
ar
X

iv
:c

s/
03

06
13

4v
1

 [
cs

.C
C

]
 2

7
Ju

n
20

03

The Complexity of Boolean Constraint

Isomorphism⋆

Elmar Böhler1, Edith Hemaspaandra2, Steffen Reith3, and Heribert Vollmer4

1 Theoretische Informatik, Universität Würzburg, Am Hubland, D-97074 Würzburg,
Germany, e-mail: boehler@informatik.uni-wuerzburg.de

2 Department of Computer Science, Rochester Institute of Technology, Rochester,
NY 14623, U.S.A., e-mail: eh@cs.rit.edu

3 LengfelderStr. 35b, D-97078 Würzburg, Germany, e-mail: streit@streit.cc
4 Universität Hannover, Appelstr. 4, D-30167 Germany, email:

vollmer@informatik.uni-hannover.de

Abstract. In 1978, Schaefer proved his famous dichotomy theorem for
generalized satisfiability problems. He defined an infinite number of pro-
positional satisfiability problems (nowadays usually called Boolean con-
straint satisfaction problems) and showed that all these satisfiability
problems are either in P or NP-complete. In recent years, similar re-
sults have been obtained for quite a few other problems for Boolean con-
straints. Almost all of these problems are variations of the satisfiability
problem.
In this paper, we address a problem that is not a variation of satisfiability,
namely, the isomorphism problem for Boolean constraints. Previous work
by Böhler et al. showed that the isomorphism problem is either coNP-
hard or reducible to the graph isomorphism problem (a problem that is in
NP, but not known to be NP-hard), thus distinguishing a hard case and
an easier case. However, they did not classify which cases are truly easy,
i.e., in P. This paper accomplishes exactly that. It shows that Boolean
constraint isomorphism is coNP-hard (and GI-hard), or equivalent to
graph isomorphism, or in P, and it gives simple criteria to determine
which case holds.
Keywords: computational complexity, propositional logic, constraints,
logic in computer science, graph isomorphism

1 Introduction

In 1978, Schaefer proved his famous dichotomy theorem for generalized satisfia-
bility problems [Sch78]. He defined an infinite number of propositional satisfiabil-
ity problems (nowadays usually called Boolean constraint satisfaction problems),
showed that all these satisfiability problems are either in P or NP-complete, and
gave a simple criterion to determine which of the two cases holds. This result is
surprising in light of Ladner’s Theorem which states that there are an infinite

⋆ Research supported in part by grants NSF-INT-9815095/DAAD-315-PPP-gü-ab,
NSF-CCR-0311021, and by an RIT FEAD grant.

http://arxiv.org/abs/cs/0306134v1

number of complexity classes between P and NP-complete (assuming that P is
not equal to NP).

To make the discussion more concrete, we will quickly define what a con-
straint is and what a constraint problem is. In this paper, we will be looking
at Boolean constraints. See for example Feder and Vardi [FV98] for a discus-
sion about general constraint satisfaction problems. A constraint is a Boolean
operator of fixed arity, specified as a Boolean function. For C a constraint of
arity k, and x1, . . . , xk propositional variables (or constants), C(x1, . . . , xk) is a
constraint application of C. For example, λxy.(x∨y) is a constraint, and x1 ∨x2

is a constraint application of this constraint. Each finite set of constraints C
gives rise to a satisfiability problem CSP(C): CSP(C) is the problem of, given a
set of constraint applications of C, determining whether this set has a satisfying
assignment. We can view a set of constraint applications as a CNF formula. For
example, 2-CNF-SAT corresponds to CSP({λxy.(x∨y), λxy.(x∨y), λxy.(x∨y)}).
Note that not all classes of formulas correspond to sets of constraint applications,
since not every class of formulas can be viewed as conjunction of “clauses” of
bounded length. For example, there is no constraint analogue of the class of
3DNF formulas, nor of the class of CNF formulas.

Using constraint terminology, Schaefer’s dichotomy theorem [Sch78] can now
be formulated as follows: For any finite set of constraints C, either CSP(C) is in
P, or CSP(C) is NP-complete.

In recent years, dichotomy theorems1 have been obtained for quite a few other
problems about Boolean constraints. Almost all of these problems are variations
of the satisfiability problem. For example, dichotomy theorems have been ob-
tained for the problem of determining whether a set of constraint applications
has exactly one satisfying assignment [Jub99], the problem of finding a satisfying
assignment that satisfies a maximum number of constraint applications [Cre95],
the problem of computing the number of satisfying assignments [CH96], the
problem of finding the minimal satisfying assignment [KK01b], the inverse sat-
isfiability problem [KS98], and the equivalence problem [BHRV02]. Khanna, Su-
dan, Trevisan, and Williamson examined the approximability of some of these
problems [KSTW01]. Consult the excellent monograph [CKS01] for an almost
completely up-to-date overview of dichotomy theorems for Boolean constraint
satisfaction problems.

It should be noted that there exist some dichotomy results for problems in
propositional logic that are not variants of satisfiability problems, for example,
the work of Kirousis and Kolaitis on propositional circumscription [KK01a].

In this paper, we address a problem that is not a variation of satisfiabil-
ity, namely, the isomorphism problem for Boolean constraints. Isomorphism is
a more complicated problem than satisfiability. The exact complexity of the
isomorphism problem for Boolean formulas is still unknown: It is trivially coNP-
hard and in Σ

p
2 and Agrawal and Thierauf showed that it is not Σp

2 -hard unless
the polynomial hierarchy collapses.

1 We will also use the term “dichotomy theorem” for classification results that split
into a finite number of cases greater than 2.

2

The isomorphism problem for Boolean constraints was first studied by Böhler
et al. [BHRV02]. They showed that this problem is either coNP-hard or reducible
to the graph isomorphism problem (a problem that is in NP, but not known to
be NP-hard), thus distinguishing a hard case and an easier case. However, they
did not classify which cases are truly easy, i.e., in P. This paper accomplishes
exactly that. It shows that Boolean constraint isomorphism is coNP-hard (and
GI-hard), or equivalent to graph isomorphism, or in P, and it gives simple criteria
to determine which case holds.

2 Preliminaries

We start by formally introducing constraint problems. The following section is es-
sentially from [BHRV02], following the standard notation developed in [CKS01].

Definition 1. 1. A constraint C (of arity k) is a Boolean function from {0, 1}k

to {0, 1}.
2. If C is a constraint of arity k, and x1, x2, . . . , xk are (not necessarily distinct)

variables, then C(x1, x2, . . . , xk) is a constraint application of C. In this
paper, we view a constraint application as a Boolean function on a specific
set of variables. Thus, for example, x1 ∨ x2 = x2 ∨ x1

3. If C is a constraint of arity k, and for 1 ≤ i ≤ k, xi is a variable or a
constant (0 or 1), then C(x1, x2, . . . , xk) is a constraint application of C

with constants.
4. If A is a constraint application [with constants], and X a set of variables

that includes all variables that occur in A, we say that A is a constraint
application [with constants] over variables X . Note that we do not require
that every element of X occurs in A.

The complexity of Boolean constraint problems depends on those properties
of constraints that we define next.

Definition 2. Let C be a constraint.

– C is 0-valid if C(0) = 1. Similarly, C is 1-valid if C(1) = 1.
– C is Horn (or weakly negative) if C is equivalent to a CNF formula where

each clause has at most one positive literal.
– C is anti-Horn (or weakly positive) if C is equivalent to a CNF formula where

each clause has at most one negative literal.
– C is bijunctive if C is equivalent to a 2CNF formula.
– C is affine if C is equivalent to an XOR-CNF formula.
– C is 2-affine (or, affine with width 2) if C is equivalent to a XOR-CNF

formula such that every clause contains at most two literals.

