
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

A discontinuity in pattern inference

PLEASE CITE THE PUBLISHED VERSION

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Reidenbach, Daniel. 2019. “A Discontinuity in Pattern Inference”. figshare. https://hdl.handle.net/2134/3475.

https://lboro.figshare.com/

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A Discontinuity in Pattern Inference

Daniel Reidenbach⋆

Fachbereich Informatik, Technische Universität Kaiserslautern,
Postfach 3049, 67653 Kaiserslautern, Germany

reidenba@informatik.uni-kl.de

Abstract. This paper examines the learnability of a major subclass
of E-pattern languages – also known as erasing or extended pattern lan-
guages – in Gold’s learning model: We show that the class of terminal-free
E-pattern languages is inferrable from positive data if the corresponding
terminal alphabet consists of three or more letters. Consequently, the
recently presented negative result for binary alphabets is unique.

1 Introduction

Pattern languages have been introduced by Angluin (cf. [Ang79]), though some
publications by Thue can already be interpreted as investigations of pattern
structures (cf. e.g. [Thu06]). Following Angluin, a pattern is a finite string that
consists of variables and of terminal symbols. A word of its language is generated
by a uniform substitution of all variables with arbitrary strings of terminals.
For instance, the language generated by the pattern x1 a x2 b x1 (with x1, x2 as
variables and a, b as terminals) contains, among others, the words w1 = a a a b a,
w2 = a a b b b a, w3 = a b b, whereas the following examples are not covered by
α: v1 = a, v2 = b a b b a, v3 = b b b b b. Thus, numerous regular and nonregular
languages can be described by patterns in a compact and “natural” way.

Pattern languages have been the subject of several analyses within the scope
of formal language theory, e.g. in [JKS+94] and [JSSY95] (for a survey see
[RS97]). These examinations reveal that a definition disallowing the substitution
of variables with the empty word – as given by Angluin – leads to a language
with particular features being quite different from the one allowing the empty
substitution (that has been applied when generating w3 in our example). Lan-
guages of the latter type have been introduced by Shinohara (cf. [Shi82]); they
are referred to as extended, erasing, or E-pattern languages.

When dealing with pattern languages, manifold questions arise from the man-
ifest problem of computing a pattern that is common to a given set of words.
Therefore pattern languages have been a focus of interest of algorithmic learn-
ing theory from the very beginning. In the most elementary learning model of
inductive inference – introduced by Gold (cf. [Gol67]) and known as learning
in the limit or Gold style learning – a class of languages is said to be inferrable
from positive data if and only if there exists a computable device (the so-called

⋆ Supported by the Deutsche Forschungsgemeinschaft (DFG), Grant Wi 1638/1-2

learning strategy) that, for every of these (potentially infinite) languages and for
every full enumeration of the words of the particular language to be learned,
converges to a distinct and complete description of the language in finite time.
According to [Gol67], this task is too challenging for many well-known classes of
formal languages: All superfinite classes of languages – i.e. all classes that contain
every finite and at least one infinite language – such as the regular, context-free
and context-sensitive languages are not inferrable from positive data. Thus, the
number of rich classes of languages that are known to be learnable is rather
small.

The current state of knowledge concerning the learnability of pattern lan-
guages considerably differs when regarding standard or E-pattern languages,
respectively: The learnability of the class of standard pattern languages was
shown by Angluin when introducing its definition in 1979 (cf. [Ang79]). In the
sequel there has been a variety of profound studies (e.g. in [LW91], [WZ94],
[RZ98], and many more) on the complexity of learning algorithms, consequences
of different input data, efficient strategies for subclasses, and so on. Regarding
E-pattern languages, however, appropriate approaches presumably need to be
more sophisticated and therefore progress has been rather scarce. Apart from
positive results for the full class of E-pattern languages over the trivial unary and
infinite terminal alphabets in [Mit98], the examinations in the past two decades
restricted themselves to the learnability of subclasses (cf. [Shi82], [Mit98], [Rei],
and – indirectly – [Wri89]). In spite of all effort, it took more than twenty years
until at least for binary terminal alphabets the non-learnability of the subclass
of terminal-free E-pattern languages (generated by patterns that only consist of
variables) and, thus, of the full class could be proven (cf. [Rei02]).

In this paper we revert to the class of terminal-free E-pattern languages –
that has been a subject of some language theoretical examinations (cf. [Fil88]
and [JSSY95]) as well – with a rather surprising outcome: We show that it is
inferrable from positive data if and only if the terminal alphabet does not consist
of two letters. Thus, we present the first class of pattern languages to be known
for which different non-trivial alphabets imply different answers to the question
of learnability. Using several theorems in [Ang80] and [JSSY95], our respective
reasoning is chiefly combinatorial; therefore it touches on some prominent topics
within the research on word monoids and combinatorics of words.

2 Definitions and Preliminary Results

For standard mathematical notions and recursion-theoretic terms not defined
explicitly in this paper we refer to [Rog92]; for unexplained aspects of formal
language theory, [RS97] may be consulted.

For an arbitrary set A of symbols, A+ denotes the set of all non-empty words
over A and A∗ the set of all (empty and non-empty) words over A. We designate
the empty word as e. For the word that results from the n-fold concatenation
of a letter a we write a

n. | · | denotes the size of a set or the length of a word,
respectively, and |w|a the frequency of a letter a in a word w.

