Skip to main content

Quantum Identification of Boolean Oracles

  • Conference paper
STACS 2004 (STACS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2996))

Included in the following conference series:

Abstract

The oracle identification problem (OIP) is, given a set S of M Boolean oracles out of 2N ones, to determine which oracle in S is the current black-box oracle. We can exploit the information that candidates of the current oracle is restricted to S. The OIP contains several concrete problems such as the original Grover search and the Bernstein-Vazirani problem. Our interest is in the quantum query complexity, for which we present several upper bounds. They are quite general and mostly optimal: (i) The query complexity of OIP is \(O(\sqrt{N {\rm log} M {\rm log} N}{\rm log log} M)\) for anyS such that M = |S| > N, which is better than the obvious bound N if M \(< 2^{N/log^3 N}\). (ii) It is \(O(\sqrt{N})\) for anyS if |S| = N, which includes the upper bound for the Grover search as a special case. (iii) For a wide range of oracles (|S| = N) such as random oracles and balanced oracles, the query complexity is \(O(\sqrt{N/K})\), where K is a simple parameter determined by S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: Quantum lower bound for the collision problem. In: Proceedings of the 34th Symposium on Theory of Computing, pp. 635–642 (2002)

    Google Scholar 

  2. Aaronson, S.: Lower bounds for local search by quantum arguments. In: Quantph/0307149 (2003)

    Google Scholar 

  3. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: Proceedings of the 44th Symposium on Foundations of Computer Science, pp. 200–209 (2003)

    Google Scholar 

  4. Ambainis, A.: Quantum lower bounds by quantum arguments. Journal of Computer and System Sciences 64, 750–767 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ambainis, A.: Polynomial degree vs. quantum query complexity. In: Proceedings of the 44th IEEE Symposium on Foundations of Computer Science, pp. 230–239 (2003)

    Google Scholar 

  6. Ambainis, A.: Quantum walks and a new quantum algorithm for element distinctness. In: Quant-ph/0311001 (2003); (invited talk in EQIS 2003)

    Google Scholar 

  7. Barnum, H., Saks, M.: A lower bound on the quantum complexity of read-once functions. Electronic Colloquium on Computational Complexity (2002)

    Google Scholar 

  8. Barnum, H., Saks, M., Szegedy, M.: Quantum query complexity and semi-definite programming. In: Proceedings of the 18th IEEE Conference on Computational Complexity, pp. 179–193 (2003)

    Google Scholar 

  9. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. In: Proceedings of 39th IEEE Symposium on Foundation of Computer Science, pp. 352–361 (1998)

    Google Scholar 

  10. Biron, D., Biham, O., Biham, E., Grassl, M., Lidar, D.A.: Generalized Grover Search Algorithm for Arbitrary Initial Amplitude Distribution. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 140–147. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Bennett, C., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4-5), 493–505 (1998)

    Article  Google Scholar 

  13. Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf, R.: Quantum Algorithms for Element Distinctness. In: Proceedings of the 16th IEEE Annual Conference on Computational Complexity (CCC 2001), pp. 131–137 (2001)

    Google Scholar 

  14. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum Amplitude Amplification and Estimation. In: AMS Contemporary Mathematics Series Millennium Volume entitled Quantum Computation & Information (to appear)

    Google Scholar 

  16. Chi, D.P., Kim, J.: Quantum Database Searching by a Single Query. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 148–151. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Dürr, C., Mhalla, M., Lei, Y.: Quantum query complexity of graph connectivity. In: Quant-ph/0303169 (2003)

    Google Scholar 

  18. van Dam, W.: Quantum oracle interrogation: getting all information for almost half the price. In: Proceedings of the 39th IEEE Symposium on the Foundation of Computer Science, pp. 362–367 (1998)

    Google Scholar 

  19. Deutsch, D., Jozsa, R.: Rapid solutions of problems by quantum computation. In: Proceedings of the Royal Society, London. Series A, vol. 439, pp. 553–558 (1992)

    Google Scholar 

  20. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: A Limit on the Speed of Quantum Computation in Determining Parity. Phys. Rev. Lett. 81, 5442–5444 (1998)

    Article  Google Scholar 

  21. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: How many functions can be distinguished with k quantum queries? Phys. Rev. A 60(6), 4331–4333 (1999)

    Article  MathSciNet  Google Scholar 

  22. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  23. Grover, L.K.: A framework for fast quantum mechanical algorithms. In: Proceedings of the 30th ACM Symposium on Theory of Computing, pp. 53–62 (1998)

    Google Scholar 

  24. Grover, L.K.: Rapid sampling through quantum computing. In: Proceedings of the 32th ACM Symposium on Theory of Computing, pp. 618–626 (2000)

    Google Scholar 

  25. Nayak, A., Wu, F.: The quantum query complexity of approximating the median and related statistics. In: Proceedings of the 31th ACM Symposium on Theory of Computing, pp. 384–393 (1999)

    Google Scholar 

  26. Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. In: Proceedings of the 43rd IEEE Symposium on the Foundation of Computer Science, pp. 513–519 (2002)

    Google Scholar 

  27. Vazirani, U.: On the power of quantum computation. Philosophical Transaction of the Royal Society of London, Series A (356), 1759–1768 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambainis, A., Iwama, K., Kawachi, A., Masuda, H., Putra, R.H., Yamashita, S. (2004). Quantum Identification of Boolean Oracles. In: Diekert, V., Habib, M. (eds) STACS 2004. STACS 2004. Lecture Notes in Computer Science, vol 2996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24749-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24749-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21236-2

  • Online ISBN: 978-3-540-24749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics