succL) = L), and isdenseif succL if dom(succL) = ∅. Given
two linear orders(L,<) and(L′, <′), a functiong : L → L′ is called:strictly order-
preservingif (∀l, k ∈ L), l < k implies g(l) <′ g(k); and anorder isomorphismif it
bijective and bothg andg−1 are strictly order-preserving.

Definition 1. Let (L,<, 0) be a linear orderwith least element0 and no largest el-
ement. We callL a (future) time lineif L is shift invariant, in the sense that if for
eacha ∈ L, there exists an order isomorphismσ−a : [a,∞) → L, with inverse
σ+a := (σ−a)−1 : L → [a,∞), andσ−0 = idL. We call the functionsσ−a left a-
shift maps, and the inversesσ+a right a-shift maps.

The discrete time lineN, and the dense continuum time lineR+

◦
:= [0,∞), are

considered with their usual orderings. The hybrid time spaceN×R+

◦
is linearly ordered

lexicographically: i.e. (i, t) <lex (j, s) iff i < j or i = j andt < s. The least element
is 0 := (0, 0). This ordering does not admit any natural addition operation to make it a
linearly ordered semi-group, but its shift invariance is witnessed by the following order
isomorphisms: for eacha = (k, r) ∈ L, defineσ−a : [a,∞) → L by σ−a(i, t) :=
(0, t − r) if i = k andσ−a(i, t) := (i − k, t) if i > k, for l = (i, t) ∈ [a,∞). Then
σ+a : L → [a,∞) satisfiesσ+a(i, t) = (k, t + r) if i = 0 andσ+a(i, t) = (i + k, t)
if i > 0. The full hybrid time lineN × R+

◦
is everywhere dense. In the ”gappy” time

domainsT ⊂ L considered below, the partial functionsuccT may be defined at some
time points inT and not at others, soT is a “hybrid” of discrete and dense.

Definition 2. Let (L,<, 0) be a time line. Abounded time domainin L is a proper
subsetT ⊂ L with least element0 and a largest elementbT such thatT is a finite union
of closed intervals inL, of the formT =

⋃

i<N [ai, bi], whereN ∈ N anda0 = 0 and
ai 6 bi < ai+1 for i < N − 1, andbN−1 = bT . LetBT(L) ⊂ 2L denote the set of all
bounded time domains inL. Also defineBI(L) := {T ∈ BT(L) | (∃b ∈ L)T = [0, b] }
to be the subset of interval time domains. Over any set (signal space)X 6= ∅, define
the set ofL-paths inX, by Path(L,X) := { γ : L 99K X | dom(γ) ∈ BT(L) },
and defineIPath(L,X) to be the subsetinterval pathswith dom(γ) ∈ BI(L). For



γ ∈ Path(L,X), definebγ := bdom(γ) to be the largest element indom(γ), so that
γ(0) ∈ X is the start-value ofγ andγ(bγ) ∈ X is the end-value ofγ.

Proposition 1. For L any time line, the setBT(L) is closed under the following oper-
ations: forT, T ′ ∈ BT(L) andt ∈ L,
• intersection: T ∩ T ′ ∈ BT(L); in particular, [0, t] ∩ T ∈ BT(L) if t ∈ T ;
• left t-shift: σ−t([t, bT ] ∩ T ) ∈ BT(L) if t ∈ T ;
• union with rightt-shift: T ∪ σ+t(T ) ∈ BT(L) if t > bT .
The subsetBI(L) of bounded initial closed intervals is closed under the firsttwo oper-
ations, and is also closed under union with right shift restricted tot = bT .

For X any value space, the following operations are well-defined in Path(L,X):
for γ, γ′ ∈ Path(L,X) andt ∈ dom(γ),
• t-end prefix: γ|t ∈ Path(L,X), where γ|t := γ ↾[0,t]∩ dom(γ)

• t-start suffix: t|γ ∈ Path(L,X), where (t|γ)(l) := γ(σ+t(l)) for all
l ∈ dom(t|γ) := σ−t([t, bγ ] ∩ dom(γ))

• fusion: γ ∗ γ′ ∈ Path(L,X), provided thatγ′(0) = γ(bγ) , where
(γ ∗ γ′)(l) := γ(l) for l ∈ dom(γ) and
(γ ∗ γ′)(l) := γ′(σ−bγ (l)) for l ∈ σ+bγ (dom(γ′)).

For each valuex ∈ X, define thetrivial path θx : [0, 0] → X by θx(0) = x. In
Path(L,X), the trivial pathθx functions as a point-wise identity with respect to fusion:
θx ∗ γ = γ iff γ starts at valuex = γ(0), andγ ∗ θx = γ iff γ ends at valuex = γ(bγ).

Definition 3. Let (L,<, 0) be a time line andX a value space. Define a partial order
on Path(L,X) from the underlying linear order onL (re-using notation) by:γ < γ′

iff γ ⊂ γ′ and t < t′ for all t ∈ dom(γ) and t′ ∈ dom(γ′) − dom(γ). If γ < γ′, we
say the pathγ′ is a (proper)extensionof γ, or γ is a properprefixof γ′.

In general, the path extension ordering< is a proper subordering of the subset
relation, but when restricted to the setIPath(L,X), it collapses to the subset relation.
The following proposition characterizes the path extension partial order in terms of the
fusion operation.

Proposition 2. For L a time line,X a value space, and for allγ, γ′ ∈ Path(L,X),
γ < γ′ iff γ′ = γ ∗ γ′′ for someγ′′ ∈ Path(L,X) with γ′′ 6= θx andγ′′(0) = γ(bγ).