Σ is an alphabet of terminal symbols and X = {x1, x2, x3, · · · } an infinite
set of variable symbols, Σ ∩ X = ∅. We designate Σ as trivial if and only if
|Σ| = 1 or |Σ| = ∞. Henceforth, we use lower case letters from the beginning of
the Latin alphabet as terminal symbols; words of terminal symbols are named
as u, v, or w. For every j, j ≥ 1, yj ∈ X is an unspecified variable, i.e. there may
exist j, j′ ∈ N such that j 6= j′ and yj = yj′ . A pattern is a word over Σ ∪X , a
terminal-free pattern is a word over X ; naming patterns we use lower case letters
from the beginning of the Greek alphabet. var(α) denotes the set of all variables
of a pattern α. We write Pat for the set of all patterns and Pattf for the set of
all terminal-free patterns.

A substitution is a morphism σ : (Σ ∪ X)∗ −→ Σ∗ such that σ(a) = a for
every a ∈ Σ. The E-pattern language LΣ(α) of a pattern α is defined as the
set of all w ∈ Σ∗ such that σ(α) = w for any substitution σ. For any word
w = σ(α) we say that σ generates w, and for any language L = LΣ(α) we say
that α generates L. If there is no need to give emphasis to the concrete shape
of Σ we denote the E-pattern language of a pattern α simply as L(α). We use
ePATtf as an abbreviation for the full class of terminal-free E-pattern languages.
For any class ePAT⋆ of E-pattern languages we write ePAT⋆

Σ if the corresponding
alphabet is of interest.

According to [MS94] we call a word w ambiguous (in respect of a pattern α) if
and only if there exist at least two substitutions σ and σ′ such that σ(α) = w =
σ′(α), but σ(xj) 6= σ′(xj) for an xj ∈ var(α). The word w = a a, for instance, is
ambiguous in respect of the pattern α = x1 a x2 since it can be generated by
the substitutions σ, σ(x1) = a, σ(x2) = e, and σ′, σ′(x1) = e, σ(x2) = a.

Following [Mit98], we designate a pattern α as succinct if and only if |α| ≤ |β|
for all patterns β with L(β) = L(α), and we call a pattern prolix if and only if
it is not succinct. The pattern α = x1x1, for instance, is succinct because there
does not exist any shorter pattern that exactly describes its language, whereas
β = x1x2x1x2 is prolix since L(β) = L(α) and |α| < |β|.

Let ePAT⋆ be any set of E-pattern languages. We say that the inclusion prob-
lem for ePAT⋆ is decidable if and only if there exists a computable function which,
given two arbitrary patterns α, β with L(α), L(β) ∈ ePAT⋆, decides whether or
not L(α) ⊆ L(β). In [JSSY95] it is shown that the inclusion problem for the
full class of E-pattern languages is not decidable. Fortunately, this fact does not
hold for terminal-free E-pattern languages. As this is of great importance for the
following studies, we now cite two respective theorems of [JSSY95]:

Fact 1. Let Σ be an alphabet, |Σ| ≥ 2, and α, β ∈ X∗ two arbitrarily given
terminal-free patterns. Then LΣ(β) ⊆ LΣ(α) iff there exists a morphism φ :
X∗ −→ X∗ such that φ(α) = β.

Fact 2. The inclusion problem for ePATtf is decidable.

We now introduce our notions on Gold’s learning model (cf. [Gol67]): Each
function t : N −→ Σ∗ satisfying {t(n) | n ≥ 0} = L(α) is called a text for L(α).
Let S be any total computable function reading initial segments of texts and
returning patterns. Each such function is called a strategy. If α is a pattern and

t a text for L(α) we say that S identifies L(α) from t, if and only if the sequence
of patterns returned by S, when reading t, converges to a pattern β, such that
L(β) = L(α). Any class ePAT⋆ of E-pattern languages is learnable (in the limit)
if and only if there is a strategy S identifying each language L ∈ ePAT⋆ from
any corresponding text. In this case we write ePAT⋆ ∈ LIM-TEXT for short.

The analysis of the learnability of certain classes of languages is facilitated
by some profound criteria given by Angluin (cf. [Ang80]). Because of Fact 2 and
since Pattf is recursively enumerable, we can use the following:

Fact 3. Let Pat⋆ be an arbitrary, recursively enumerable set of patterns and
ePAT⋆ the corresponding class of E-pattern languages, such that the inclusion
problem for ePAT⋆ is decidable. Then ePAT⋆ ∈ LIM-TEXT iff for every pattern
α ∈ Pat⋆ there exists a set Tα such that

– Tα ⊆ L(α),
– Tα is finite, and
– there does not exist a pattern β ∈ Pat⋆ with Tα ⊆ L(β) ⊂ L(α).

If Tα exists, then it is called a telltale (for L(α)) (in respect of ePAT⋆).

Roughly speaking, ePAT⋆ is, thus, inferrable from positive data if and only
if every of its languages contains a finite subset that may be interpreted (by a
strategy) as an exclusive signal to distinguish between that distinct language
and all of its sub-languages in ePAT⋆.