Let C be a finite set of constraints. We say C is 0-valid, 1-valid, Horn, anti-Horn,
bijunctive, or affine, if every constraint C ∈ C is 0-valid, 1-valid, Horn, anti-Horn,
bijunctive, or affine, respectively. Finally, we say that C is Schaefer if C is Horn
or anti-Horn or affine or bijunctive.

3

Like all dichotomy results for Boolean constraints, our proofs heavily use
Schaefer’s characterization of Boolean functions.

Lemma 3 ([Sch78, Hor51]). Let f be a Boolean function of arity k.

1. f is Horn if and only if for all assignments s, t ∈ {0, 1}k that satisfy f , s ∩ t

satisfies f .
2. f is anti-Horn if and only if for all assignments s, t ∈ {0, 1}k that satisfy f ,

s ∪ t satisfies f .
3. f is bijunctive if and only if for all assignments s, t, u ∈ {0, 1}k that satisfy

f , majority(s, t, u) satisfies f .
4. f is affine if and only if for all assignments s, t, u ∈ {0, 1}k that satisfy f ,

s⊕ t⊕ u satisfies f .

The operations on assignments mentioned above are bitwise operations, i.e.,
(s ∩ t)i = si ∧ ti, (s ∪ t)i = si ∨ ti, (s ⊕ t)i = si ⊕ ti, and majority(s, t, u) =
(s ∩ t) ∪ (s ∩ u) ∪ (t ∩ u).

The question studied in this paper is that of whether a set of constraint
applications can be made equivalent to a second set of constraint applications
using a suitable renaming of its variables. We need some definitions.

Definition 4. 1. Let S be a set of constraint applications with constants over
variables X and let π be a permutation of X . By π(S) we denote the set
of constraint applications that results when we replace simultaneously all
variables x in S by π(x).

2. Let S be a set of constraint applications over variables X . The number of
satisfying assignments of S, #1(S), is defined as ||{ I | I is an assignment to
all variables in X that satisfies every constraint application in S }||.

The isomorphism problem for Boolean constraints, first defined and examined
in [BHRV02] is formally defined as follows.

Definition 5. 1. ISO(C) is the problem of, given two sets S and U of constraint
applications of C over variablesX , to decide whether S and U are isomorphic,
i.e., whether there exists a permutation π of X such that π(S) is equivalent
to U .

2. ISOc(C) is the problem of, given two sets S and U of constraint applica-
tions of C with constants over variables X , to decide whether S and U are
isomorphic.

Böhler et al. obtained results about the complexity of the just-defined prob-
lem that, interestingly, pointed out relations to another isomorphism problem:
the graph isomorphism problem (GI).

Definition 6. GI is the problem of, given two graphs G and H , to determine
whether G andH are isomorphic, i.e., whether there exists a bijection π:V (G) →
V (H) such that for all v, w ∈ V (G), {v, w} ∈ E(G) iff {π(v), π(w)} ∈ E(H). Our
graphs are undirected, and do not contain self-loops. We also assume a standard
enumeration of the edges, and will write E(G) = {e1, . . . , em}.

4

GI is a problem that is in NP, not known to be in P, and not NP-complete
unless the polynomial hierarchy collapses. For details, see, for example, [KST93].
Recently, Torán showed that GI is hard for NL, PL, ModkL, and DET under
logspace many-one reductions [Tor00]. Arvind and Kurur showed that GI is in
the class SPP [AK02], and thus, for example in ⊕P .

The main result from [BHRV02] can now be stated as follows.

Theorem 7. Let C be a set of constraints. If C is Schaefer, then ISO(C) and
ISOc(C) are polynomial-time many-one reducible to GI, otherwise, ISO(C) and
ISOc(C) are coNP-hard.

Note that if C is Schaefer, then the isomorphism problems ISO(C) and
ISOc(C) cannot be coNP-hard, unless NP = coNP. (This follows from Theo-
rem 7 and the fact that GI is in NP.) Under the (reasonable) assumption that
NP 6= coNP, and that GI is neither in P, nor NP-complete, Theorem 7 thus
distinguishes a hard case (coNP-hard) and an easier case (many-one reducible
to GI).

Böhler et al. also pointed out that there are some bijunctive, Horn, or
affine constraint sets C for which actually ISO(C) and ISOc(C) are equivalent
to graph isomorphism. On the other hand, certainly there are C for which
ISO(C), ISOc(C) ∈ P. In the upcoming section we will completely classify the
complexity of ISO(C) and ISOc(C), obtaining for which C exactly we are equiv-
alent to GI and for which C we are in P.

3 A Trichotomy Theorem

The main result of this paper is a complete complexity-theoretic classification of
the isomorphism problem for Boolean constraints.

Theorem 8. Let C be a finite set of constraints.

1. If C is not Schaefer, then ISO(C) is coNP-hard and ISOc(C) is coNP-hard
and GI-hard.

2. If C is Schaefer and not 2-affine, then ISOc(C) is polynomial-time many-one
equivalent to GI.

3. Otherwise, C is 2-affine and ISO(C) and ISOc(C) are in P.

The rest of the paper is organized as follows. The coNP lower-bound part from
Theorem 8 follows from Theorem 7. In Section 4 we will prove the polynomial-
time upper bound if C is 2-affine (Theorem 11). The GI upper bound if C is
Schaefer again is part of Theorem 7. Finally, in Section 5 we will show that
ISOc(C) is GI-hard if C is not 2-affine (Theorems 18 and 22).

4 Upper Bounds

A central step in our way of obtaining upper bounds is to bring sets of constraint
applications into a unique normal form. This approach is also followed in the

5

proof of the coIP[2]NP upper bound2 for the isomorphism problem for Boolean
formulas [AT00] and the GI upper bound from Theorem 7 [BHRV02].

Definition 9. Let C be a set of constraints. nf is a normal form function for C
if and only if for all sets S and U of constraint applications of C with constants
over variables X , and for all permutations π of X ,

1. nf(S,X) is a set of Boolean functions over variables X ,
2. S ≡ nf(S,X) (here we view S as a set of Boolean functions, and define

equivalence for such sets as logical equivalence of corresponding propositional
formulas),

3. nf(π(S), X) = π(nf(S,X)), and
4. if S ≡ U , then nf(S,X) = nf(U,X) (here, “=” is equality between sets of

Boolean functions).

It is important to note that nf(S,X) is not necessarily a set of constraint appli-
cations of C with constants.

An easy property of the definition is that S ≡ U iff nf(S,X) = nf(U,X).
Also, it is not too hard to observe that using normal forms removes the need to
check whether two sets of constraint applications with constants are equivalent,
more precisely: S is isomorphic to U iff there exists a permutation π of X such
that π(nf(S)) = nf(U).

There are different possibilities for normal forms. The one used by [BHRV02]
is the maximal equivalent set of constraint applications with constants, defined
by nf(S,X) to be the set of all constraint applications A of C with constants
over variables X such that S → A.

For the P upper bound for 2-affine constraints, we use a normal form de-
scribed in the following lemma. Note that this normal form is not necessarily a
set of 2-affine constraint applications with constants.

Lemma 10. Let C be a set of 2-affine constraints. There exists a polynomial-
time computable normal form function nf for C such that for all sets S of con-
straint applications of C with constants over variables X, the following hold:

1. if S ≡ 0, then nf(S,X) = {0},

2. if S 6≡ 0, then nf(S,X) = {Z,O} ∪
⋃ℓ

i=1{(Xi ∧ Yi) ∨ (Xi ∧ Yi)}, where
Z,O,X1, Y1, . . . , Xℓ, Yℓ are pairwise disjoint subsets of X such that Xi∪Yi 6=
∅ for all 1 ≤ i ≤ ℓ, and for W a set of variables, W in a formula denotes∧
W , and W denotes ¬

∨
W .