We now return to the hybrid time lineL = N × R+

◦
for a more detailed discussion

of some of its paths. DefineDS := IPath(N,R+

◦
) to be the set of all (finite)duration

sequences; i.e.∆ ∈ DS is a finite sequence of values∆i := ∆(i) ∈ R+

◦
for i < N

for N = length(∆) ∈ N. For duration sequences∆ ∈ DS, defineHT (∆) to be the
hybrid time domaindetermined by∆:

HT (∆) :=
⋃

i<length(∆) [ (i, 0), (i,∆i) ]

HT := {HT (∆) ∈ BT(L) | ∆ ∈ DS }

HPath(X) := { γ ∈ Path(N × R+

◦
, X) | dom(γ) ∈ HT }

(1)

For hybrid pathsγ ∈ HPath(X), define theduration sequenceof γ by ds(γ) = ∆
iff dom(γ) = HT (∆) for ∆ ∈ DS, and define thediscrete lengthof γ by dl(γ) :=
length(ds(γ)) ∈ N. Also define thetotal durationof γ by td(γ) :=

∑

i<dl(γ) ∆i.



Proposition 3. For all γ, γ′ ∈ HPath(X),

γ 6lex γ′ iff dl(γ) 6 dl(γ′) and(∀i < N := dl(γ) − 1 ) γi = γ′i andγN 6 γ′N

With hybrid paths, we have to deal with the product structureon the time line. We
also encounter product structure on the value space. LetπX : (X × Y ) → X and
πY : (X×Y ) → Y be the standard coordinate projection functions on a product of sets
X×Y . These can be lifted to give projection functions on pathsπX : Path(L,X×Y ) →
Path(L,X) and to projections on functionsπX : [L → (X × Y ) ] → [L → X ], by
defining(πXζ)(t) := πX(ζ(t)) for t ∈ dom(ζ) andζ ∈ Path(L,X × Y ) or ζ : L →
(X × Y ); and symmetrically forπY in the other coordinate.

3 General flow systems

The general dynamical system model we develop here is essentially Aubin’s model of
an evolutionary system, generalized to arbitrary time linesL, and “deconstructed”, so
that the basic objects are bounded length paths, havingdom(γ) ⊆ [0, bγ ].

Definition 4. Let(L,<, 0) be a time line, and letX 6= ∅ be an arbitrary value space. A
general flow systemoverX with time lineL is a mapΦ : X ; Path(L,X) satisfying,
for all x ∈ dom(Φ), for all γ ∈ Φ(x), and for all t ∈ dom(γ):

(GF0) initialization: γ(0) = x

(GF1) suffix-closure: t|γ ∈ Φ(γ(t))

(GF2) fusion-closure: γ|t ∗ γ′ ∈ Φ(x) for all γ′ ∈ Φ(γ(t))

• Φ hasinterval paths if ran(Φ) ⊆ IPath(L,X);
• Φ hashybrid paths if ran(Φ) ⊆ HPath(X) and L = N × R+

◦
;

• Φ is reflexive if θx ∈ Φ(x) for all x ∈ dom(Φ);
• Φ is blocked atx if Φ(x) = {θx} , andnon-blockingif not blocked at anyx ∈ X;
• Φ is prefix-closed if γ|t ∈ Φ(x) for all x ∈ dom(Φ), γ ∈ Φ(x) andt ∈ dom(γ);
• Φ is deterministic if for all x ∈ dom(Φ), the setΦ(x) is linearly ordered by<.

In terms ofBehavioural Systems theory[18], the suffix-closure condition(GF1)
corresponds to thetime invarianceproperty, while the fusion-closure condition(GF2)
corresponds to the so-called“axiom of state” principle, that“the state should contain
sufficient information about the past so as to determine the future behaviour”, because
the various possible extensions of a trajectory at timet are exactly those which would
have been possible if we had observed only the state at timet, and not the past of the
trajectory prior to that point.

Proposition 4. Let (L,<, 0) be a time line, letX 6= ∅ be a value space, and let
Φ : X ; Path(L,X) be a general flow system overX with respect toL. Then:
(1.) The setdom(Φ) ⊆ X is closed under reachability byΦ-paths:

if x ∈ dom(Φ) andγ ∈ Φ(x), andt ∈ dom(γ), thenγ(t) ∈ dom(Φ).
(2.) Φ is reflexive iffΦ is prefix-closed.
(3.) Φ is non-blocking iff for allx ∈ dom(Φ), γ ∈ Φ(x), there is aγ′ ∈ Φ(x) : γ < γ′.



Example 1.If g : L1 → L2 is an order embedding, andΦ : X ; Path(L1, X) is a
general flow system, then the mapΦg : X ; Path(L2, X) is also a general flow, where
for x ∈ dom(Φg) := dom(Φ), define Φg(x) := {η ∈ Path(L2, X) | ∃γ ∈ Φ(x) :
dom(η) = g(dom(γ)) ∧ (∀t ∈ dom(η) ) η(t) = γ(g−1(t))

}

.

Example 2.A (basic)state transition systemis a structure(X,R) whereX 6= ∅ is the
state space, andR : X ; X is any set-valued map (the one-step transition relation).
The mapR determines a general flow system with interval paths over time-lineL = N:
ΦR(x) := {γ ∈ IPath(N, X) | γ(0) = x ∧ (∀i < bγ − 1 ) γ(i+ 1) ∈ R(γ(i)) }. It
is easily verified thatΦR(x) = {θx} iff x /∈ dom(R). HenceΦR is non-blocking iff
the mapR is total onX, andΦR is deterministic iff the mapR is a partial function.