We conclude this section with the seminal learnability result on ePATtf that
has been presented in [Rei02]:

Fact 4. Let Σ be an alphabet, |Σ| = 2. Then ePATtf,Σ 6∈ LIM-TEXT.

In [Rei02] it is stated that the proof of this theorem cannot easily be extended
on finite alphabets with more than two letters and it is conjectured that even
the opposite of Fact 4 holds true for these alphabets. In the following section we
discuss this fairly counter-intuitive assumption.

3 On the Learnability of ePATtf

Trivial alphabets, for which ePATtf is learnable (cf. [Mit98]), considerably ease
the construction of telltales. Consequently, the recent negative result on binary
alphabets (cf. Fact 4) – revealing that the assumed uniqueness of the approaches
on trivial alphabets indeed might not be a matter of the methods, but of the
subject – promotes the guess that ePATtf should not be learnable for every non-
trivial alphabet. This surmise is supported by the fundamental algebraic theorem
that for the free semigroup with two generators and for every n ∈ N there exists
a free sub-semigroup with n generators and, thus, that the expressive power of
words over three or more letters does not exceed that of words over two letters.
Furthermore, there also exists a pattern specific hint backing this expectation
since there seems to be no significant difference between terminal-free E-pattern
languages over two and those over three letters (derived directly from Fact 1):

Theorem 1. Let Σ1, Σ2 be finite alphabets, |Σ1| = 2 and |Σ2| ≥ 3. Let α, β be
terminal-free patterns. Then LΣ1

(α) 6= LΣ1
(β) iff LΣ2

(α) 6= LΣ2
(β).

Thus, there is some evidence to suggest that Fact 4 might be extendable on
all non-trivial terminal alphabets. In fact, our main result finds the opposite to
be true:

Theorem 2. Let Σ be a finite alphabet, |Σ| ≥ 3. Then ePATtf,Σ ∈ LIM-TEXT.

The proof of this theorem requires a broad combinatorial reasoning; it is accom-
plished in Section 3.1.

With Theorem 2 we can give a complete characterisation of the learnability
of ePATtf , subject to alphabet size (for those cases not covered by Theorem 2,
refer to [Mit98] or Fact 4, respectively):

Corollary 1. Let Σ be an alphabet. Then ePATtf,Σ ∈ LIM-TEXT iff |Σ| 6= 2.

Consequently, we can state a discontinuity in the learnability of terminal-free
E-pattern languages that – though it has been conjectured in [Rei02] – seems to
be rather unexpected and that might explain the lack of comprehensive results
on this subject in the past decades. The following section is dedicated to the
proof of Theorem 2, but a precise and language theoretical explanation of the
demonstrated singularity of terminal-free E-pattern languages over two letters
is still open.

3.1 Proof of the Main Result

The proof of Theorem 2 consists of several steps: a characterisation of prolix
patterns, a particular type of substitution, a learnability criterion for classes of
terminal-free E-pattern languages, and some lemmata combining these elements.

To begin with, we give the characterisation of prolix patterns, that – although
not implying a new decidability result (cf. Fact 2) – is a crucial instrument for
our proof of the main theorem (see explanation after Theorem 4) as it gives a
compact description of prolixness. Actually, in our reasoning we only use the
if part of the following theorem, but we consider the characterisation of some
interest since prolix terminal-free patterns may be seen as solution candidates for
Post’s Correspondence Problem if the empty substitution is allowed (the other
case has been analysed e.g. in [MS93] and [LP95]).

Theorem 3. A terminal-free pattern α is prolix iff there exists a decomposition

α = β0 γ1 β1 γ2 β2 . . . βn−1 γn βn

for an n ≥ 1, arbitrary βi ∈ X∗ and γi ∈ X+, i ≤ n, such that

1. ∀ i : |γi| ≥ 2,
2. ∀ i, i′ : var(γi) ∩ var(βi′) = ∅,
3. ∀ i ∃ yi ∈ var(γi) : (|γi|yi

= 1 ∧ ∀ i′ ≤ n : (yi ∈ var(γi′) =⇒ γi = γi′)).

Proof. We first prove the if part of the theorem. Hence, let α ∈ Pattf be a
pattern such that there exists a decomposition satisfying conditions 1, 2, and 3.
We show that then there exist a pattern δ ∈ Pattf and two morphisms φ and ψ
with |δ| < |α|, φ(α) = δ, and ψ(δ) = α. Thus, we use Fact 1 as a criterion for
the equivalence of E-pattern languages.

We define δ := β0 y1 β1 y2 β2 . . . βn−1 yn βn with yi derived from condition 3
for every i ≤ n. Then condition 1 implies |δ| < |α|; the existence of φ and ψ (φ
mapping yi on γi and ψ mapping γi on yi for every i ≤ n, both of the morphisms
leaving all other variables unchanged) results from conditions 2 and 3.

Due to space constraints and as it is not needed for our subsequent reasoning,
the proof of the only if part is merely given as an extended sketch.

