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Abstract

Cryptographic protocols can be divided into (1) protocols where the protocol steps are simple
from a computational point of view and can thus be modeled by simple means, for instance, single
rewrite rules—we call these protocols non-looping—and (2) protocols, such as group protocols,
where the protocol steps are complex and typically involve an iterative or recursive computation—
we call them recursive. While many results on the decidability of security are known for non-
looping protocols, only little is known for recursive protocols. In this paper, we prove decidability
of security (w.r.t. the standard Dolev-Yao intruder) for a core class of recursive protocols and unde-
cidability for several extensions. The key ingredient of our protocol model are specifically designed
tree transducers which work over infinite signatures and have the ability to generate new constants
(which allow us to mimic key generation). The decidability result is based on an automata-theoretic
construction which involves a new notion of regularity, designed to work well with the infinite sig-
natures we use.

1 Introduction

In most cryptographic protocols, principals are described by a fixed sequence of what we call receive-
send actions. When performing such an action, a principal receives a message from the environment
and, after some internal computation, reacts by returning a message to the environment. Research on
automatic protocol analysis [24, 2, 4, 19] has concentrated on protocols where a receive-send action
can basically be described by a single rewrite rule of the form ¢ — ¢’: When receiving a message m,
the message o (') is returned as output provided that o is the matcher for ¢ and m, i.e., o(t) = m.
In other words, an input message is processed by applying the rewrite rule once on the top-level. We
call receive-send actions of this kind and protocols based on such receive-send actions non-looping. It
has been proved that for non-looping protocols when analyzed w.r.t. a finite number of receive-send
actions and the standard Dolev-Yao intruder where the message size is not bounded, security (more
precisely, secrecy) is decidable even when principals can perform equality tests on arbitrary messages
[24, 2, 4, 19], complex keys are allowed [24, 4, 19], and the free term algebra assumption is relaxed by
algebraic properties of XOR and Diffie-Hellman Exponentiation [7, 10, 8].

The main question we are concerned with in this paper is in how far security is decidable for pro-
tocols where receive-send actions are complex and typically involve an iterative or recursive compu-
tation; we call such receive-send actions and protocols containing such actions recursive. The answer
to this question is not at all obvious since protocol models for non-looping protocols do not capture
recursive protocols and there are almost no decidability results for recursive protocols (see the related
work).



To illustrate the kind of receive-send actions performed in recursive protocols, let us consider the
key distribution server S of the Recursive Authentication (RA) Protocol [6] (see also Section 7). In this
protocol, the server S needs to perform the following recursive receive-send action: The server S first
receives an a priori unbounded sequence of requests of pairs of principals who want to share session
keys. Then, S generates sessions keys, and finally sends a sequence of certificates (corresponding
to the requests) containing the session keys. Receive-send actions of this kind are typical for group
protocols, but also occur in protocols such as the Internet Key Exchange protocol (IKE)—see [18] for
a description of some recursive protocols. As pointed out by Meadows [18] and illustrated in [26, 13],
modeling recursion is security relevant.

A natural way to describe recursive receive-send actions is by tree transducers, which extend the
class of transductions expressible by single rewrite rules (with linear left-hand side). More precisely,
to study decidability, in Section 2 we introduce non-deterministic top-down tree transducers (TTACS)
with look-ahead and epsilon transitions which work on a signature containing an infinite set of what
we call anonymous constants (ACs), over which the TTACs has only very limited control. TTACs can
generate new (anonymous) constants, a feature often needed to model recursive receive-send actions;
in the RA protocol for instance, the key distirbution server needs to generate (an a priori unbounded
number of) session keys.

The main result of this paper is that i) security (for a finite number of receive-send actions, atomic
keys, and the standard Dolev-Yao intruder where the message size is not bounded) is decidable if
receive-send actions are modeled by TTACs (Section 5), and that ii) certain features of models for
non-looping protocols cannot be added without losing decidability: As soon as TTACs are equipped
with the ability to perform equality tests between arbitrary messages, complex keys are allowed, or the
free term algebra assumption is relaxed by adding XOR or Diffie-Hellman Exponentiation security is
undecidable (Section 6).

The undecidability results are obtained by reductions from Post’s Correspondence Problem. The
decidability result is obtained in two steps. First, we show that TTACs are powerful enough to simulate
the intruder. This allows us to describe attacks as the composition of transducers. We can then reduce
the security problem to the iterated pre-image word problem for a composition of TTACs, which we
show to be decidable (Section 3): Given a term ¢, a “regular set” R of terms, and a sequence of TTACs,
the iterated pre-image word problem asks whether on input ¢ the composition of TTACs can produce
an output in R. Here, “regular set” means the set of terms recognizable by a new kind of tree automata,
tree automata over signatures with anonymous constants (TAACs), which can compare anonymous
constants for equality.

See the technical report (enclosed as appendix) for detailed proofs of all results presented here.

Related work. Recursive protocols have been analyzed manually [23] and semi-automatically using
theorem provers or special purpose tools [22, 5, 17].

Decidability for recursive protocols has initially been investigated in a previous paper [15]. How-
ever, there are significant differences to the present paper. First, in [15] word transducers are employed,
which are much less powerful than tree transducers. Therefore, tree transducers provide a much clearer
picture of the differences between recursive and non-looping protocols, and also allow to trace a tighter
boundary of decidability. Second, generating new constants (e.g., session keys) has not been consid-
ered in [15]. Third, TTAC-based models of (recursive) protocols are in general much more precise
than models based on word transducers because session keys can be generated and nonces need not
necessarily be typed (in Section 7 this is illustrated for the RA protocol). Fourth, the proof techniques



employed are different. In [15], a quite involved and technical pumping argument was used to obtain
decidability since word transducers are not powerful enough to simulate the intruder. In the current
paper, the characterization of attacks in terms of the composition of transducers allows for a much
more elegant proof and anonymous constants present a completely new challenge.

Motivated by the analysis of cryptographic protocols, in the present work we study automata and
transducers over infinite signatures (alphabets). This is an import topic in automata theory which is
relevant also in other areas such as type checking and type inference for XML queries with data values
(see, e.g., [1]), although the settings studied here and in the context of XML are quite different. For
XML queries it has been pointed out that equality tests between data values (which correspond to our
anonymous constants) often lead to undecidability. Word automata over infinite alphabets have also
been investigated (see, e.g., [20]).

Structure of the paper. In Section 2, we introduce tree automata (TAACs) and transducers (TTACS)
over signatures with anonymous constants and prove basic properties. Section 3 provides the definition
of the iterated pre-image word problem and the proof that this problem is decidable for TTACs. Our
tree transducer-based protocol model is presented in Section 4. In Section 5 we show that security
in this model is decidable. The purpose of Section 6 is i) to briefly discuss the relationship between
our model and models for non-looping protocols, and ii) to prove the mentioned undecidability re-
sults. Section 7 contains formal TTAC-based models of the Recursive Authentication Protocol and the
Needham Schroeder Public Key Authentication Protocol. We conclude in Section 8.

Basic definitions and notation. A symbol is an object with an arity assigned to it. A symbol of arity
0 is called a constant (symbol). A signature is a set of symbols. When . denotes a signature, then 3,
denotes the set of symbols from 33 with arity n.

The set of terms over a signature 3 is denoted T's.. For a set C' of constant symbols disjoint from a
signature X, T (C) = Txuc-

We fix an infinite supply X of variables among which we find ¢, 1, z9, ... For n € N, we write
Ty for the set of all terms in Tx({zo,...,zn—1}). Aterm ¢ € T3} is linear if every z; with i < n
occurs exactly once in t. When t € T3 and to,...,t,—; are arbitrary terms, we write t[to, ..., t,—1]
for the term which is obtained from ¢ by simultaneously substituting ¢; for z;, for every i < n. A
substitution over ¥ is a function o: Tx(X) — Tx(X) such that for each term ¢, o(¢) is obtained from
t by simultaneously substituting o(z) for = for every z € X.

By N* we denote the set of finite strings over the non-negative integers N. The empty string is .
With < we denote the prefix ordering on N*, i.e., for v,w € N*, v < w iff there exists v’ € N* such
that vo’ = w, where vv' denotes the concatenation of v and «’. In this case, v is called a prefix of w. A
set S C IN* is called prefix closed if with v € S every prefix of v belongs to S.

We use the notions “term” and “tree” interchangeably since a term ¢ can be seen as a tree. Formally,
a tree is a mapping from a non-empty, finite, and prefix closed set S C N* into ¥ such that if ¢(7) € ¥,
forsomen > 0and w € S, then {i | i € Sand i > 0} = {0...,n — 1}, and if ¢() is a variable,
then {i | mi € Sand 4 > 0} = (. We call S the set of positions of ¢ and denote this set by P(¢).

For a term ¢ and = € P(t), t|, shall denote the subterm of ¢ at position , i.e., P(t|r) := {7 |
mr’ € P(t)} and t|(7') := t(wn') for every =’ € P(t|,).

A subset 7 of Ty, x T is called a transduction over X. For a term ¢, we define 7(¢) = {¢' |
(t,t') € 7}. If 7 and 7' are transductions over X, then their composition 7 o 7/ defines the transduction



{(t,t) | 3" € Tx st (t,t") € 7' A (#",1') € 7}, i.e., the composition is read from right to left. Given
a transduction 7 over ¥ and a set R C T, the pre-image of R under 7 isthe set 7 }(R) = {t | 3t' €
Rst (t,t') € 7}

2 Tree Automata and Transducerswith Anonymous Constants

In this section we describe the models of tree automata and transducers that we use, completely inde-
pendent of the application we have in mind, as they are of general interest.

2.1 Signatures and Anonymous Constants

A pair (32, C) consisting of a finite signature X and an arbitrary infinite set C' of constant symbols
disjoint from X is called a signature with anonymous constants; the elements of 3 and C' are referred
to as regular symbols and anonymous constants, respectively. With such a signature, we associate the
signature ¥ U C, denoted X¢. That is, when we speak of a term over (X, C') we mean a term over $€.
In what follows, let occe(t) (occe(S)) denote the set of elements from C' that occur in the term ¢ (the
set of terms S).

2.2 Tree Automata over Signatures with Anonymous Constants

Our tree automata are non-deterministic bottom-up tree automata that accept trees over signatures with
anonymous constants; they have full control over the regular symbols but only very limited control over
the anonymous constants. For instance, it will be the case that with every tree such an automaton ac-
cepts it accepts every tree which is obtained from this one just by permuting—consistently renaming—
the anonymous constants.

Our tree automata have two distinguished states, ¢ and ¢*, which are used as initial states for
the anonymous constants: In every run the automaton non-deterministically assigns ¢¢ and ¢° to the
anonymous constants in an arbitrary fashion under the restriction that at most one anonymous constant,
which is then called the selected constant, gets assigned ¢* and all the others get assigned ¢, the default
value. (For an exact definition see below.)

Formally, a tree automaton (TAAC) over a signature with anonymous constants (X, C) is a tuple

A=(Q,q¢"¢",AF) €y

where @ is a non-empty finite set of states, ¢¢ € Q is the default state, g° € Q is the selecting state,
A is a finite set of transitions as specified below, and F' C @ is a set of final states. The latter can be
omitted; in this case, we speak of a semi TAAC.

There are two types of transitions: A consuming transition is of the form f(qo,...,qn—1) — ¢
where f € ¥, ¢,q0,---,9,—1 € Q; an epsilon transition is of the form ¢’ — g where ¢/, q € Q.

We call a TAAC deterministic if it does not contain epsilon transitions and if for every f € ¥, and
qo, - - - »gn—1 € @ there exists at most one ¢ € @ such that f(qo,...,qn—1) = q € A.

Each TAAC over a signature with anonymous constants (%, C) defines a set of trees from T (C).
To describe this set, we view the set @ as a set of constants and define for each term ¢t € T»,(C U Q)
the set [t]a of states which the automaton reaches after having read the term ¢.

We first give an inductive definition for ¢ € Tx(Q). In this case, [t]a is the smallest set satisfying
the following rules:



o ift €@, thent € [t]a,

e ift = f(to,...,tn—1) and there exist qq,-..,qgn—1 such that f(qo,...,qn—1) — ¢ € A and
gi € [t;]a forevery i < n, then g € [t]a,

e ifgeftlaandg — ¢ € A, thenq’ € [t]a.

A permitted substitution o is a function o: C' — {q%, ¢} where at most one element of C' gets assigned
q°. Now, for an arbitrary ¢ € T (C U @), we set

la= U l®la - @)

o permitted
The tree language recognized by A is the language
T(A)={teTs(C) | Fnlt]a #0} . @)

We say a tree language over ©.¢ is TAAC recognizable over (X, C) if it is recognized by some TAAC
over (£,0).

Before we provide some examples of (not) TAAC recognizable languages, we introduce a notation
which we will use later. Given a term ¢ € T and sets So, ..., S,—1 C Q, we write

[t[S()v S Sﬂfl]]A = U [t[QOa cee >Qn71]]A-
¢Gi€S;

Example 1 Assume Xy = {f} and X; = 0 for every i # 2. Let - = {f(c,c) | ¢ € C}. This
language is recognized by a TAAC with only three states, say qq, ¢1, and go. We choose ¢ = ¢ and
q°® = q1, F = {g2} and have only one transition, namely f(q1,q1) — 2.

Example 2 Fix any signature (3, C') with anonymous constants. For every i < 3, let T'>; be the tree
language over X which contains a tree ¢ iff in ¢ at least ¢ pairwise distinct anonymous constants occur.
Then T%; is TAAC recognizable over (X, C) for 7 < 2, but not for 5 = 3.

Example 3 Fix any signature (3, C) with anonymous constants. For every 4, let T; be the tree lan-
guage over X which contains a tree t iff in ¢ there are at least i occurrences of anonymous constants.
Then T; is TAAC recognizable over (2, C) for every i.

We will also use a weak form of TAACs where the default and the selecting state are required to be
identical, that is, where g% = ¢* holds. This means there is actually no selecting state. These automata
will be called weak TAAC (WTAAC). They are really weaker because it is easy to see that, for instance,
T— is not WTAAC recognizable over (X, C).

We conclude this section by summarizing basic properties of TAACs and WTAACs. We start with
a simple observation, which can be proved using a straightforward powerset construction.

Lemma 4 Every TAAC is equivalent to (recognizes the same tree language as) a deterministic TAAC.
The same holds true for WTAAC.

In the following lemma we consider closure properties of TAACs and WTAACs. As we will see, the
behavior of TAACs is quite different to that of tree automata over finite signatures.



Lemmab5 Let (X, C) be a signature with anonymous constants. Then, the following is true.

1. The set of tree languages over (3, C') recognized by WTAACs over (3, C) is closed under union,
intersection, and complement.

2. The set of tree languages over (X, C') recognized by TAACs over (X, C) is closed under union.

3. The set of tree languages over (%, C') recognized by TAACs over (X, C) is closed under comple-
ment iff X = 3y U X;. The same holds true for intersection.

PROOF. Statement 1. This statement can be proved similar to the case of bottom-up tree automata
over finite signatures. Closure under complement follows from the fact that every WTAAC can be
turned into an equivalent deterministic automata. For closure under intersection, one constructs the
product automaton of the two given WTAACSs. The default state is the tuple consisting of the default
states of the two WTAACSs. For closure under union, one takes the union of the two automata. More
precisely, one first modifies the automata such that the default states only occur on the left-hand side
of transitions. Then, one renames the states in both automata such that the state spaces are disjoint,
except that the default states are named the same. Now, one can take the union of the automata, i.e.,
the union of the state spaces, the set of transitions, and the set of final states.

Statement 2. To prove this statement one constructs the union of TAACs similar to the union of
WTAACS.

Statement 3. It is easy to see that if ¥ = ¥ U 4, then a TAAC over (3, C) is equivalent to
some WTAAC over (X, C). With Statement 1., closure under complement and intersection follows
immediately.

We now show that TAACs are not closed under complement and intersection in case the only
symbol in X2 is a binary symbol, say f. It is straighforward to extend this to any signature with at least
one symbol of arity > 2. In what follows, let #.(¢) be the number of occurrences of ¢ in t.

For every n > 1, we define the tree language

L, = {f(t,t') € Txc | there exists ¢ € C such that #.(t) # #.(¢') mod n}.

Itis easy to see that L,, is TAAC recognizable for every n > 1. However, we show that the complement
Ly = Txc \ Ly of Ly is not TAAC recognizable. Obviously, Ly = C U L3 where Ly = {f(t,#) |
#(t) = #.(t") mod n for every ¢ € C}. Since C is TAAC recognizable and because of Statement 2.,
it suffices to show that L3 is not TAAC recognizable. By contradiction, assume that L3 is recognized
by some TAAC A as in (1). Then, this automaton would accept the term ¢ = f(f(co,c1), f(co,c1))
for two distinct anonymous constants ¢ and ¢q. Thus, there exists a permitted subsitution o such that
[o(t)]aNF #0. If o(co) = o(c1) = q¢, then A would also accept t' = f(f(co,c1), f(co,c2)) where
co is a constant different from ¢ and ¢y, a contradiction. We may therefore assume that o(cg) = ¢°
(the case o(c1) = ¢° is symmetric). But then, A would again accept ', a contradiction. Consequently,
there does not exist a TAAC which accepts L5 .

For the intersection, we consider the languages Lo and L3, which as mentioned are TAAC recog-
nizable, and show that their intersection L, N Lg is not TAAC recognizable. Assume that there exists
a TAAC A as in (1) recognizing Ly N L3. Forc € Candn > 2, let " = f(c, f(c,--- f(c,¢))) such

that #.(c®) = n. Let ¢o and ¢; be two distinct anonymous constants. Obviously, t = f(f(c3,c?),



f(c,ct)) € La N Ls. Hence, there exists a permitted substitution o such that [o(t)]a N F # (. By
considering different cases for o, similar as above, one shows that different variants of ¢ are recognized
by A although they do not belong to Lo N L3, which leads to a contradiction. O

We finally note that for TAACs the word and emptiness problem are decidable. For the word problem—
which asks whether given a term and a TAAC, the TAAC recognizes the term—this is obvious. For
the emptiness problem—uwhich asks whether given a TAAC, the language recognized by the TAAC is
empty—one can show by the usual pumping argument that if a TAAC recognizes a tree then also a tree
of depth bounded by the number of states of the TAAC. As an immediate consequence, one obtains
a bound on the number of different anonymous constants to be considered. Together this implies
decidability of the emptiness problem.

Lemma 6 The word and the emptiness problem are decidable for TAACs (and thus, WTAACS).

2.3 Tree Transducers over Signatures with Anonymous Constants

Tree tranducers come in many different flavors. Our model is designed in such a way that (1) the pre-
image of a TAAC recognizable language is TAAC recognizable again and (2) we can (easily) model
the cryptographic protocols and the adversary we want to. These two goals are opposed to each other:
to achieve (1), the model needs to be weak, to achieve (2), it needs to be strong. An important aspect of
(2) is that it will be necessary that an unbounded number of anonymous constants may be introduced
by a tree transducer, but only in a very weak fashion.

Our model is a top-down tree transducer, that is, a given tree is transformed into a new tree accord-
ing to certain rewrite rules, which are applied from the root of the tree to its leaves. There are serveral
specific features: a WTAAC look-ahead; generation of new (!) anonymous constants; a register for
one anonymous constant. In addition, our tree transducers may be non-determinstic and may contain
epsilon transitions.

We need some more notation. We fix a signature (X, C) with anonymous constants and a finite
set S of states, whose elements we view as binary symbols. We assume that we are given aset V =
{vgr,vn} of two variables for anonymous constants: vg represents the aforementioned register, vy
refers to a newly generated anonymous constant.

A state term is of the form s(z,¢) fors € S,z €e VUC U {x},and t € Tx(C U X). The term ¢ is
then called the core term of this term. If z belongs to some set D C V U C U {x}, then we say s(z, t)
is a D-state term.

Intuitively, a state term of the form s(x,t) or s(c,t) with ¢ € C' is part of a configuration of a
transducer and means that the transducer is about to read ¢ starting in state s where the register does
not store a value or stores the anonymous constant ¢, respectively. To describe transitions we use state
terms of the form s(vg, t), s(vn,t), and again s(x,t), but not s(c, t) (see below).

Formally, a tree transducer (TTAC) over a signature with anonymous constants (3, C) is a tuple

T = (5,1,A,T) 4
where
e S is a finite set of states,

e [ C S isaset of inital states,



e Aisa WTAAC over (£, C), and
e T'is a finite set of transitions as described below.
A transition is of the form
s(z,t) =9 t'[vg, N, Gy -y th_q] (5)
where
e g € (Q is the look-ahead,

e s(z,t) is an {vg, *}-state term (recall that this means that z = vg or z = %) with ¢ € T3, and ¢
linear,

e ' € TL (not necessarily linear), where v does not occur in ¢'[vg, vy, th, ..., th_;] if z = *,
and

e each ¢/ is either a variable z; with j < n or a {z, vy, *}-state term with the core term being a
subterm of .

When vy occurs in ' [vg, vn, to, - - - , tr—1], then the transition is called generative and non-generative
otherwise. Sometimes we omit the look-ahead ¢ when we write transitions. This is equivalent to
assuming that the look-ahead is some state ¢ in which A accepts every term. If A does not contain
such a state, then A can be extended accordingly. For ¢ € @, we denote by T(q) the transducer T
with ¢ as its only inital state.

The computation the TTAC carries out is described by a sequence of rewrite steps. The corre-
sponding rewrite relation ¢ is defined w.r.t. a subset U C C of anonymous constants to ensure that
whenever the TTAC generates a new constant this constant does not belong to U. Later U will be
the set of anyomous constants in the input term, which then guarantees that the anonymous constants
generated by the TTAC are different from those occurring in the input.

To define 7, suppose we are given a term ug = u1[s(c, u2)] where ug = t[tg,...,tn—1] € Txc
and a transition 7 as in (5) with z = vg. Let o be the substitution defined by o(z;) = ¢;. Then, if
q € [u2]a,

ug Py ug [tl[ca Cl> 0(t6)7 tee 70'(75;*—1)]]
for every ¢’ € C'\ (occe(ug) U U). Observe that if 7 is non-generative, ¢’ and U are irrelevant. Also
note that the newly generated anonymous constant does not occur in U and in the output term computed
so far. The rewrite step in case ug = u1[s(*, u2)] is defined in the same way, where it is required that
Z = *.

A sequence s(x,t) by t1 by te Py -+ By t' with ¢ and ¢/ terms over (2, C) is called a computa-
tion.

Let -7, denote the reflexive transitive closure of ;7. We write ¢ -* ¢’ as a short form for ¢ Foceo ()
t'. The relation on T (C) defined by the TTAC is

1 = {(t,t') € Tyc x To | Is(s € I As(*,t) F* ')} . (6)

We say that a transduction 7 on (2, C) is TTAC realizable if there exists a TTAC T such that 7o = 7.
We call two TTACs equivalent if they realize the same transduction.
Let us look at a reasonably complex example.



Example 7 Let £o = {d}, £1 = {f}, ¥2 = {g} and C an infinite set of anonymous constants.
Consider the transduction 7 on (X, C) where (¢,¢") € 7 if ¢ does not contain f and ¢’ is obtained from
t by replacing every maximal subterm which does not contain anonymous constants by a term of the
form g(f(... f(c)...), f(... f(c)...)) for a new anonymous constant ¢, where the arguments of g
may be of different depth. We show that 7 is TTAC realizable.
Let A be the semi TAAC with states g¢, gr, qu, g5 Where gc is the default state and the transitions
are:
d— dr ,
9(qr,qr) — qr ,
qc — 4Mm
9(qr, am) = qm
9(anm,qr) = qur
glam,qm) = qum
d— q5
qc — 45 ,
9ar,ar) = ar -
Then gy € [t]a iff f does not occur int; gr € [t]a iff ¢ does not contain f nor anonymous constants;
and gas € [t]a iff ¢ does not contain f but an anonymous constant.
Now it is easy to construct the desired TTAC. We choose s; to be its initial state and use the
following transitions:
sr(x,z0) =9 so(*,20) ,
s0(*, o) = zo ,
30(*1 g(l'(), :L'l)) —a (80(*7 xO)a 80(*7 xl)) )
s0(*,0) =% g(sp(vn, o), s7(vN, To))
Sf(UR,l'()) — f(sf(UR;-T;O)) )
sf(vr,To) = VR .
It is well-known [12] that the set of transductions realized by non-deterministic top-down tree trans-

ducers over finite signatures is not closed under composition. It is easy to see that this also holds true
for TTACs.

Lemma 8 The set of TTAC realizable transductions is not closed under composition.

3 Thelterated Pre-image Word Problem

The objective of this section is to prove that the iterated pre-image word problem is decidable. This
problem is defined as follows:

ITERATEDPREIMAGE. Given a term ¢ over (2, C), a TAAC B over (£, C), and a sequence of TTACs
To, ..., T1_1 over (3,C) with 7 = 71, 0 - - - o 7;_,, decide whether ¢ € 7=1(T(B)).

The key for proving decidability of this problem is:



Theorem 9 The pre-image of a TAAC recognizable tree language under a TTAC realizable trans-
duction is a TAAC recognizable tree language. Moreover, an appropriate TAAC can be constructed
effectively.

Using this theorem and Lemma 6 (decidability of the word problem), we obtain:
Corollary 10 ITERATEDPREIMAGE is decidable.

The proof of Theorem 9 is carried out in two steps. We first show how TTACs can be turned into what
we call simple TTACs. We then construct a TAAC recognizing the pre-image of a TAAC recognizable
tree language under a simple TTAC.

3.1 Simple TTACs

We say that a transition of the form (5) is simple if

1. tis a variable—in this case we call the transition epsilon transition—or of the form f(zo,...,
xn—1) for some f € X,,—in this case we call the transition X-transition—, and

2. forevery i < r, ¢ is either a variable z; or a state term of the form s(z’, ;) for some j.

We call a TTAC simple if it only contains simple transitions.
Before we show that every TTAC can be turned into an equivalent simple TTAC, we observe:

Lemma 11 For every linear term ¢ € T, there exists a WTAAC A over (3, C) and a state, say g,
in A such that ¢ is the only final state of A and T'(A) = {t' | there exists a substitution o such that

o(t) = t').

Lemma 12 Every TTAC is equivalent to (i.e., induces the same transduction as) a simple TTAC, which
can be constructed in polynomial time.

PROOF. Let T bea TTAC as in (4) and let I contain a non-simple transition 7" of the form
s(z,t) DUt [vR, N, )y ey th 1y Tigy - 2 Tip_, ] )

where the ¢ are state terms.