Example 3.A differential inclusionis a structure(X,F ) whereX ⊆ Rn is a finite di-
mensional vector space with the Euclidean norm, andF : X ; Rn is a set-valued map.
DefineAC(X) := {γ ∈ IPath(R+

◦
, X) | γ absolutely continuous on[0, bγ ] }. Solu-

tions to the inclusioṅx(t) ∈ F (x(t)) starting at a statex are defined by:SolF (x) :=
{

γ ∈ AC(X) | γ(0) = x ∧
(

d
dt
γ
)

(l) ∈ F (γ(l)) a.e. forl ∈ [0, bγ ]
}

. It is immediate
that SolF is reflexive and is suffix-closed and fusion, hence is a general flow system
with interval paths overL = R+

◦
. For the non-blocking property, to ensure the exis-

tence of non-trivial solutions from eachx ∈ cl(dom(F )), one needs to impose some
regularity assumptions (e.g.Lipschitzor Marchaudconditions) on the mapF [7, 3, 6].
If F : X → Rn is actually a function and the differential equationẋ(t) = F (x(t))
has a unique maximal solutionη : [0, cx) → X starting from eachx ∈ X, with
cx ∈ R+

◦
∪ {∞}, thenSolF (x) = { η|t | t ∈ [0, cx) } is linearly ordered, hence deter-

ministic at everyx ∈ X.

Example 4.A hybrid automaton[15, 2, 14, 1] is a structureH = (Q,E,X, F,D,R ):
• Q is a finite set of control modes;
• E : Q ; Q is the discrete transition relation;
• X ⊆ Rn is the continuous state space;
• F : Q→ [X ; Rn ] maps eachq ∈ Q to a set-valued vector fieldF (q) : X ; Rn

with differential inclusion solution mapSolq := SolF (q) : X ; IPath(R+

◦
, X);

• D : Q ; X maps eachq ∈ Q to a setDq := D(q) ⊆ X, the domain of modeq;
• R : E → [X ; X ] maps(q, q′) ∈ E to a reset mapRq,q′ := R(q, q′) : X ; X.
Define a mapTrajH : (Q×X) ; HPath(Q×X) by:

TrajH (q, x) := { γ ∈ HPath(Q×X) |

(0) γ(0, 0) = (q, x) ∧ (∀i < dl(γ) )
[

for ∆i := ds(γ)(i) ∧ qi := πQγi(0)

(1) πXγi ∈ Solqi(πXγi(0)) ∧ ran(γi) ⊆ {qi} ×Dqi ∧

(2) (qi, qi+1) ∈ E ∧ πXγi+1(0) ∈ Rqi, qi+1

(

πXγi(∆i)
)

if i < dl(γ) − 1
] }

Paths inTrajH are called (finite) trajectoriesof H. Direct from the definition, we can
see thatdom(TrajH) = D = {(q, x) ∈ Q×X | x ∈ Dq}.
We will say a hybrid automatonH is well-constitutedif all of the following hold:
(A) Q 6= ∅, and E : Q ; Q is total;
(B) X ⊆ Rn is a non-empty finite dimensional vector space with the Euclidean norm;



(C) D : Q ; X is total, soDq 6= ∅ for eachq ∈ Q;
(D) for eachq ∈ Q, domainDq ⊂ dom(Solq) andSolq is not blocked at anyx ∈ Dq;
(E) for each transition pair(q, q′) ∈ E, the reset relationRq,q′ : X ; X satisfies the

constraintsdom(Rq,q′) 6= ∅ anddom(Rq,q′) ⊆ Dq andran(Rq,q′) ⊆ Dq′ .
Any assumptions will do on the set-valued vector fieldsF (q) : X ; Rn, provided they
give non-trivial solution paths inSolq on the mode domainsDq.

Proposition 5. LetH = (Q,E,X, F,D,R ) be a hybrid automaton. Then the trajec-
tory mapTrajH : (Q × X) ; HPath(Q × X) is a general flow system overQ × X
with time lineN × R+

◦
. If H is well-constituted thenTrajH is also prefix-closed.

The conditions onH being well-constituted rule out all “trivial” ways thatTrajH
may become blocked:Solq is not blocked at anyx ∈ Dq ⊆ dom(Solq); sinceE is
total, everyq ∈ Q has a discrete successor; and for each discrete transition(q, q′) ∈ E,
the transition guardsetdom(Rq,q′) is non-empty and contained inDq, and under the
reset relation, the image setran(Rq,q′) lies inDq′ . So in attending to the possibility of
blocking, we need to focus only on statesx ∈ Dq that are not in any transition guard
set, so no discrete transition is possible from(q, x), and statesx ∈ Dq from which
every non-trivialq-solution leavesDq “immediately after now”, so there are no hybrid
trajectories from(q, x) with non-trivial continuous evolution in modeq.

Proposition 6. If a hybrid automatonH is well-constituted, and

Outq :=
{

x ∈ Dq | (∀γ ∈ Solq(x))(∀t ∈ dom(γ), t > 0 )(∃s < t) γ(s) /∈ Dq

}

Grdq :=
⋃

q′∈E(q) dom(Rq,q′)

then TrajH is non-blocking on its domainD iff Outq ⊆ Grdq for eachq ∈ Q.

The setsOutq and the conditionOutq ⊆ Grdq are identified in [15], for systems
with deterministic continuous dynamics. In virtue of the continuity of paths inSolq(x),
the setOutq is contained in the topological boundary:Outq ⊆ bd(Dq) := cl(Dq) −
int(Dq). An immediate corollary is that for well-constituted systemsH, TrajH will be
non-blocking onD if for all q ∈ Q, either(bd(Dq) ∩Dq) ⊆ Grdq, orDq is open.