Proof. Let S be a set of constraint applications of C with constants over
variables X . Since C is 2-affine, we can in polynomial time check whether S ≡ 0.
If so, nf(S,X) = {0}. Now suppose that S is not equivalent to 0. Let D be the
set of all unary and binary 2-affine constraints, i.e., D = {λa.a, λa.a, λab.a ⊕
b, λab.¬(a⊕ b)}.
2 Here IP[2] means an interactive proof system where there are two messages ex-
changed between the verifier and the prover.

6

Let S′′ be the set of all D constraint applications A with constants over vari-
ables X such that S → A. In other words, we are using the maximal equivalent
set normal form used in [BHRV02], that we described in the paragraph preceding
Lemma 10. It follows from [BHRV02] that S′′ is computable in polynomial time.
Certainly, S ≡ S′′, since every constraint application in S can be written as
the conjunction of D constraint applications. We will now show how to compute
nf(S,X).

Let Z be the set of those variables x ∈ X that, when set to 1, make S′′

equivalent to 0. Let O be the set of those variables that, when set to 0, make
S′′ equivalent to 0. Note that S′′ → Z ∧ O. Let S′ be the set of constraint
applications that is obtained from S′′ by setting all elements of Z to 0 and all
elements of O to 1. Note that S′′ ≡ Z ∧O ∧ S′.

Let Ŝ be the set of all constraint applications from S′ that do not contain
constants. We claim that Ŝ ≡ S′. For suppose that α is an assignment that
satisfies Ŝ, but α does not satisfy S′. Then there is a constraint application with
constants A ∈ S′ \ Ŝ such that α does not satisfy A. Note that A must contain a

constant, since A 6∈ Ŝ. A must contain a variable, since A is satisfiable (since S is
satisfiable). But then A contains exactly one occurrence of exactly one variable,
and thus A is equivalent to x or ¬x for some variable x. But then x would have
been put in Z or O, and x would not occur in S′.

So, S ≡ Z∧O∧ Ŝ, and every element of Ŝ is of the form x⊕y where x, y ∈ X

and x 6= y or of the form ¬(x⊕y), where x, y ∈ X , x 6= y. Note that it is possible

that Ŝ = ∅. Also note that, since S′′ contains all of its implicates that are of the
right form, for every three distinct variables x, y, and z,

– if (x⊕ y) ∈ Ŝ and (y ⊕ z) ∈ Ŝ, then ¬(x⊕ z) ∈ Ŝ,

– if ¬(x ⊕ y) ∈ Ŝ and (y ⊕ z) ∈ Ŝ, then (x⊕ z) ∈ Ŝ, and

– if ¬(x ⊕ y) ∈ Ŝ and ¬(y ⊕ z) ∈ Ŝ, then ¬(x ⊕ z) ∈ Ŝ.

So, Ŝ is closed under a form of transitivity.
Partition Ŝ into S1, . . . , Sℓ, where S1, . . . , Sℓ are minimal sets that are pair-

wise disjoint with respect to occurring variables. Since the Sis are minimal, and
not equivalent to 0, it follows from the observation above about the closure of
Ŝ, that for every pair of distinct variables x, y in Si, exactly one of (x ⊕ y) and
¬(x ⊕ y) is in Si. For every i, 1 ≤ i ≤ ℓ, let xi be an arbitrary variable that
occurs in Si. Let Xi = {y | ¬(xi ⊕ y) ∈ Si} and let Yi = {y | xi ⊕ y ∈ Si}. Then
Xi ∩ Yi = ∅ and Xi ∪ Yi = the variables that occur in Si.

It is easy to see that Si ≡ {(Xi ∧ Yi) ∨ (Xi ∧ Yi)}.
We claim that

nf(S,X) = {Z,O} ∪
ℓ⋃

i=1

{(Xi ∧ Yi) ∨ (Xi ∧ Yi)}

fulfills the criteria of Lemma 10.
First of all, it is clear that nf is computable in polynomial time. From the

observations above, it follows that Z,O,X1, Y1, . . . , Xℓ, Yℓ are pairwise disjoint
subsets of X such that

7

1. X = Z ∪O ∪
⋃ℓ

i=1(Xi ∪ Yi), and
2. Xi ∪ Yi 6= ∅ for all 1 ≤ i ≤ ℓ,

that nf(S,X) ≡ S, and that nf(π(S), X) = π(nf(S), X), for all permutations π

of X .
It remains to show that if U is a set of constraint applications of C with

constants, and S ≡ U , then nf(S,X) = nf(U,X).
Let Z ′, O′, X ′

1, Y
′

1 , . . . , X
′

k, Y
′

k be subsets of X such that:

1. Z ′, O′, X ′

1, Y
′

1 , . . . , X
′

k, Y
′

k are pairwise disjoint,

2. X = Z ′ ∪O′ ∪
⋃k

i=1(X
′

i ∪ Y ′

i),
3. X ′

i ∪ Y ′

i 6= ∅ for all 1 ≤ i ≤ ℓ,

4. nf(U,X) = {Z ′, O′} ∪
⋃k

i=1{(X
′

i ∧ Y ′

i) ∨ (X ′

i ∧ Y ′

i)}.

Since S ≡ nf(S,X), U ≡ nf(U,X), and S ≡ U , it follows that nf(S,X) ≡
nf(U,X). From this, it is immediate that Z = Z ′ and that O = O′. In addition,
for any two variables x, y ∈ X :

– ({x, y} ∈ Xi or {x, y} ∈ Yi for some i) iff (S is satisfiable iff x ≡ y) iff
({x, y} ∈ X ′

j or {x, y} ∈ Y ′

j for some j), and
– ({x, y} ∩Xi 6= ∅ and {x, y}∩ Yi 6= ∅ for some i) iff (S is satisfiable iff x 6≡ y)

iff ({x, y} ∩X ′

j 6= ∅ and {x, y} ∩ Y ′

j 6= ∅ for some j).

This implies that nf(U,X) = nf(S,X), which completes the proof. ⊓⊔

Making use of the normal form, it is not too hard to prove our claimed upper
bound.

Theorem 11. Let C be a set of constraints. If C is 2-affine, then ISO(C) and
ISOc(C) are in P.

Proof. Let S and U be two sets of constraint applications of C and let X

be the set of variables that occur in S ∪ U . Use Lemma 10 to bring S and
U into normal form. Using the first point in that lemma, it is easy to check
whether S or U are equivalent to 0. For the remainder of the proof, we now
suppose that neither S nor U is equivalent to 0. Let Z,O,X1, Y1, . . . , Xℓ, Yℓ and
Z ′, O′, X ′

1, Y
′

1 , . . . , X
′

k, Y
′

k be subsets of X such that:

1. Z,O,X1, Y1, . . . , Xℓ, Yℓ are pairwise disjoint and Z ′, O′, X ′

1, Y
′

1 , . . . , X
′

k, Y
′

k

are pairwise disjoint,
2. Xi ∪ Yi 6= ∅ for all 1 ≤ i ≤ ℓ and X ′

i ∪ Y ′

i 6= ∅ for all 1 ≤ i ≤ k,

3. nf(S,X) = {Z,O} ∪
⋃ℓ

i=1{(Xi ∧ Yi)∨ (Xi ∧ Yi)}, and nf(U,X) = {Z ′, O′} ∪⋃k

i=1{(X
′

i ∧ Y ′

i) ∨ (X ′

i ∧ Y ′

i)}.