Assume that α ∈ Pattf is prolix. We show that then there exists at least one
decomposition of α satisfying conditions 1, 2, and 3: Because of the assumption
and Fact 1, there exist a succinct pattern δ ∈ Pattf and two morphisms φ and
ψ with |δ| < |α|, φ(α) = δ, and ψ(δ) = α. Since δ is succinct it is obvious that
|ψ(xj)| ≥ 1 for every xj ∈ var(δ). Moreover, we may conclude that for every
xj ∈ var(δ) there exists an xj′ ∈ var(ψ(xj)) such that |δ|xj

= |α|xj′
as otherwise

δ would be prolix – according to the if part and because of φ(α) = δ, leading
to xj ∈ var(φ(xj′′)) for some xj′′ ∈ var(α). Therefore the following fact (later
referred to as (⋆)) is evident: Without loss of generality, δ, φ, and ψ can be
chosen such that xj ∈ var(ψ(xj)) for every xj ∈ var(δ), φ(xj) = xj for every
xj ∈ var(α) ∩ var(δ), and φ(xj′) = e for every xj′ ∈ var(α) \ var(δ).

In order to provide a basic decomposition of α we now define some appro-
priate subsets of var(α): First, Y1 := {xj1 ∈ var(α) | |ψ(φ(xj1))| ≥ 2}, second,
Y2 := {xj2 ∈ var(α) | φ(xj2) = e}, and finally Y3 := var(α) \ (Y1 ∪ Y2). These
definitions entail Y1 ∩ Y2 = ∅, Y2 6= ∅ (because of |δ| < |α|), and |φ(xj3)| =
|ψ(φ(xj3))| = 1 for all xj3 ∈ Y3 (because of (⋆)). Using these sets of variables we
examine the following decomposition: α = β0 γ1 β1 γ2 β2 . . . βm−1 γm βm with
β0, βm ∈ Y ∗

3 , βi ∈ Y +
3 for 0 < i < m, and γi ∈ (Y1 ∪ Y2)

+ for all i ≤ m.
This decomposition is unique. Obviously, it satisfies condition 2, and because

of (⋆) we may state fact (⋆⋆): γi = ψ(φ(γi)) for every i, 1 ≤ i ≤ m.
This leads to var(γi) ∩ Y1 6= ∅ for all i ≤ m, and therefore condition 1 is

satisfied. Now we can identify the following two cases:

Case A: ∀i, 1 ≤ i ≤ m :
∑

xj1
∈Y1

|γi|xj1
= 1

Consequently, if var(γi)∩var(γi′)∩Y1 6= ∅ for some i, i′, i 6= i′, then φ(γi) = φ(γi′)
and also ψ(φ(γi)) = ψ(φ(γi′)). Thus, with (⋆⋆) we can state γi = γi′ , and
therefore condition 3 for the basic decomposition is satisfied.

Case B: ∃ı̂, 1 ≤ ı̂ ≤ m :
∑

xj1
∈Y1

|γı̂|xj1
= p 6= 1 for a p ∈ N

Because of condition 1 being satisfied, we can assume in this case that p ≥ 2.
Hence, we examine all modified decompositions of α that match the following
principle for every ı̂ meeting the requirement of Case B:

α = β0 γ1 β1 γ2 β2 . . . βı̂−1

γı̂

︷ ︸︸ ︷

γı̂1 βı̂1 γı̂2 βı̂2 . . . βı̂p−1
γı̂p

βı̂+1 . . . βm−1 γm βm

such that βi for all i and γi for all i 6= ı̂ derive from the previous definition, and,
furthermore, such that βı̂k

= e for all k, 1 ≤ k ≤ p−1, and γı̂k
= γı̂k,l xj1,ı̂k

γı̂k,r

for all k, 1 ≤ k ≤ p, with |γı̂k
| ≥ 2 and γı̂k,l, γı̂k,r ∈ Y ∗

2 and xj1,ı̂k
∈ Y1. Then, for

all of these newly created decompositions, conditions 1 and 2 still are satisfied.
Because of ψ(xj1,ı̂1 xj1,ı̂2 . . . xj1,ı̂p

) = γı̂, one of these decompositions meets the
requirement of Case A. ⊓⊔

As an illustration of Theorem 3 we now analyse some terminal-free patterns:

Example 1. x1x2x2x1x2x2 is prolix since γ1 = γ2 = x1x2x2 and β0 = β1 =
β2 = e. x1x2x2x1x2x2x2 and x1x2x1x3x4x2x4x3 are succinct since no variable
for every of its occurrences has the same “environment” (i.e. a suitable γ) of
length greater or equal 2 such that this environment does not share any of its
variables with any potential β. x1x2x1x2x3x3x2x4x4x5x3x2x4x4x5 is prolix since
γ1 = γ2 = x1x2, γ3 = γ4 = x2x4x4x5, β0 = β1 = β4 = e, β2 = x3x3, β3 = x3.

As pointed out in [Rei02], certain words due to their ambiguity are unsuitable
for being part of a telltale. In the following definition we introduce a particular
type of substitution that – depending on the pattern it is applied to – may lead
to ambiguous words as well; nevertheless, it can be used to generate telltale
words as it imposes appropriate restrictions upon their ambiguity. This feature
is relevant for the learnability criterion in Theorem 4.