We can also show theimpulse differential inclusionmodel of hybrid systems from
[7] to be an example of a general flow system over the hybrid time line; this example
and others will be discussed in a separate paper.

4 Infinitary extensions of general flow systems

From Proposition 4, we know that if a general flowΦ is non-blocking, then for each
x ∈ dom(Φ) andγ ∈ Φ(x), there exists an infinite sequence of paths{γn} with γ0 = γ
andγn ∈ Φ(x) andγn < γn+1 for all n. Motivated by this fact, we view “maximal
extensions” or “completions” of paths as infinitary objects, arising as limits of infinite
ordered sequences of finitary bounded paths. In this paper, we take limits over ordered
sequences of order type (ordinal)ω, the order type ofN, but we want to leave open the
possibility, for later work, of dealing with sequences of transfinite length, with ordinals
greater thanω (for formalizing the notion of a continuation of a Zeno hybrid trajectory



that has discrete stagesω, ω + 1, ω + 2, . . . up to some limit ordinalν > ω). We need
access to maximal length paths in order to formalize theUntil construct in temporal
logic, but we also want to “go to infinity” in order to be able todirectly compare our
class of dynamical systems with those developed in terms of functions over the whole
time lineL = N orL = R+

◦
; in particular, Aubin’s model of anevolutionary system[5,

4], and also Willem’sbehavioural systemsmodel [18].

Definition 5. For any path setP ⊆ Path(L,X), define theω-extensionof P by:

Extω(P) := { η : L 99K X | (∃γ : ω → Path(L,X) ) (∀k < ω) [ γk := γ(k) ∧

γk ∈ P ∧ γk < γk+1 ∧ η =
⋃

k<ω γk

] }

DefineEPathω(L,X) := Extω(Path(L,X) ); EIPathω(L,X) := Extω( IPath(L,X) ).
Pathsη ∈ Extω(P) will be calledω-pathsof P.

Thus theω-extensionExtω(P) contains all the partial functionsη : L 99K X that
can arise as the union or limit of anω-length strictly extending sequence of paths in
the setP. The path extension ordering< on bounded paths induced by the linear order
on L can be lifted toω-paths. For pathsη, η′ ∈ Path(L,X) ∪ EPathω(L,X), we
extend Definition 3 to defineη < η′ if η ⊂ η′ andt < t′ for all t ∈ dom(η) and
t′ ∈ dom(η′) − dom(η). If η < η′ thendom(η) must be aboundedsubset ofL.

For a general flow system, we want to pick out theω-pathsη ∈ Extω(Φ(x)) that are
maximalin the sense that there are no real paths of the system inΦ(x) extendingη.

Definition 6. Given a general flow systemΦ : X ; Path(L,X), define themaximized
ω-extensionofΦ to be the set-valued mapEωΦ : X ; EPathω(L,X) given by:

(EωΦ)(x) := { η ∈ Extω(Φ(x)) | (∀γ ∈ Φ(x) ) η ≮ γ }

A systemΦ will be calledω-extendibleif for everyx ∈ dom(Φ) and everyγ ∈ Φ(x),
there existsη ∈ (EωΦ)(x) such thatγ < η.

In general,dom(EωΦ) ⊆ dom(Φ); Φ is ω-extendible iffdom(EωΦ) = dom(Φ).
In reasoning about the behaviour of anω-extendible systemΦ, we can safely replace
quantification over all possible paths inΦ(x), with quantification over(EωΦ)(x), the
maximalω-paths; this is crucial for the semantics of the temporalUntil construct.

Proposition 7. For any general flowΦ : X ; Path(L,X),

(1.) Φ is ω-extendible iff Φ is non-blocking.

(2.) If Φ non-blocking, then Φ is deterministic iff EωΦ is a partial function.

The non-trivial direction is:Φ is non-blocking impliesΦ is ω-extendible; the proof
uses Zorn’s Lemma to obtain a maximum of any strictly extending sequence ofω-paths.

We are now in a position to formalize the relationship between Aubin’s model of an
evolutionary system[5, 4], and the general flow systems defined here. An evolutionary
system, over time linesL = R+

◦
orL = N, is a mapΨ : X ; [L → X ] such that, for

whole line pathsη : L→ X, η(0) = x for all η ∈ Ψ(x) andΨ is closed under the suffix
and fusion operations (the natural extensions to unboundedpaths of the operations in
Proposition 1), in the same sense as which general flow systems with bounded paths are
closed under these operations, as required by clauses(GF1) and(GF2) of Definition 4.



Proposition 8. Let the time line be eitherL = N or L = R+

◦
, andX 6= ∅.

Ψ : X ; [L→ X ] is an evolutionary system in the sense of Aubin

iff there exists an interval path general flow systemΦ : X ; IPath(L,X)
that is non-blocking and satisfiesΨ = EωΦ.

Thus evolutionary systems are a subclass of non-blocking general flow systems.
In Willem’s Behavioural Systemsmodel [18], with time linesL = N or L = R+

◦
, a

behaviouris a set of functionsB ⊆ [L → X ]. It can also be established thatB is
a time-invariant and complete state behaviour iff there exists an interval path, non-
blocking general flow systemΦ : X ; IPath(L,X) such thatB = ran(EωΦ).

WhenL = N, then allω-pathsη ∈ EPathω(N, X) have infinite time domain, so we
will always have(EωΦ)(x) = Extω(Φ(x)) for any non-blocking general flowΦ.