We need to determine whether S is isomorphic to U . Since nf is a normal
form function for C, it suffices to check if there exists a permutation π on X such
that π(nf(S,X)) = nf(U,X). Note that

π(nf(S,X)) = {π(Z), π(O)} ∪
ℓ⋃

i=1

{(π(Xi) ∧ π(Yi)) ∨ (π(Xi) ∧ π(Yi))}.

It is immediate that π(nf(S,X)) = nf(U,X) if and only if

8

– ℓ = k, π(Z) = Z ′, π(O) = O′, and
– {{π(X1), π(Y1)}, . . . , {π(Xℓ), π(Yℓ)}} = {{X ′

1, Y
′

1}, . . . , {X
′

ℓ, Y
′

ℓ }}.

Since Z,O,X1, Y1, . . . , Xℓ, Yℓ are pairwise disjoint subsets of X , and since
Z ′, O′, X ′

1, Y
′

1 , . . . , X
′

k, Y
′

k are pairwise disjoint subsets of X , it is easy to see that
there exists a permutation π on X such that nf(π(S), X) = nf(U,X) if and only
if

– ℓ = k, ||Z|| = ||Z ′||, ||O|| = ||O′||, and
– {{||X1||, ||Y1||}, . . . , {||Xk||, ||Yk||}} = {{||X ′

1||, ||Y
′

1 ||}, . . . , {||X
′

k||, ||Y
′

k||}}.

It is easy to see that the above conditions can be verified in polynomial time.
It follows that ISO(C) and ISOc(C) are in P. ⊓⊔

5 GI-hardness

In this section, we will prove that if C is not 2-affine, then GI is polynomial-time
many-one reducible to ISOc(C). As in the upper bound proofs of the previous
section, we will often look at certain normal forms. In this section, it is often
convenient to avoid constraint applications that allow duplicates.

Definition 12. Let C be a set of constraints.

1. A is a constraint application of C without duplicates if there exists a constraint
C ∈ C of arity k such that A = C(x1, . . . , xk), where xi 6= xj for all i 6= j.

2. Let S be a set of constraint applications of C [without duplicates] over vari-
ables X . We say that S is a maximal set of constraint applications of C
[without duplicates] over variables X if for all constraint applications A of
C [without duplicates] over variables X , if S → A, then A ∈ S.
If X is the set of variables occurring in S, we will say that S is a maximal
set of constraint applications of C [without duplicates].

The following lemma is easy to see.

Lemma 13. Let C be a set of constraints. Let S and U be maximal sets of
constraint applications of C over variables X [without duplicates]. Then S is
isomorphic to U iff there exists a permutation π of X such that π(S) = U .

When reducing from GI, it is often useful to assume that the graphs have
certain properties. The following lemma shows that the complexity of GI for
certain restricted classes of graphs does not decrease.

Lemma 14. GI is polynomial-time many-one reducible to the graph isomor-
phism problem for pairs of graphs G and H such that for some n, G and H have
the same set of vertices {1, . . . , n}, G and H have the same number of edges,
every vertex in G and H has degree at least two (i.e., is incident with at least
two edges), and G and H do not contain triangles.

9

Proof. Let G and H be graphs. If G and H do not contain the same number
of vertices, or if G and H do not contain the same number of edges, or if G and
H do not contain the same number of isolated vertices, then G is not isomorphic
to H .

So suppose that G and H have the same number of vertices, the same number
of edges, and the same number of isolated vertices. Let G1 be the graph that
results if we remove all isolated vertices from G. Let H1 be the graph that results
if we remove all isolated vertices fromH . Then G1 andH1 have the same number
of vertices and the same number of edges, all vertices in G1 and H1 have degree
at least one, and G is isomorphic to H iff G1 is isomorphic to H1. Without loss
of generality, assume that G1 has at least 3 vertices.

We will now ensure that no vertex has degree less than two. Let v0 be a
new vertex. Define G2 as follows: V (G2) = V (G1) ∪ {v0}, E(G2) = E(G1) ∪
{{v0, v} | v ∈ V (G1)}. Define H2 in the same way, i.e., V (H2) = V (H1) ∪ {v0},
E(H2) = E(H1) ∪ {{v0, v} | v ∈ V (H1)}. Note that G2 and H2 have the same
number of vertices and the same number of edges, and that all vertices in G2 and
H2 have degree at least two. In addition, it is easy to see that G1 is isomorphic
to H1 iff G2 is isomorphic to H2: If π is an isomorphism from G2 to H2, then
we can define an isomorphism ρ from G1 to H1 as follows: For all v ∈ V (G1),
ρ(v) = π(v) if π(v) 6= v0, and ρ(v) = π(v0) if π(v) = v0.

Next, we will remove triangles. Define G3 as follows: V (G3) = V (G2)∪E(G2),
E(G3) = {{v, w} | v ∈ V (G2), w ∈ E(G2), v ∈ w}. Define H3 in the same way,
i.e., V (H3) = V (H2)∪E(H2), E(H3) = {{v, w} | v ∈ V (H2), w ∈ E(H2), v ∈ w}.
Note that G3 and H3 are triangle-free graphs with the same number of vertices
and the same number of edges, and that all vertices in G3 and H3 have degree
at least two. We claim that G2 is isomorphic to H2 iff G3 is isomorphic to H3.
The left-to-right direction is immediate. The right-to-left direction follows since
an isomorphism from G3 to H3 maps V (G2) to V (H2), since these are exactly
the vertices at even distance from a vertex of degree greater than 2. (Here we
use the fact that the degree of v0 is greater than 2.)

Let n be the number of vertices of G3 and H3. Rename the vertices in G3

and H3 to {1, 2, . . . , n}. This proves Lemma 14. ⊓⊔

Note that if C is not 2-affine, then C is not affine, or C is affine and not
bijunctive. We will first look at some very simple non-affine constraints.

Definition 15 ([CKS01, p. 20]).

1. OR0 is the constraint λxy.x ∨ y.
2. OR1 is the constraint λxy.x ∨ y.
3. OR2 is the constraint λxy.x ∨ y.
4. OneInThree is the constraint λxyz.(x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z).

As a first step in the general GI-hardness proof, we show that GI reduces to
some particular constraints.

Lemma 16. 1. GI is polynomial-time many-one reducible to ISO({OR0}),
ISO({OR1}), and ISO({OR2}).

10

2. Let h be the 4-ary constraint h(x, y, x′, y′) = (x ∨ y)∧ (x⊕ x′)∧ (y⊕ y′). GI
is polynomial-time many-one reducible to ISO({h}).

3. Let h be a 6-ary constraint h(x, y, z, x′, y′, z′) = OneInThree(x, y, z) ∧ (x ⊕
x′) ∧ (y ⊕ y′) ∧ (z ⊕ z′). Then GI is polynomial-time many-one reducible to
ISO({h}).

Proof. 1. We will first show that GI is polynomial-time many-one reducible
to ISO({OR0}). (We remark that this result already appears in [BRS98].) Let

Ĝ be a graph and let V (Ĝ) = {1, 2, . . . , n}. We encode Ĝ in the obvious way as

a set of constraint applications S(Ĝ) = {xi ∨ xj | {i, j} ∈ E(Ĝ)}. It is easy to

see that S(Ĝ) is a maximal set of constraint applications of OR0. If G and H

are two graphs without isolated vertices and with vertex set {1, 2, . . . , n}, then
G is isomorphic to H if and only if there exists a permutation π of {x1, . . . , xn}
such that π(S(G)) = S(H). By Lemma 13 it follows that G is isomorphic to H

if and only if S(G) is isomorphic to S(H).

If we negate all occurring variables in S(Ĝ), i.e., S(Ĝ) = {xi ∨ xj | {i, j} ∈

E(Ĝ)}, we obtain a reduction from GI to ISO({OR2}).
It remains to show that GI is reducible to ISO({OR1}). Note that the obvious

encoding {xi ∨ xj | {i, j} ∈ E(Ĝ)} does not work, since a 3-vertex graph with
edges {1, 2} and {1, 3} will be indistinguishable from a 3-vertex graph with edges
{1, 2}, {1, 3}, and {2, 3}.

We solve this problem by using a slightly more complicated encoding. Let
E(Ĝ) = {e1, . . . , em}. Define S(Ĝ) = {xi∨yk, xj∨yk | ek = {i, j}}. We claim that
if G and H are two graphs without isolated vertices with vertex set {1, 2, . . . , n},
then G is isomorphic to H if and only if S(G) is isomorphic to S(H).

The left-to-right direction is immediate. For the converse, note that for all Ĝ,
S(Ĝ) is a maximal set of constraint applications of OR1. Thus, by Lemma 13, if
S(G) is isomorphic to S(H), there exists a permutation π of the variables such
that π(S(G)) = S(H). Since the xi variables are exactly those variables that
occur positively in S(G) and S(H), π maps x-variables to x-variables, and thus
induces an isomorphism from G to H .

2. We use a similar encoding as in the first case above. Let Ĝ be a graph
and let V (Ĝ) = {1, 2, . . . , n}. We encode Ĝ as the following set of constraint

applications of h: S(Ĝ) = {h(xi, xj , x
′

i, x
′

j) | {i, j} ∈ E(Ĝ)}.
Let X = {x1, . . . , xn, x

′

1, . . . , x
′

n}. Note that for all variables x, y ∈ X ,

(S(Ĝ) → (x ∨ y) and S(Ĝ) 6→ (x ⊕ y)) iff there exists an edge {i, j} ∈ E

such that {x, y} = {xi, xj}.
Let G and H be two graphs without isolated vertices and with vertex set

{1, 2, . . . , n}. We claim thatG is isomorphic toH if and only if S(G) is isomorphic
to S(H). The left-to-right direction is immediate, since an isomorphism π from
G to H induces an isomorphism ρ from S(G) to S(H), by letting ρ(xi) = xπ(i)

and ρ(x′

i) = x′

π(i).

For the converse, suppose that ρ is a permutation of X such that ρ(S(G)) ≡
S(H). As noted above, for all {i, j} ∈ E(G), it holds that S(H) → (ρ(xi)∨ρ(xj))
and S(H) 6→ (ρ(xi)⊕ρ(xj)). Again by the observation above, there exists an edge

11

{k, ℓ} ∈ E(H) such that {ρ(xi), ρ(xj)} = {xk, xℓ}. Thus, ρ maps x-variables to
x-variables. Let π(i) = j iff ρ(xi) = xj . It is easy to see that π is an isomorphism
from G to H .

3. Let Ĝ be a graph such that V (Ĝ) = {1, 2, . . . , n} and E(Ĝ) = {e1, . . . , em}.

Define S(Ĝ) as follows: S(Ĝ) = {h(xi, xj , yk, x
′

i, x
′

j , y
′

k) | ek = {i, j}} ∪ {xi ⊕
x′

i | 1 ≤ i ≤ n} ∪ {yi ⊕ y′i | 1 ≤ i ≤ m}.

Define U(Ĝ) as follows: U(Ĝ) = {OneInThree(xi, xj , yk) | ek = {i, j}}∪{xi⊕

x′

i | 1 ≤ i ≤ n} ∪ {yi ⊕ y′i | 1 ≤ i ≤ m}. Clearly, U(Ĝ) is equivalent to S(Ĝ). Let

X be the set of all variables that occur in U(Ĝ).
We will use the following claim whose proof will be given after the proof of

Lemma 16.

Claim 17 The set of all constraint applications of OneInThree without du-
plicates that occur in U(Ĝ) is a maximal set of constraint applications of
OneInThree over variables X without duplicates, where X is the set of all vari-
ables that occur in U(Ĝ).

LetG andH be graphs without isolated vertices, with vertex set {1, 2, . . . , n},
and with the same number of edges. Also assume that every vertex in G and H

is incident with at least two edges (see Lemma 14). Let E(G) = {e1, . . . , em}
and let E(H) = {e′1, . . . , e

′

m}.
We claim that G is isomorphic to H iff S(G) is isomorphic to S(H). It suffices

to show that G is isomorphic to H iff U(G) is isomorphic to U(H).
The left-to-right direction is trivial, since an isomorphism between the graphs

induces an isomorphism between sets of constraint applications as follows. If
π : V → V is an isomorphism from G to H , then we can define an isomorphism
ρ from U(G) to U(H) as follows:

– ρ(xi) = xπ(i), ρ(x
′

i) = x′

π(i), for i ∈ V .

– For ek = {i, j}, ρ(yk) = yℓ, and ρ(y′k) = y′ℓ, where e′ℓ = {π(i), π(j)}.

For the converse, suppose that ρ is an isomorphism from U(G) to U(H).
Let U ′(G) and U ′(H) be the sets of all constraint applications of OneInThree
without duplicates that occur in U(G) and U(H), respectively.

From Claim 17 and Lemma 13, it follows that ρ(U ′(G)) = U ′(H). Note
that the x-variables in U ′(G) and U ′(H) are exactly those variables that occur
in at least two constraint applications of OneInThree without constants. Thus,
ρ maps x-variables to x-variables. Likewise, ρ maps y-variables to y-variables.
Let π be the bijection on {1, 2, . . . , n} defined by π(i) = j iff ρ(xi) = xj .
We claim that π is an isomorphism from G to H . First let ek = {i, j}.
Thus, OneInThree(xi, xj , yk) ∈ U ′(G). Then, OneInThree(ρ(xi), ρ(xj), ρ(yk)) ∈
U ′(H). Thus, OneInThree(xπ(i), xπ(j), ρ(yk)) ∈ U ′(H). This implies that
{π(i), π(j)} is an edge in H . For the converse, suppose that e′k =
{π(i), π(j)} is an edge in H . Then OneInThree(xπ(i), xπ(j), yk) ∈ U ′(H). Then,
OneInThree(ρ(xi), ρ(xj), yk) ∈ U ′(H). Then OneInThree(xi, xj , ρ

−1(yk)) ∈
U ′(G). It follows that {i, j} is an edge in G. ⊓⊔

12

Proof of Claim 17. Suppose for a contradiction that a, b, and c are
three distinct variables in X such that U(Ĝ) → OneInThree(a, b, c) and

OneInThree(a, b, c) 6∈ U(Ĝ).
First note that that it cannot be the case that {a, b, c} contains {xi, x

′

i} or

{yi, y′i} for some i, since that would imply that U(Ĝ) → ¬d for some variable

d ∈ X . But clearly, there exists a satisfying assignment for U(Ĝ) such that the
value of d is 1.

Secondly, note that if we set all x′-variables and all y-variables to 1, and
all other variables in X to 0, we obtain a satisfying assignment for U(Ĝ). It
follows that exactly one variable in {a, b, c} is an x′-variable or a y-variable.
The proof consists of a careful analysis of the different cases. We will show
that in each case, there exists an assignment that satisfies U(Ĝ) but that does

not satisfy OneInThree(a, b, c), which contradicts the assumption that U(Ĝ) →
OneInThree(a, b, c).

1. If {a, b, c} = {xi, xj , yk}, then, since OneInThree(a, b, c) 6∈ U(Ĝ), ek 6= {i, j}.
Without loss of generality, let j 6∈ ek. It is easy to see that there is a satisfying
assignment for U(Ĝ) such that yk and xj are set to 1. (Set all other x-
variables to 0 and set yℓ to 1 iff j 6∈ eℓ.) Thus, we have an assignment that

satisfies U(Ĝ) but not OneInThree(a, b, c).
2. If {y′ℓ, yk} ⊆ {a, b, c}, note that k 6= ℓ, by the observation made above. Let

i be such that i ∈ eℓ and i 6∈ ek. Set xi to 1, and set all other x-variables
to 0. This can be extended to a satisfying assignment for S(Û), and in this
assignment, yℓ is 0 (and thus y′ℓ is 1), and yk = 1.

3. If {x′

i, xj} ⊆ {a, b, c}. Then i 6= j. Set xj to 1 and all other x-variables to
0. It is easy to see that this can be extended to a satisfying assignment for
U(Ĝ).

4. If {a, b, c} = {x′

i, y
′

k, y
′

ℓ}, then, if i 6∈ eℓ and i 6∈ ek, then set xi to 1, set all
other x-variables to 0, set yr to 1 iff i 6∈ er, and extend this to a satisfying
assignment for U(Ĝ). If i ∈ eℓ or i ∈ ek, assume without loss of generality
that i ∈ ek, set xi to 0, set yk to 0, and extend this to a satisfying assignment
for U(Ĝ).

⊓⊔

The constraints OR0, OR1, and OR2 are the simplest non-affine constraints.
However, it is not enough to show that GI reduces to the isomorphism problem
for these simple cases. In order to prove that GI reduces to the isomorphism
problem for all sets of constraints that are not affine, we need to show that all
such sets can “encode” a finite number of simple cases.

Different encodings are used in the lower bound proofs for different constraint
problems. All encodings used in the literature however, allow the introduction
of auxiliary variables. In [CKS01], Lemma 5.30, it is shown that if C is not
affine, then C plus constants can encode OR0, OR1, or OR2. This implies that,
for certain problems, lower bounds for OR0, OR1, or OR2 transfer to C plus
constants. However, their encoding uses auxiliary variables, which means that
lower bounds for the isomorphism problem don’t automatically transfer. For

13

sets of constraints that are not affine, we will be able to use part of the proof
of [CKS01], Lemma 5.30, but we will have to handle auxiliary variables explicitly,
which makes the constructions much more complicated.

Theorem 18. If C is not affine, then GI is polynomial-time many-one reducible
to ISOc(C).

Proof. First suppose that C is weakly negative and weakly positive. Then C
is bijunctive [CH96]. From the proof of [CKS01], Lemma 5.30, which crucially
uses Schaefer’s characterization of Boolean functions (see Lemma 3), it follows
that there exists a constraint application A(x, y, z) of C with constants such
that A(0, 0, 0) = A(0, 1, 1) = A(1, 0, 1) = 1 and A(1, 1, 0) = 0. Since C is weakly
positive, we also have that A(1, 1, 1) = 1. Since C is bijunctive, we have that
A(0, 0, 1) = 1. The following truth-table summarizes all possibilities (this is a
simplified version of [CKS01], Claim 5.31).

xyz 000 001 010 011 100 101 110 111
A(x, y, z) 1 1 a 1 b 1 0 1

Thus we obtain A(x, x, y) = (x ∨ y). The required result follows from
Lemma 16.1.

So, suppose that C is not weakly negative or not weakly positive. We follow
the proof of [CKS01], Lemma 5.30. From the proof of [CKS01], Lemma 5.26, it
follows that there exists a constraint application A of C with constants such that
A(x, y) = OR0(x, y), A(x, y) = OR2(x, y), or A(x, y) = x ⊕ y. In the first two
cases, the result follows from Lemma 16.1.

Consider the last case. From the proof of [CKS01], Lemma 5.30, there exist a
set S(x, y, z, x′, y′, z′) of C constraint applications with constants and a ternary
function h such that S(x, y, z, x′, y′, z′) = h(x, y, z)∧ (x⊕x′)∧ (y⊕ y′)∧ (z⊕ z′),
h(000) = h(011) = h(101) = 1, and h(110) = 0.

The following truth-table summarizes all possibilities:

xyz 000 001 010 011 100 101 110 111
h(x, y, z) 1 a b 1 c 1 0 d

We will first show that in most cases, there exists a set U of constraint
applications of C with constants such that U(x, y, x′, y′) = (x ∨ y) ∧ (x ⊕ x′) ∧
(y ⊕ y′). In all these cases, the result follows from Lemma 16.2 above.

– b = 0, d = 1. In this case, S(x, y, x, x′, y′, x′) = (x∨ y′)∧ (x⊕x′)∧ (y⊕ y′) =
(x ∨ y′) ∧ (x⊕ x′) ∧ (y ⊕ y′).

– b = 1, d = 0. In this case, S(x, y, x, x′, y′, x′) = (x′ ∨ y′) ∧ (x⊕ x′) ∧ (y⊕ y′).
– c = 0, d = 1. In this case, S(x, y, y, x′, y′, y′) = (x′ ∨ y) ∧ (x⊕ x′) ∧ (y ⊕ y′).
– c = 1, d = 0. In this case, S(x, y, y, x′, y′, y′) = (x′ ∨ y′) ∧ (x⊕ x′) ∧ (y ⊕ y′).
– b = c = 1. In this case, S(x, y, 0, x′, y′, 1) = (x′ ∨ y′) ∧ (x⊕ x′) ∧ (y ⊕ y′).
– b = c = d = 0; a = 1. In this case, S(0, y, z, 1, y′, z′) = (y′ ∨ z) ∧ (y ⊕ y′) ∧

(z ⊕ z′).

14

The previous cases are analogous to the cases from the proof of [CKS01], Claim
5.31. However, we have to explicitly add the ⊕ conjuncts to simulate the negated
variables used there, which makes Lemma 16.2 necessary.

The last remaining case is the case where a = b = c = d = 0. In the proof
of [CKS01], Claim 5.31, it suffices to note that (y ∨ z) = ∃!xh(x, y, z). But,
since we are looking at isomorphism, we cannot ignore auxiliary variables. Our
result uses a different argument and follows from Lemma 16.3 above and the
observation that S(x, y, z, x′, y′, z′) = OneInThree(x, y, z′)∧ (x⊕ x′)∧ (y⊕ y′)∧
(z ⊕ z′). ⊓⊔

We now turn to the case where C is affine, but not 2-affine. As before, we first
show GI-hardness of a particular constraint. The proof uses similar constructions
as the proof of Lemma 16.

Lemma 19. Let h be the 6-ary constraint such that h(x, y, z, x′, y′, z′) = (x ⊕
y ⊕ z) ∧ (x⊕ x′) ∧ (y ⊕ y′) ∧ (z ⊕ z′). GI is polynomial-time many-one reducible
to ISO({h}).

Proof. Following [CKS01, p. 20], we use XOR2 to denote the constraint
λxy.x ⊕ y, and XOR3 to denote λxyz.x⊕ y ⊕ z.

Let Ĝ be a graph such that V (Ĝ) = {1, 2, . . . , n}, and E(Ĝ) =
{e1, e2, . . . , em}. We will use a similar encoding as in the proof of Lemma 16.
Again, propositional variable xi will correspond to vertex i and propositional
variable yi will correspond to edge ei.

Define S(Ĝ) as follows: S(Ĝ) = {h(xi, xj , yk, x
′

i, x
′

j , y
′

k) | ek = {i, j}} ∪ {xi ⊕
x′

i | 1 ≤ i ≤ n} ∪ {yi ⊕ y′i | 1 ≤ i ≤ m}.

Define U(Ĝ) as follows: U(Ĝ) = {(xi ⊕ xj ⊕ yk), (x
′

i ⊕ x′

j ⊕ yk), (x
′

i ⊕ xj ⊕
y′k), (xi ⊕ x′

j ⊕ y′k) | ek = {i, j}} ∪ {xi ⊕ x′

i | 1 ≤ i ≤ n} ∪ {yi ⊕ y′i | 1 ≤ i ≤ m}.

Clearly, U(Ĝ) is equivalent to S(Ĝ). Let X be the set of variables occurring in

U(Ĝ).

The proof relies on the following claim, which shows that U(Ĝ) is a maximal
set of constraint applications of {XOR2,XOR3} without duplicates. This claim
will be proved after the proof of this lemma.

Claim 20 Let Ĝ be a triangle-free graph such that V (Ĝ) = {1, 2, . . . , n},

E(Ĝ) = {e1, e2, . . . , em}, and every vertex has degree at least two. Then U(Ĝ) is
a maximal set of constraint applications of {XOR2,XOR3} without duplicates.

Let G and H be graphs such that V (G) = V (H) = {1, . . . , n}, E(G) =
{e1, . . . , em}, E(H) = {e′1, . . . , e

′

m}, all vertices in G and H have degree at least
two, and G and H do not contain triangles.

We will show that G is isomorphic to H if and only if S(G) is isomorphic
to S(H). It suffices to show that G is isomorphic to H if and only if U(G) is
isomorphic to U(H).

The left-to-right direction is trivial, since an isomorphism between the graphs
induces an isomorphism between sets of constraint applications as follows. If
π : V → V is an isomorphism from G to H , then we can define an isomorphism
ρ from U(G) to U(H) as follows:

15

– ρ(xi) = xπ(i), ρ(x
′

i) = x′

π(i), for i ∈ V .

– For ek = {i, j}, ρ(yk) = yℓ, and ρ(y′k) = y′ℓ, where e′ℓ = {π(i), π(j)}.

For the converse, suppose that ρ is an isomorphism from U(G) to U(H). By
Lemma 13 and Claim 20, ρ(U(G)) = U(H). Note that every yi and y′i variable
occurs in exactly two constraint applications of XOR3 in U(G) and U(H), while
every xi and x′

i variable occurs in at least four constraint applications of XOR3

in U(G) and U(H) (since every vertex in G and H is incident with at least two
edges). From the XOR2 constraint applications, it is also immediate that for all
a ∈ {x1, . . . , xn, y1, . . . , ym}, there exists a b ∈ {x1, . . . , xn, y1, . . . , ym} such that
{ρ(a), ρ(a′)} = {b, b′}.

Define π as follows: π(i) = j if and only if {ρ(xi), ρ(x
′

i)} = {xj , x
′

j}. By the
observations above, π is total and 1-1. It remains to show that {i, j} ∈ E(G) iff
{π(i), π(j)} ∈ E(H).

Let ek = {i, j}. Then xi⊕xj⊕ek ∈ U(G). Thus, ρ(xi)⊕ρ(xj)⊕ρ(yk) ∈ U(H).
That is, a⊕ b ⊕ ρ(yk) ∈ U(H) for some a ∈ {xπ(i), x

′

π(i)} and b ∈ {xπ(j), x
′

π(j)}.

But that implies that ρ(yk) ∈ {yℓ, y′ℓ} where e′ℓ = {π(i), π(j)}. This implies that
{π(i), π(j)} ∈ E(H). For the converse, suppose that {π(i), π(j)} ∈ E(H). Then
xπ(i) ⊕ xπ(j) ⊕ yℓ ∈ U(H) for e′ℓ = {π(i), π(j)}. It follows that a⊕ b⊕ ρ−1(yℓ) ∈
U(G) for some a ∈ {xi, x

′

i} and b ∈ {xj, x
′

j}. By the form of U(G), it follows
that {i, j} ∈ E(G).

⊓⊔

Proof of Claim 20. Suppose that a and b are two distinct variables in X

such that U(Ĝ) → (a ⊕ b) and a ⊕ b 6∈ U(Ĝ). It is easy to see that we can set

a and b to 0, and extend this to a satisfying assignment of U(Ĝ), which is a
contradiction.

Next, let a, b, c be three distinct variables in X such that U(Ĝ) → (a⊕ b⊕ c)

and a ⊕ b ⊕ c 6∈ U(Ĝ). Let X̂ = {x1, . . . , xn, y1, . . . , ym}. Any assignment that

sets all variables in X̂ to 1, and all variables not in X̂ to 0, satisfies U(Ĝ). It

follows that either exactly one or exactly three elements of {a, b, c} are in X̂.

If exactly one of {a, b, c} is in X̂ , assume without loss of generality that

a ∈ X̂. If a′ ∈ {b, c}, then, without loss of generality, let a′ = b. In this case,

U(Ĝ) → b. But this is a contradiction, since it is immediate that we can set c to

1 and extend this to a satisfying assignment of U(Ĝ). Next, let d, e ∈ X̂ be such

that d′ = b and e′ = c. In that case, a, d, and e are distinct variables in X̂ such
that U(Ĝ) → a⊕ d⊕ e and a⊕ d⊕ e 6∈ U(Ĝ). This falls under the next case.

Finally, suppose that a, b, c are three distinct variables in X̂ such that
U(Ĝ) → a⊕b⊕c and a⊕b⊕c 6∈ U(Ĝ). Let Û(Ĝ) = {(xi⊕xj⊕yk) | ek = {i, j}},

i.e., Û(Ĝ) consists of all constraint applications in U(Ĝ) whose variables are in

X̂. Since any assignment on X̂ that satisfies Û(Ĝ) can be extended to a satis-

fying assignment of U(Ĝ) (by letting a′ = a for all a ∈ X̂), the desired result
follows immediately from the following claim. ⊓⊔

Claim 21 Û(Ĝ) is a maximal set of constraint applications of XOR3 without

duplicates over variables X̂.

16

Proof. Suppose that a, b, c are three distinct variables in X̂ such that Û(Ĝ) →

a ⊕ b ⊕ c and a ⊕ b ⊕ c 6∈ Û(Ĝ). The proof consists of a careful analysis of the

different cases. We will show that in each case, there exists an assignment on X̂

that satisfies Û(Ĝ) but not (a ⊕ b ⊕ c), which contradicts the assumption that

Û(Ĝ) → a⊕ b⊕ c.
It is important to note that any assignment to {x1, . . . , xn} can be extended

to a satisfying assignment of Û(Ĝ).

1. If a, b, and c are in {x1, . . . , xn}, then set a, b, and c to 0. This assignment can

be extended to an assignment on X̂ that satisfies xi⊕xj ⊕yk for ek = {i, j}.

So, we now have an assignment that satisfies Û(Ĝ) but does not satisfy
(a⊕ b⊕ c).

2. If exactly two of {a, b, c} are in {x1, . . . , xn}, then without loss of generality,

let c = yk for ek = {i, j}. By the assumption that a⊕ b ⊕ c is not in Û(Ĝ),
at least one of a and b is not in {xi, xj}.
Without loss of generality, let a 6∈ {xi, xj}. Set a to 0 and set {x1, . . . , xm} \
{a} to 1. This assignment can be extended to a satisfying assignment for

Û(Ĝ). Note that such an assignment will set yk to 1. It follows that this
assignment does not satisfy a⊕ b⊕ c.

3. If exactly one of {a, b, c} are in {x1, . . . , xn}, without loss of generality, let
a ∈ {x1, . . . , xn}. Set a to 0 and b and c to 1. It is easy to see that this can

be extended to a satisfying assignment for Û(Ĝ).
4. If a, b, and c are in {y1, ..., ym}, let a = yk1

, b = yk2
, c = yk3

such that
ekℓ

= {iℓ, jℓ} for ℓ ∈ {1, 2, 3}. First suppose that for every ℓ ∈ {1, 2, 3}, for
every x ∈ {xiℓ , xjℓ}, there exists an ℓ′ ∈ {1, 2, 3} with ℓ′ 6= ℓ and a constraint

application A in Û(Ĝ) such that x and yk
ℓ′

occur in A. This implies that
every vertex in {i1, j1, i2, j2, i3, j3} is incident with at least 2 of the edges
in ek1

, ek2
, ek3

. Since these three edges are distinct, it follows that the edges

ek1
, ek2

, ek3
form a triangle in Ĝ, which contradicts the assumption that Ĝ

is triangle-free.
So, let ℓ ∈ {1, 2, 3}, x ∈ {xiℓ , xjℓ} be such that for all ℓ′ ∈ {1, 2, 3} with

ℓ 6= ℓ′, x and yk
ℓ′

do not occur in the same constraint application in Û(Ĝ).
Set x to 0 and set {x1, . . . , xn}\{x} to 1. This can be extended to a satisfying

assignment of Û(Ĝ) and such a satisfying assignment must have the property
that ykℓ

is 0 and yk
ℓ′
is 1 for all ℓ′ ∈ {1, 2, 3} such that ℓ′ 6= ℓ.

⊓⊔

Theorem 22. If C is affine and not bijunctive, then GI is polynomial-time
many-one reducible to ISOc(C).

Proof. Recall from the proof of Theorem 18 that if C is not bijunctive, then C
is not weakly positive or not weakly negative. As in the proof of that theorem, it
follows from the the proof of [CKS01], Lemma 5.26 that there exists a constraint
application A of C with constants such that A(x, y) = OR0(x, y), A(x, y) =
OR2(x, y), or A(x, y) = x⊕y. Since A is affine, and OR0 and OR2 are not affine,
the first two cases cannot occur.

17

Consider the last case. Let B ∈ C be a constraint that is not bijunctive. Let
k be the arity of B. Following Schaefer’s characterization of bijunctive functions
(see Lemma 3), there exist assignments s, t, u ∈ {0, 1}k such that B(s) = B(t) =
B(u) = 1 and B(majority(s, t, u)) = 0. In addition, since C is affine, using
Schaefer’s characterization of affine functions, B(s⊕ t⊕ u) = 1.

Let B̂(x, y, z, x′, y′, z′) = B(x1, . . . , xk) be the constraint application of B
with constants that results if for all 1 ≤ i ≤ k, xi =

– 1 if si = ti = ui = 1,
– 0 if si = ti = ui = 0,
– x if si = ti = 0 and ui = 1,
– x′ if si = ti = 1 and ui = 0,
– y if si = ui = 0 and ti = 1,
– y′ if si = ui = 1 and ti = 0,
– z if si = 0 and ti = ui = 1,
– z′ if si = 1 and ti = ui = 0.

Note that B̂(0, 0, 0, 1, 1, 1) = B(s) = 1, B̂(0, 1, 1, 1, 0, 0) = B(t) = 1,

B̂(1, 0, 1, 0, 1, 0) = B(u) = 1, B̂(1, 1, 0, 0, 0, 1) = B(s ⊕ t ⊕ u) = 1, and

B̂(0, 0, 1, 1, 1, 0) = B(majority(s, t, u)) = 0.

Let S = {B̂(x, y, z, x′, y′, z′), A(x, x′), A(y, y′), A(z, z′)}. Then S is a set of
constraint applications of C with constants such that there exists a ternary func-
tion h such that S(x, y, z, x′, y′, z′) = h(x, y, z)∧ (x⊕x′)∧ (y⊕ y′)∧ (z⊕ z′) and
h(000) = h(011) = h(101) = h(110) = 1 and h(001) = 0.

The following table summarizes the possibilities we have.

xyz 000 001 010 011 100 101 110 111
h(x, y, z) 1 0 a 1 b 1 1 c

We will analyze all cases.

– a = 1. In this case, S(0, y, z, 1, y′, z′) = (y ∨ z′) ∧ (y ⊕ y′) ∧ (z ⊕ z′), and the
result follows from Lemma 16.2.

– b = 1. In this case, S(x, 0, z, x′, 1, z′) = (x ∨ z′) ∧ (x⊕ x′) ∧ (z ⊕ z′), and the
result follows from Lemma 16.2.

– b = 0 and c = 1. In this case, S(1, y, z, 0, y′, z′) = (y ∨ z)∧ (y⊕ y′)∧ (z⊕ z′),
and the result follows from Lemma 16.2.

– a = b = c = 0. In this case, S(x′, y, z, x, y′, z′) = (x⊕ y⊕ z)∧ (x⊕ x′)∧ (y⊕
y′) ∧ (z ⊕ z′), and the result follows from Lemma 19.

⊓⊔
Acknowledgements: We would like to thank Lane Hemaspaandra for helpful
conversations and suggestions, and the anonymous referees for helpful comments.

References

[AK02] V. Arvind and Piyush P. Kurur. Graph isomorphism is in SPP. Technical
Report 02-37, Electronic Colloqium on Computational Complexity, 2002.

18

[AT00] M. Agrawal and T. Thierauf. The formula isomorphism problem. SIAM

Journal on Computing, 30(3):990–1009, 2000.
[BHRV02] E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. Equivalence and

isomorphism for Boolean constraint satisfaction. In Computer Science

Logic, volume 2471 of Lecture Notes in Computer Science, pages 412–426,
Berlin Heidelberg, 2002. Springer Verlag.

[BRS98] B. Borchert, D. Ranjan, and F. Stephan. On the computational complexity
of some classical equivalence relations on Boolean functions. Theory of

Computing Systems, 31:679–693, 1998.
[CH96] N. Creignou and M. Hermann. Complexity of generalized satisfiability

counting problems. Information and Computation, 125:1–12, 1996.
[CKS01] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of

Boolean Constraint Satisfaction Problems. Monographs on Discrete Ap-
plied Mathematics. SIAM, 2001.

[Cre95] N. Creignou. A dichotomy theorem for maximum generalized satisfiability
problems. Journal of Computer and System Sciences, 51:511–522, 1995.

[FV98] T. Feder and M. Vardi. Monadic SNP and constraint satisfaction: A study
through datalog and group theory. SIAM Journal on Computing, 28(1):57–
104, 1998.

[Hor51] A. Horn. On sentences which are true of direct unions of algebras. In
Journal of Symbolic Logic, 16:14-21, 1951.

[Jub99] L. Juban. Dichotomy theorem for generalized unique satisfiability problem.
In Proceedings 12th Fundamentals of Computation Theory, volume 1684 of
Lecture Notes in Computer Science, pages 327–337. Springer Verlag, 1999.

[KK01a] L. Kirousis and P. Kolaitis. A dichotomy in the complexity of proposi-
tional circumscription. In Proceedings of the 16th Symposium on Logic in

Computer Science, pages 71–80, 2001.
[KK01b] L. M. Kirousis and P. G. Kolaitis. The complexity of minimal satisfia-

bility problems. In Proceedings 18th Symposium on Theoretical Aspects of

Computer Science, volume 2010, pages 407–418. Springer Verlag, 2001.
[KS98] D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM

Journal of Computing, 28(1):152–163, 1998.
[KST93] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Prob-

lem: its Structural Complexity. Progress in Theoretical Computer Science.
Birkhäuser, 1993.

[KSTW01] S. Khanna, M. Sudan, L. Trevisan, and D. Williamson. The approxima-
bility of constraint satisfaction problems. SIAM Journal on Computing,
30(6):1863 – 1920, 2001.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Procced-

ings 10th Symposium on Theory of Computing, pages 216–226. ACM Press,
1978.

[Tor00] J. Torán. On the hardness of graph isomorphism. In Proceedings 41st

Foundations of Computer Science, pages 180–186, 2000.

19