Definition 1. Let α be a terminal-free pattern, |α| =: n, and σ a substitution.
For any m ≤ n let α\m = y1 y2 · · · ym be the prefix of length m of α. Let r1, r2,
. . . , rn−1 and l2, l3, . . . , ln be the smallest natural numbers such that for every
substitution σ′ with σ′(α) = σ(α) and for m = 1, 2, . . . , n− 1:

|σ(α\m)| − rm ≤ |σ′(α\m)| ≤ |σ(α\m)| + lm+1.

Furthermore, define l1 := 0 =: rn.
Then we call the substitution σ (λ, ρ)-significant (for α) iff there exist two

mappings λ, ρ : N −→ N such that, for every xj ∈ var(α), λ(j) = max{lm | ym =
xj}, ρ(j) = max{rm | ym = xj}, and |σ(xj)| ≥ λ(j) + ρ(j) + 1. We designate
a word w as significant (for α) iff for some λ, ρ there exists a (λ, ρ)-significant
substitution σ such that w = σ(α).

The following example illustrates Definition 1:

Example 2. Let α := x1x2x3x4x1x4x3x2. Obviously, α is terminal-free and prolix
(cf. Theorem 3). Let the substitution σ be given by σ(x1) := a, σ(x2) := a b,
σ(x3) := b, and σ(x4) := a a. With little effort it can be seen that there exists
only one different substitution σ′ such that σ′(α) = σ(α), namely σ′(x1) = a a,
σ′(x2) = b, σ′(x3) = b a, and σ′(x4) = a. In terms of Definition 1 this implies
the following:

σ(α\1) = a σ(α\2) = a a b σ(α\3) = a a b b σ(α\4) = a a b b a a · · ·
σ′(α\1) = a a σ′(α\2) = a a b σ′(α\3) = a a b b a σ′(α\4) = a a b b a a · · ·

Thus, l2 = l4 = l6 = l8 = 1, l1 = l3 = l5 = l7 = 0, and rk = 0 for 1 ≤ k ≤ 8.
Then, with λ(1) = λ(3) = 0, λ(2) = λ(4) = 1, and ρ(j) = 0 for 1 ≤ j ≤ 4, the
substitution σ is (λ, ρ)-significant for α, since |σ(xj)| ≥ λ(j)+ρ(j)+1 for every j,
1 ≤ j ≤ 4. Consequently, there are certain subwords in w := σ(α) = σ′(α) that
are generated for every possible substitution by the same variable; therefore we
may regard the following variables and subwords – that, in a different example,
of course can consist of more than one letter each – as “associated”:

w = a
︸︷︷︸

x1

a b
︸︷︷︸

x2

b
︸︷︷︸

x3

a a
︸︷︷︸

x4

a
︸︷︷︸

x1

a a
︸︷︷︸

x4

b
︸︷︷︸

x3

a b
︸︷︷︸

x2

.

That is the particular property of significant words which serves our purposes.

A second (and “comprehensive”) example for a substitution generating sig-
nificant words is given in Lemma 1.

Now we present the learnability criterion to be used, that is a generalisation
of two criteria in [Rei02]. As mentioned in Example 2, this criterion utilizes the
existence of certain subwords in significant words that may be mapped to a
distinct variable. In these subwords we place a single letter as a marker for its
variable such that the exact shape of the generating pattern can be extracted
from a suitable set of these words. The need for this distinct marker is an oblique
consequence of a method used in [Rei02] – the so-called inverse substitution.

Theorem 4. Let Σ be an alphabet. Let Pat⋆
tf be a recursively enumerable set

of terminal-free patterns and ePAT⋆
tf,Σ the corresponding class of E-pattern lan-

guages. Then ePAT⋆
tf,Σ ∈ LIM-TEXT if for every α ∈ Pat⋆

tf there exists a finite
set SUB := {σi | 1 ≤ i ≤ n} of substitutions and mappings λi and ρi such that

1. every σi ∈ SUB is (λi, ρi)-significant for α and
2. for every xj ∈ var(α) there exists a substitution σj′ ∈ SUB with σj′ (xj) =

uj′,j a vj′,j for a letter a ∈ Σ and some uj′,j, vj′,j ∈ Σ∗, |uj′,j | ≥ λj′(j)
and |vj′,j | ≥ ρj′ (j), such that |σj′ (α)|a = |α|xj

.

Proof. Given α ∈ Pat⋆
tf , we define a set Tα of words by Tα := {wi | σi(α) =

wi for a σi ∈ SUB}. We now show that Tα is a telltale for L(α) in respect of
ePAT⋆

tf,Σ. For that purpose assume Tα ⊆ L(β) ⊆ L(α) for some β ∈ Pat⋆
tf . Then

(due to Fact 1) there exists a morphism φ : X∗ −→ X∗ such that φ(α) = β.
Because every σi ∈ SUB is (λi, ρi)-significant for α and because of condition 2

we may conclude that for every xj ∈ var(α) and for every σ′ with σ′(β) =
wj′ = σj′ (α) – that necessarily exists since Tα ⊆ L(β) – holds the following:
σ′(φ(xj)) = u′j′,j a v′j′,j for a letter a ∈ Σ, and two words u′j′,j, v