WhenL = R+

◦
, we know that everyω-path η ∈ EIPathω(R+

◦
, X) must have

dom(η) = [0, c) for somec ∈ R+

◦
∪ {∞}. For a non-blocking flowΦ, suppose

η ∈ Extω(Φ(x)) is anyω-path. Thenc = ∞ automatically givesη ∈ (EωΦ)(x). If
c < ∞, then we will have a maximally extendedω-pathη ∈ (EωΦ)(x) exactly when
η|t ∈ Φ(x) for all t ∈ [0, c) but the limit ast → c of η(t) does not exist, or does exist
but is not indom(Φ); i.e. η hasfinite escape time. The analysis for theω-extensions
of general bounded pathsη ∈ EPathω(R+

◦
, X) is similar. For the differential inclusion

systems inExample 3, the Marchaud conditions onF in [3, 7] constitute a property
stronger than non-blocking: they imply thatdom(η) = [0,∞) for all η ∈ (EωSolF )(x),
so there are noω-paths with finite escape time.

WhenL = N×R+

◦
is the hybrid time line, we can characterize the maximalω-paths

of a non-blocking system as follows.

Proposition 9. For anyX 6= ∅ and non-blocking general flowΦ : X ; HPath(X),
everyω-pathη ∈ (EωΦ)(x) is of one of two forms:
(i) η = γ ∗ υ whereγ ∈ Φ(x) andυ : {0} × [0, c) → X with c ∈ R+

◦
∪ {∞} and

υ =
⋃

n<ω γn and eachγn ∈ Φ(υ(0, 0)) hasdl(γn) = 1, henceη has finite discrete
lengthdl(η) = dl(γ) ∈ N, and total durationtd(η) = td(γ) + c, which may be finite
or infinite, depending onc; or
(ii) η =

⋃

n<ω γn wheredl(γn) < dl(γn+1), henceη has infinite discrete length, and
total durationtd(η) =

∑

n<ω td(γn), which may be finite or infinite;

The non-blocking/ω-extendibility property here allows for two cases among ex-
tensions of hybrid paths that are typically considered “pathological”: Zenoextended
hybrid pathsη ∈ (EωΦ)(x) that have infinite discrete length but finite total duration
td(η) < ∞; and livelockedextended hybrid pathsη ∈ (EωΦ)(x) that have finite
discrete lengthdl(η) = k + 1 and finite total duration. Livelockedη are maximal
with the last path segment havingdom(ηk) = [0, c); this Φ path would “die” atk-
local timet = c (hybrid time(k, c)) if it ever got there, but it never can, as for every
extension ofηk to domain[0, c], the resulting hybrid path is not inΦ(x). For a non-
blocking hybrid automatonH, the general flowTrajH will exhibit livelock on an ex-
tended trajectoryη ∈ (EωTrajH)(x) with dl(η) = k + 1 iff the last path segment
ηk : [0, c) → (Q × X) is such that, forqk := πQηk(0) andxk := πXηk(0), there
exists a solution pathγ ∈ Solqk (xk) such thatdom(γ) = [0, bγ ], with bγ > c and



γ ↾[0,c)= πXηk, that eventually leaves the mode domainDq, but never passes through
Grdq on the way:γ(c) /∈ Dq andγ(t) ∈ Dq − Grdq for all t ∈ [0, c).

5 Full General Flow Logic GFL⋆: syntax and semantics

We now turn to the syntax and semantics of a logic we callFull General Flow Logic,
GFL⋆, which generalizes to general flow models the semantics ofFull Computation
Tree Logic, CTL ⋆, introduced by Emerson and Halpern in 1983 [10] for formalizing
reasoning about executions of concurrent programs in discrete time. The syntax here is
a labelled variant of that ofCTL ⋆, allowing for semantic models consisting of a finite
family of non-blocking general flow systems.

Definition 7. A signatureis a pairΣ = (Sys,Prp), whereSys is a finite set of system
labels, andPrp is a countable set of atomic propositions. The temporal logic language
L(Σ) consists of the set of all formulaeϕ generated by the grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 Ua ϕ2 | ∀a ϕ

for atomic propositionsp ∈ Prp, and system labelsa ∈ Sys.

The other propositional (Boolean) connectives and logicalconstantstrue, ⊤, and
false, ⊥, are defined in a standard way, and the path quantifiers∀a have classical nega-
tion duals∃a, as follows:

ϕ1 ∧ ϕ2
def= ¬ (¬ϕ1 ∨ ¬ϕ2) ϕ1 → ϕ2

def= ¬ϕ1 ∨ ϕ2

ϕ1 ↔ ϕ2
def= (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) ∃aϕ

def= ¬∀a¬ϕ

⊤ def= p ∨ ¬ p for any p ∈ Prp ⊥ def= ¬⊤

(2)

The temporal operators,Ua, for a ∈ Sys, refer to theω-path space of a non-blocking
general flow systemΦa. The formulaϕUaψ, read “ϕ until ψ, for a-type paths”, will
hold along anyω-pathη of typea if at some time in the future (alongη) the formulaψ
holds, and at all intermediate times (alongη) between now and then,ϕ holds. The uni-
versal quantifier∀a applied to a path formula produces a state formula, and∀a(ϕUaψ)
holds at a statex if everyω-pathη ∈ (EωΦa)(x) satisfies the path formulaϕUaψ.
Dually, ∃a(ϕUaψ) holds at a statex if there existsanω-pathη ∈ (EωΦa)(x) which
satisfies the path formulaϕUaψ. The until construct on paths can be formulated in
several distinct ways; we shall take as primitive thestrictestversion ofuntil, and then
define weaker variants in terms of it. In particular, an importantdifferencebetween the
logic here, and the usual presentation ofCTL ⋆ developed for discrete time paths, is that
instead of taking thenext-timediscrete successor operator as a syntactic and semantic
primitive, we use a known method todefinenext-time in terms of the strictestuntil [8,
13]. Our semantics covers arbitrary time lines, so in general the immediate successor
map is only a partial function on the domain of a path, and in the case of interval paths
in a dense time line, may be everywhere undefined.

Definition 8. A general flow logic model (logic model, for short) of signatureΣ =
(Sys,Prp) is a structureM = (X,L, S,P), where:



• X 6= ∅ is the state space, of arbitrary cardinality;
• L is a function mapping each symbola ∈ Sys to a time lineLa := L(a);
• S is a function mapping each symbola ∈ Sys to an non-blocking general flow system
Φa := S(a) : X ; Path(La, X) over the spaceX, with time lineLa;

• P : Prp ; X maps eachp ∈ Prp to a setP(p) ⊆ X of states.
Theω-path spaceof a modelM is defined byEPath(M) :=

⋃

a∈Sys EPathω(La, X).

Let GF(Σ) denote the class of all general flow logic models of signatureΣ, and for
the case of a single time lineL, let GF(L,Σ) denote the subclass of all logic models
M such thatL(a) = L for all a ∈ Sys. For the further special case where|Sys| = 1
andPrp is countably infinite, letTR(N) denote the subclass of all discrete time logic
modelsM with one general flowΦR : X ; IPath(N, X) from a total transition relation
R : X ; X (also calledR-generable models[12, 10, 16]). For the case of deterministic
systems, letDF(L) denote the subclass of all logic models where the time lineL is
the non-negative half of a linearly ordered abelian group, and the one general flow
Φ : X ; IPath(L,X) is deterministic, total, interval path, and non-blocking [9].

Definition 9. For ϕ ∈ L(Σ) andω-pathη ∈ EPath(M), the relation “ψ is satisfied
along pathη in modelM”, written M, η |= ψ, is defined by induction on the structure
of formulae, withp ∈ Prp anda ∈ Sys:

M, η |= p iff η(0) ∈ P(p)

M, η |= ¬ψ iff M, η 2 ψ

M, η |= ψ1 ∨ ψ2 iff M, η |= ψ1 or M, η |= ψ2

M, η |= ψ1 Ua ψ2 iff η ∈ EPathω(La, X) and ∃ t ∈ dom(η) with t > 0 :

M, t|η |= ψ2 and ∀s ∈ (0, t) ∩ dom(η) : M, s|η |= ψ1

M, η |= ∀a ψ iff ∀ξ ∈ (EωΦa)(η(0)) : M, ξ |= ψ

For formulasϕ ∈ L(Σ), theω-path denotation setJϕ KM ⊆ EPath(M), and thestate
denotation setJϕ KM

st
⊆ X, are defined by:

Jϕ KM := { η ∈ EPath(M) | M, η |= ϕ }

Jϕ KM
st

:= {x ∈ X | ∃η ∈ EPath(M) : M, η |= ϕ and x = η(0) }

For a logic modelM ∈ GF(Σ), class of logic modelsC ⊆ GF(Σ), and for formulas
ϕ ∈ L(Σ), we say:
• ϕ is satisfiablein M, if Jϕ KM

st
6= ∅;

• ϕ is true in M, written M |= ϕ , if M, η |= ϕ for everyη ∈ EPath(M);
• ϕ isC-valid, written |=C ϕ , if M |= ϕ for everyM ∈ C.

Define Valid(C) := {ψ ∈ L(Σ) | |=C ψ } to be the set of allC-valid formulas,
and defineCTL

⋆ := Valid( TR(N) ) and GFL
⋆ := Valid( GF(Σ) ).

Thewhile...alwaysoperator is a negation dual ofuntil: ϕAa ψ
def= ¬(ϕUa (¬ψ)) ,

which can be read as “if a type-a path, thenwhileϕ, alwaysψ”. The semantics are:

M, η |= ϕAa ψ iff if η ∈ EPathω(La, X) then ∀ t ∈ dom(η) with t > 0 ,

if (∀s ∈ (0, t) ∩ dom(η)) M, s|η |= ϕ then M, t|η |= ψ



Other one-place operators are defined as3a ϕ
def= ⊤Ua ϕ, �a ϕ

def= ⊤Aa ϕ,
⊙a ϕ

def= ⊥Ua ϕ, and �a ϕ
def= ¬ϕAa⊥, where

3a ϕ type-a paths along whichϕ will eventuallybe true in thefuture;

�a ϕ type-a paths along whichϕ will alwaysbe true in thefuture, plus non-type-a paths;

⊙a ϕ type-a paths along which time0 has a discrete successor, andϕ is truethen;

�a ϕ typea-paths along whichϕ is trueimmediately after now, plus non-type-a paths.

In particular, thenext-timeoperators,⊙a, come out as:M, η |= ⊙a ϕ iff

for T := dom(η) and0 ∈ dom(succT ) andk := succT (0) andM, k|η |= ϕ

Different versions ofuntil come by varying the constraints on end-values of the bounded
paths that satisfyϕ until they satisfyψ :

ϕU••

a ψ def= ϕ ∧ ϕUa(ϕ ∧ ψ) ϕU•◦

a ψ def= ϕ ∧ ϕUa ψ (3)

We briefly illustrate the expressivity of the logic in two areas.