′

j′,j ∈ Σ∗; for
these words, due to the significance of wj′ , it is evident that u′j′,j is a suffix of
uj′,j (or vice versa) and v′j′,j is a prefix of vj′,j (or vice versa). In addition it
is obvious that |σ′(β)|a = |α|xj

can be stated for the examined σ′. Therefore,
in order to allow appropriate substitutions to generate the single letter a, φ
for all xj ∈ var(α) must have the shape φ(xj) = γ1 xja γ2 with γ1, γ2 ∈ X∗

and a single variable xja ∈ var(φ(xj)), i.e. |β|xja
= |α|xj

. Hence, the morphism
ψ : X∗ −→ X∗, defined by ψ(xk) := xj for k = ja and ψ(xk) := e for k 6= ja,

leads to ψ(β) = α and – with the assumption L(β) ⊆ L(α) – to L(β) = L(α).
Consequently, L(β) 6⊂ L(α) for every pattern β with Tα ⊆ L(β) and, thus, Tα is
a telltale for L(α) in respect of ePAT⋆

tf (because of Fact 3). ⊓⊔

In prolix patterns, there exist variables that cannot be substituted in such
a way that the resulting word is significant. For instance, in the pattern α =
x1 x2 x1 x2 every subword generated by x1 can be generated by x2 as well, and
vice versa. Therefore, when applying Theorem 4 to ePATtf , Pat⋆

tf necessarily has
to consist of succinct patterns only.

The following two lemmata prove that for every succinct terminal-free pattern
(and, thereby, for every language in ePATtf) there exists a set of substitutions
satisfying the conditions of Theorem 4.

Lemma 1. Let α be a succinct pattern, α ∈ Pattf, and Σ an alphabet such that
{a, b, c} ⊆ Σ. Let for every xj ∈ var(α) and for every i ∈ {j | xj ∈ var(α)} the
substitution σtf

i
be given by

σtf
i

(xj) :=

{
a b

3j−2
a a b

3j−1
a a b

3j
a , i 6= j,

a b
3j−2

a c a b
3j−1

a a b
3j
a , i = j,

Then for every σ′

i with σ′

i(α) = σtf
i

(α), for every xj ∈ var(α), and for some
uj , vj ∈ Σ∗:

σ′

i(xj) =

{
uj a a b

3j−1
a a vj , i 6= j,

uj a c a b
3j−1

a a vj , i = j,

Proof. To begin with we explain the following terms that are used frequently: A
segment of σtf

i
(xj) is a subword a b

3j−q
a, 0 ≤ q ≤ 2. As the natural extension

thereof, the term segment of σtf
i

(δ) for every δ ∈ X∗ designates any segment of
σtf
i

(xj) with xj ∈ var(δ). An outer segment of σtf
i

(xj) is the subword a b
3j−2

a

or the subword a b
3j
a. The inner segment of σtf

i
(xj) is the subword a b

3j−1
a.

σ′

i(xj′) contains segments of σtf
i

(xj) means that the segments of σtf
i

(xj) occur in
natural order (i.e. in that order specified by σtf

i
), consecutively (apart from the

potential necessity of inserting the letter c), and non-overlapping.
Let σ′

i be an arbitrary substitution with σ′

i(α) = σtf
i

(α) and σ′

i(xj) 6= σtf
i

(xj)
for an xj ∈ var(α). Then we define the following subsets of var(α): Let Y1

be the set of all xj1 ∈ var(α) such that σ′

i(xj1) contains the inner segment of
σtf
i

(xj1), of every outer segment at least one letter, and at least one segment of
the substitution σtf

i
of a neighbouring variable. Consequently, σ′

i(xj1) contains
at least two segments of σtf

i
(xj1), and for all xj1 ∈ Y1: α 6= δ1 xj1xj1 δ2 with

δ1, δ2 ∈ X∗. Let Y2 be the set of all xj2 ∈ var(α) such that σ′

i(xj2) contains of
at least one segment of σtf

i
(xj2) no letter. Then Y1 ∩ Y2 = ∅. Finally, let Y3 be

given by Y3 := var(α) \ (Y1 ∪ Y2). Then σ′

i(xj3) for all xj3 ∈ Y3 contains the
inner segment of σtf

i
(xj3) and of both outer segments at least one letter, but no

complete segment of a neighbouring variable.
Now assume to the contrary Y2 6= ∅, that implies Y1 6= ∅ as for every variable

there are three unique corresponding segments (for two segments, depending on
α and σ′

i, we might face the situation that Y2, Y3 6= ∅, but Y1 = ∅). We show that

this assumption entails α being prolix. The subsequent argumentation on this
utilizes Theorem 3 and an evident fact (referred to as (⋆)): For every δ ∈ Y +

2 ,
σ′

i(δ) contains of at least one segment of σtf
i

(δ) no letter.

As the starting point of our reasoning we use the following decomposition:
α = β0 γ1 β1 γ2 β2 . . . βn−1 γn βn with n ≥ 1, β0, βn ∈ Y ∗

3 , βk ∈ Y +
3 for

0 < k < n, and γk ∈ (Y1 ∪ Y2)
+ for 1 ≤ k ≤ n. This decomposition is unique,

and it obviously satisfies condition 2 and – due to (⋆) – condition 1 of Theorem 3.
However, concerning condition 3 it possibly deserves some modifications. To this
end, the following procedure reconstructs the above decomposition such that in
every γk there is exactly one occurrence of a variable in Y1 (using (⋆) again):

PROCEDURE:

Define k := 1.

STEP 1: Let y1, y2 be the leftmost variables in γk with y1, y2 ∈ Y1 and γk =
δ1 y1 y2 δ2 for δ1, δ2 ∈ X∗. IF these variables exist, THEN define γn+1 :=
γn, . . . , γk+2 := γk+1, βn+1 := βn, . . . , βk+1 := βk, γk := δ1 y1, βk = e,
and γk+1 := y2 δ2; finally, define n := n + 1. END IF. IF k < n, THEN define
k := k + 1 and go to STEP 1. ELSE rename all pattern fragments as follows:
α =: β01

γ11
β11

γ21
β21

. . . β(n−1)1 γn1
βn1

. Finally, define k1 := 11 and go to
STEP 2. END IF.

STEP 2: Let y1 ∈ Y2 and y2 ∈ Y1 be the leftmost variables in γk1
with

γk1
= δ1 y1 y2 δ2 for δ1, δ2 ∈ X∗, such that at least one segment of σtf

i
(y1) is

generated by variables in δ1. IF these variables exist, THEN IF σ′

i(y2) contains a
segment of σtf

i
(δ2) (thus, necessarily the leftmost segment), THEN extend the de-

composition as described in STEP 1. Finally, define k1 := (k+1)1, n1 := (n+1)1,
and go to STEP 2. ELSE define Y1 := Y1 \ {y2} and Y3 := Y3∪{y2}, reconstruct
all pattern fragments βk1

and γk1
accordingly and go to STEP 2. END IF. ELSE

IF k1 < n1, THEN define k1 := (k + 1)1 and go to STEP 2. ELSE rename all
pattern fragments as follows: α =: β02

γ12
β12

γ22
β22

. . . β(n−1)2 γn2
βn2

. Finally,
define k2 := 12 and go to STEP 3. END IF. END IF.

STEP 3: Let y1 ∈ Y1 and y2 ∈ Y2 be the leftmost variables in γk2
with

γk2
= δ1 y1 y2 δ2 for δ1, δ2 ∈ X∗, such that at least one segment of σtf

i
(y2)

is generated by variables in δ2. Modify γk2
analogously to Step 2. When this

has been done for every k2, then rename all pattern fragments as follows: α =:
β03

γ13
β13

γ23
β23

. . . β(n−1)3 γn3
βn3

. Define k3 := 13 and go to STEP 4.

STEP 4: Let y1, y2 be the leftmost variables in γk3
with y1, y2 ∈ Y2 and γk3

=
δ1 y1y2 δ2 for δ1, δ2 ∈ X∗, such that at least one segment of σtf

i
(y1) is contained in

σ′

i(δ1) and at least one segment of σtf
i

(y2) is contained in σ′

i(δ2). IF these variables
exist, THEN extend the decomposition as described in STEP 1. Finally, define
k3 := (k + 1)3, n3 := (n + 1)3, and go to STEP 4. END IF. IF k3 < n3, THEN
define k3 := (k + 1)3 and go to STEP 4. ELSE rename all pattern fragments as
follows: α =: β04

γ14
β14

γ24
β24

. . . β(n−1)4 γn4
βn4

. END IF.

END OF PROCEDURE

Obviously, ∀ k4, k
′

4 : var(γk4
) ∩ var(βk′

4
) = ∅. So the following is left to be

shown:

a) ∀ k4 : |γk4
| ≥ 2

b) ∀ k4 :
∑

xj1
∈Y1

|γk4
|xj1

= 1

c) ∀ k4, k
′

4 : (var(γk4
) ∩ var(γk′

4
) ∩ Y1 6= ∅ =⇒ γk4

= γk′

4
)

ad a) As a consequence of (⋆), the first decomposition of α is modified by Steps 1
- 4 if and only if there exists a γk that contains at least two variables y1, y2 ∈ Y1.
The procedure splits this γk in such a way that all new γk1

, γk2
, γk3

, and γk4

contain at least one xj2 ∈ Y2 and a sequence of variables that generates a segment
of σtf

i
(xj2) by σ′

i. Thus, |γk4
| ≥ 2 for all k4.

ad b) As mentioned in a), every γk contains at least one variable xj2 ∈ Y2.
Moreover, there must also be a variable xj1 ∈ Y1 in every γk (again due to (⋆)).
The procedure splits only those γk that contain at least two variables of Y1,
and obviously – if possible – in such a way that every γk4

contains exactly one
xj1 ∈ Y1. If this due to a) is not possible (e.g. for γk = y1 y2 y3 with y1, y3 ∈ Y1,
y2 ∈ Y2, and necessarily y1 6= y3), then in Step 2 or Step 3 either y1 or y3 is
removed from Y1 and therefore it is removed from γk1

or γk2
, respectively.

ad c) Because of a) and b) it is obvious that every γk4
begins or ends with a

variable from Y2. We consider that case where γk4
begins with xj2,k4

∈ Y2; the
second case is symmetrical and the argumentation for the case that both aspects
hold true derives from the combination of both approaches.

Hence, without loss of generality γk4
= xj2,k4

δ1 for δ1 ∈ X∗. Due to (⋆)
and the construction of γk4

, to the right of xj2,k4
there is a pattern fragment

γk4,1, |γk4,1| ≥ 1, such that σ′

i(γk4,1) contains at least one segment of σtf
i

(xj2,k4
).

If γk4,1 ∈ Y +
2 , then to the right of this pattern fragment there is a second

pattern fragment γk4,2, |γk4,2| ≥ 1, that – with σ′

i – again generates the segments
“missing” in σ′

i(γk4,1) and so on. As every γk4
has finite length, there must exist

a xj1,k4
∈ Y1 in γk4

concluding this argumentation.

Consequently, γk4
= xj2,k4

γk4,1 γk4,2 . . . γk4,p−1 γk4,p xj1,k4
for a p ∈ N.

However, since all variables in γk4,l, 1 ≤ l ≤ p of at least one of their segments
do not generate any letter, xj1,k4

by σ′

i exactly determines the shape of γk4,p,
γk4,p that of γk4,p−1 etc. up to γk4,1 determining xj2,k4

.

This holds true for every occurrence of xj1,k4
and therefore ∀ k4, k

′

4 ∀ xj1 ∈
Y1 : ((xj1 ∈ var(γk4

) ∧ xj1 ∈ var(γk′

4
)) =⇒ γk4

= γk′

4
). This proves c).

Thus, with a), b), c), and Theorem 3, α is prolix. This is a contradiction.
Consequently, we may conclude Y1 = Y2 = ∅; this proves the lemma. ⊓⊔

With Lemma 1, the major part of our reasoning is accomplished. Now the
following lemma can be concluded without effort:

Lemma 2. Let α be a succinct pattern, α ∈ Pattf. Then for every i, i ∈ {j |
xj ∈ var(α)}, there exist mappings λi, ρi : N −→ N such that σtf

i
(cf. Lemma 1)

is (λi, ρi)-significant for α.

Proof. Directly from Lemma 1, since for every xj ∈ var(α) we can state λi(j) ≤
3j − 1, ρi(j) ≤ 3j + 1, and |σtf

i
(xj)| ≥ 9j + 3. ⊓⊔

Consequently, for every succinct terminal-free pattern there exists a set of
significant words. However, no word generated by any σtf

i
needs to consist of

three different letters in order to be significant – a and b would be sufficient.
Indeed, due to the marker c, the given set of all σtf

i
satisfies the second condition

of Theorem 4. Thus, Theorem 4 is applicable for ePATtf and therefore the main
result of this paper, given in Theorem 2, is proven.

References

[Ang79] D. Angluin. Finding patterns common to a set of strings. In Proc. STOC

1979, pages 130–141, 1979.
[Ang80] D. Angluin. Inductive inference of formal languages from positive data. Inf.

Control, 45:117–135, 1980.
[Fil88] G. Filè. The relation of two patterns with comparable language. In Proc.

STACS 1988, volume 294 of LNCS, pages 184–192, 1988.
[Gol67] E.M. Gold. Language identification in the limit. Inf. Control, 10:447–474,

1967.
[JKS+94] T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages

with and without erasing. Int. J. Comput. Math., 50:147–163, 1994.
[JSSY95] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for pat-

terns. J. Comput. Syst. Sci., 50:53–63, 1995.
[LP95] M. Lipponen and G. Păun. Strongly prime PCP words. Discrete Appl.

Math., 63:193–197, 1995.
[LW91] S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern

languages. New Generat. Comput., 8:361–370, 1991.
[Mit98] A.R. Mitchell. Learnability of a subclass of extended pattern languages. In

Proc. COLT 1998, pages 64–71, 1998.
[MS93] A. Mateescu and A. Salomaa. PCP-prime words and primality types.

RAIRO Inform. théor., 27(1):57–70, 1993.
[MS94] A. Mateescu and A. Salomaa. Finite degrees of ambiguity in pattern lan-

guages. RAIRO Inform. théor., 28(3–4):233–253, 1994.
[Rei] D. Reidenbach. A non-learnable class of E-pattern languages. Theor. Comp.

Sci., to appear.
[Rei02] D. Reidenbach. A negative result on inductive inference of extended pattern

languages. In Proc. ALT 2002, volume 2533 of LNAI, pages 308–320, 2002.
[Rog92] H. Rogers. Theory of Recursive Functions and Effective Computability. MIT

Press, Cambridge, Mass., 1992. 3rd print.
[RS97] G. Rozenberg and A. Salomaa. Handbook of Formal Languages, volume 1.

Springer, Berlin, 1997.
[RZ98] R. Reischuk and T. Zeugmann. Learning one-variable pattern languages in

linear average time. In Proc. COLT 1998, pages 198–208, 1998.
[Shi82] T. Shinohara. Polynomial time inference of extended regular pattern lan-

guages. In Proc. RIMS Symposia on Software Science and Engineering,

Kyoto, volume 147 of LNCS, pages 115–127, 1982.
[Thu06] A. Thue. Über unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I

Mat. Nat. Kl., 7, 1906.
[Wri89] K. Wright. Identification of unions of languages drawn from an identifiable

class. In Proc. COLT 1989, pages 328–333, 1989.
[WZ94] R. Wiehagen and T. Zeugmann. Ignoring data may be the only way to

learn efficiently. J. Exp. Theor. Artif. Intell., 6:131–144, 1994.