Viability Theory: In the recent work of Aubin and co-workers inViability Theory[3, 7,
4], the key concept is of paths being “viable inK until capturing targetC”. Define:

ϕVa ψ
def= (⊤Ua ⊤ ∧ ϕ ∧ �a ϕ ∧ �a3a ⊤ ) ∨ ϕU••

a ψ (4)

The formulaϕVa ψ is satisfied by anω-pathη ∈ EPathω(La, X) iff eitherϕ is true
now and at all times in the future alongη, and the time domain ofη is unbounded,or
there is a finite time alongη at whichψ becomes true, andϕ is true at all times between
now and then (inclusive). Thusη is eitherviable forever in the setJϕ KM or viable in
Jϕ KM until it captures the target setJψ KM in finite time. Applying the path quantifiers
∃a and∀a restricts toω-paths of the systemEωΦa, and this can be used to formalize in
the logic the two-place state set operators known as theviability kernel with targetand
the invariance kernel with target.

Dynamical properties of hybrid automata: Given a hybrid automatonH, assume that
H is well- constituted, and define a logic modelM

H
X with state spaceX ⊆ Rn the

continuous state space ofH. Let the system label setSysH
X := Q, and for eachq ∈ Q,

the time line isL(q) := R+

◦
and the general flow systems areS(q) = Φq := Solq.

Assume the atomic proposition setPrpH includes constantsDq andGq for eachq ∈ Q,
and the valuationP : PrpH

; X satisfiesP(Dq) = Dq , and P(Gq) = Grdq .

• TrajH is non-blocking iff M
H
X |=

∧

q∈Q ( ( �q ¬Dq ) → Gq)

• If TrajH is non-blocking, then TrajH has no livelock iff

M
H
X |=

∧

q∈Q ∀q ( (Dq ∧ 3q ¬Dq ) → (Dq Uq (Gq ∧ 3q ¬Dq ) ) )

We can, of course, also form a logic modelM
H with state spaceQ×X, and have a sin-

gle system labelSysH := {0} with the general flow systemΦ0 := TrajH , and formalize
with the operatorsU0 and∀0 quite sophisticated temporal and dynamic properties ofH
as a single system. We can also reason about multiple systemsover a common state
space, and express comparative properties.



Definition 10. Given a class of logic modelsC ⊆ GF(Σ), thevalidity problem forC
is to determine, for any given formulaϕ ∈ L(Σ), whether or notϕ ∈ Valid(C). The
validity problem forC is decidableif there is a recursive procedure for determining
membership ofValid(C) that finitely terminates on all input formulaeϕ ∈ L(Σ).

Proposition 10. [12, 11] The validity problem is decidableCTL
⋆ (the classTR(N)

of discrete time models), with complexity double exponential time in the length of the
formula.

We conjecture that the validity problem is decidable for theclassDF(R+

◦
) of deter-

ministic, total, interval path, non-blocking flows described by functionsφ : X×R → X
satisfying the group action laws. These models are studied in [9], where they are used
to give semantics foruntil andsince(the time-reversal or past tense correlate) in the
language ofLinear Temporal Logic(LTL), with no path quantifiers, and the validity
problem for that logic is decidable.

6 Axiomatisation and soundness

We seek formal deductive proof systems forGFL
⋆ := Valid(GF(Σ)), or for the

validity set of distinguished subclasses of general flow models. Thesoundnessor ade-
quacyof a proof systemΛ for a semantically characterized formula set such asGFL

⋆,
is the property that ifϕ is provable inΛ, thenϕ ∈ GFL

⋆. For soundness proofs, the
larger the class of semantic models, the stronger the result(so we do rather well here on
that score). The technically much more challenging task is to establishcompletenessof
a proof systemΛ, which in our case is the property: ifϕ ∈ GFL

⋆, thenϕ is provable
in Λ. Proofs of completeness proceed via the contrapositive, and in that form, are es-
sentially amodel realization problem: if ϕ isΛ-consistent (i.e. the formula¬ϕ is not
provable inΛ), then there exists a logic modelM ∈ GF(Σ) in whichϕ is satisfiable.
Generally speaking, the smaller the class from which the realization models are drawn,
the stronger or tighter the completeness result.

An axiomatic proof systemΛ consists of a recursive list ofaxioms, usually given by
taking all instances in the language of some finite set offormula schemes, together with
a finite list of inference rules, of the form: if ϕ is provable inΛ, then ψ is provable
in Λ. A formula is provable inΛ if it is an axiom ofΛ or is derivable from provable
formulas by a finite sequence of applications of inference rules. We write⊢Λ ϕ to
mean thatϕ is provable in the systemΛ.

A sound and complete axiomatic proof system for the logicCTL
⋆ remained an

open problem for almost 20 years, and was solved by Reynolds quite recently [16].
That axiomatization lays side by side a list of axioms for path formulae, obtained from
axiomatizingLTL together with a list of axioms for universal quantification over paths.
In addition, Reynolds’ proof system includes the axiom⊥U⊤, which asserts that the
underlying time line is discrete, or equivalently, the discrete successor map is total. It
also includes an additional inference rule, which is aninduction rulefor “recursively
unwinding” Until formulae in terms of thenext-timeoperator. The axiomatic proof
system we present forGFL

⋆ consists of Reynolds’ system forCTL
⋆, minusthose last

two “discrete” items, the axiom and rule.



LetΛ be the proof system having as axioms all formulae ofL(Sig) that are instances
of propositional tautologies, or are instances of the schemes(P1)– (P6)and(Q1) – (Q5)
below, and having as rules of inference the propositional rule of Modus Ponens(MP)
along with three monotonicity rules:

(MonoU-1) : if ⊢Λ ϕ1 → ϕ2 then ⊢Λ ϕ1 Uaψ → ϕ2 Uaψ

(MonoU-2) : if ⊢Λ ψ1 → ψ2 then ⊢Λ ϕUaψ1 → ϕUaψ2

(Mono∀) : if ⊢Λ ϕ→ ψ then ⊢Λ ∀a ϕ → ∀a ψ

(P1):
∨

a(⊤Ua⊤)

(P2): ¬(⊤Ua⊥)

(P3): (ϕUaψ1 ∧ ¬(ϕUaψ2)) → ϕUa(ψ1 ∧ ¬ψ2)

(P4): (ϕ1Uaψ ∧ ¬(ϕ2Uaψ)) → ϕ1Ua(ϕ1 ∧ ¬ϕ2 ∧ ϕ1Uaψ)

(P5): ϕUaψ → (ϕ ∧ ϕUaψ)Uaψ

(P6): ϕUa(ϕ ∧ ϕUaψ) → ϕUaψ

(P7): (ϕ1Uaψ1 ∧ ϕ2Uaψ2) → ((ϕ1 ∧ ϕ2)Ua(ψ1 ∧ ψ2)
∨(ϕ1 ∧ ϕ2)Ua(ϕ2 ∧ ψ1)
∨(ϕ1 ∧ ϕ2)Ua(ϕ1 ∧ ψ2))

(Q1): ∀a⊤

(Q2): ∀a(ϕ ∧ ψ) → (∀aϕ ∧ ∀aψ)

(Q3): ∀aϕ → ∀a∀aϕ

(Q4): ∀aϕ → ϕ

(Q5): ϕ → ∀a∃aϕ

Proposition 11. (Soundness of Axiomatisation)For every formulaϕ ∈ L(Sig),

⊢Λ ϕ ⇒ ϕ ∈ GFL
⋆

The verification of soundness of an axiom schemeϕ consists of showing thatM |=
ϕ for every modelM ∈ GF(Σ), and for an inference rule of the formif ⊢Λ ϕ then
⊢Λ ψ , one needs to show that ifM |= ϕ, thenM |= ψ, for all modelsM ∈ GF(Σ).

We give some verbal explanation for a selection of the axioms. The first axiom,(P1),
asserts that the union overa of all type-a paths is equal to the wholeω-path space of the
model. To understand(P5), supposeγ is ana-path satisfyingϕUa ψ. Then there must
be some positive timet alongγ at which the suffix patht|γ satisfiesψ and at all strictly
intermediate points alongγ the suffix paths satisfyϕ. In particular at all those strictly
intermediate points, the suffix paths satisfyϕ andϕUa ψ, meaning thatγ satisfies(ϕ∧
ϕUa ψ)Ua ψ. The axiom(P6) is sound because of the fusion closure of theω-path
space since the antecedent contains embeddedUntil operators. The axioms(Q1-Q5)all
follow directly from the meaning of the universal (and existential) quantification. The
three rules all express the monotonicity of the operators with respect to subset inclusion.



7 Summary and discussion

In this paper, we propose and develop a quite general class ofdynamical system models
we callgeneral flow systemswhich include and extend the broad class of evolutionary
systems identified by Aubin, and the complete state behaviours of Willems. The ad-
vance specifically consists in modellinghybrid time pathsas entities in their own right.
We take the syntactic constructs of the non-deterministic and branching temporal logic
CTL

⋆ originally developed for discrete time models, and re-interpret them in a seman-
tics over general flow systems and with respect to arbitrary time lines. We propose a
first candidate for an axiomatic proof system for the class ofgeneral flow models, and
establish the soundness or adequacy of the proof system.

References

1. R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolicverification of embedded sys-
tems.IEEE Transactions on Software Engineering, 22:181–201, 1996.

2. R. Alur, T.A. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstractions of hybrid
systems.Proceedings of the IEEE, 88, July 2000.

3. J.-P. Aubin. Viability kernels and capture basins of setsunder differential inclusions.Siam
Journal of Control, 40:853–881, 2001.

4. J.-P. Aubin. Viability kernels and capture basins: Lecture notes. Technical report, Universi-
dad Politecnica de Cartagena, Spain, April-May 2002.

5. J.-P. Aubin and O. Dordan. Dynamical qualitative analysis of evolutionary systems. InHy-
brid Systems: Computation and Control, LNCS 2289, pages 62–75. Springer-Verlag, 2002.

6. J.-P. Aubin and H. Frankowska.Set-Valued Analysis. Birkhauser, Boston, 1990.
7. J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and N.Seube. Impulse differential

inclusions: A viability approach to hybrid systems.IEEE Transactions on Automatic Control,
47:2–20, 2002.

8. J.P. Burgess. Axioms for tense logic I: “Since” and “Until”. Notre Dame Journal of Formal
Logic, 23:367–374, 1982.

9. V. Coulthard. Temporal Logics of Dynamical Systems in Discrete and Dense Time. PhD
thesis, RSISE, The Australian National University, 2004. In preparation.

10. E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” revisited: on branching
versus linear time.Journal of the Association of Computing Machinery, 33:151–178, 1986.

11. E.A. Emerson and C. Jutla. Complexity of tree automata and modal logics of programs. In
Proc. 29th IEEE Foundations of Computer Science (FOCS’88). IEEE, 1988.

12. E.A. Emerson and A. Sistla. Deciding Full Branching TimeLogic. Information and Control,
61:175–201, 1984.

13. D.M. Gabbay, I. Hodkinson, and M. Reynolds.Temporal Logic: Mathematical Foundations
and Computational Aspects, Volume 1. Clarendon Press, Oxford, 1994.

14. T.A. Henzinger. The theory of hybrid automata. InProc. of 11th Annual IEEE Symposium
on Logic in Computer Science, pages 278–292, 1996.
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