We show how (7) can be turned into a set of simple transitions; by iterating this argument all non-
simple transitions of T can be replaced by simple transitions. The idea is as follows: We first extend
A by A (Lemma 11) to be able to check whether the input term matches with ¢. This is done in an
epsilon transition with g; as look-ahead. Another epsilon transition is used to check the look-ahead q.
Now, we add transitions that allow to navigate from the input term to the z;, (i.e., the position of the
input term corresponding to z;,) and transitions that allow to navigate to the core terms of the #;.

The automaton A is extended by Ay by taking the union of these automata as explained in the
proof of Lemma 5.

To navigate to the different positions, we add to the states of T the set of states {p,, | # €
P(t),q € S} U{p, | m € P(t)}. The states p, 4 are used to navigate to the core terms of the ¢; and
with p!. we navigate to the variables z;;. In the former case, the state is subscribed with ¢ since once
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the core term of ¢, is reached, the computation needs to continue in the state stipulated by ¢.. In the
latter case, one merely needs to copy (the term substituted for) z;, into the output, and therefore, does
not need to remember a state.

The transitions for navigating to the core terms of the ¢} are as follows: For every f € ¥,,q € Q,
i >0,z € {vg,*}, and = with iw € P(t) we add the following transition:

piw,q(za f(x()a cee 7‘(1/‘71,71)) — p’fr,q(zaxi)a

where we set p, , = gq.
The transitions for navigating to the z;; are as follows: For every f € %,, ¢ > 0, and 7 with
im € P(t) we add the following transition:

Pir (%, f (@0, s Tn—1)) = P (%, 33),

where p! (x, z;) is replaced by z; in case m = ¢.

Finally, we add the following two transitions to T. The first one checks whether the input term
matches ¢ by using g; as look-ahead. The second one checks the look-ahead ¢ and initializes the
navigation process.

The first transition is the following epsilon transition:

s(z,x) =% §'(z,z).

where s’ is a new state.

For the second transition, we need some notation. Assume that ¢; = s;(z;,¢;) and that ; is the
position of t! in ¢, i.e., t|r, = t7; in case there are different positions with this property, we simply pick
one. Also, let 7r;- be the position of z;; in ¢. Now, the transition is the following epsilon transition:

Sl(za :L.) —1 tl[,URaluNapﬂo,So (205 .’I,'), <o s Prp 1,801 (zr—lam)ap;—g(*a :L.)a s ’p;';,l(*’w)]

It is easy to see that the transducer obtained in this way is equivalent to T. |

3.2 Construction of the TAAC Recognizing the Pre-image

In what follows, let
I= (QfaqdaqsaAI’FI)

be a TAAC over (X, C) and
T = (QT7 ITa Aa PT)

be a TTAC over (X, C) with
A= (QA7 qffla deéb AA)

as its look-ahead. We need to construct a TAAC

P = (QPaqﬁi’aq;’APaFP)

over (X, C) such that



Due to Lemma 12, we may assume that T is simple. Thus, I'r consists of X-transitions of the form

q(z7f($07 s anfl)) —14 tl[vR7 ---,UR,UN, - -- JUN7t67 s ,ti-,l,ﬂl'io, .- 'Jwil_l] (8)

where ¢’ is linear, ¢} is a {vg, *}-state term of the form ¢;(z;,z;;), and vg may only occur on the
right-hand side of (8) if z = wg, and epsilon transitions of the form

q(2,7) =9 t'[UR, - -, VR, UNy - - -, UN Ey -+ ey b3 Ty -+, T 9)

where ¢’ is linear, ¢} is a {vg, * }-state term of the form g¢;(z;, z), and vz may only occur on the right-
hand side of (9) if z = vg. Note that assuming ¢’ to be linear is w.l.0.g.

Roughly speaking, the idea behind the construction of P is that inarun of P ont € Tyc, P
simulates the runs of I on all possible outputs ¢ of T on input ¢ simultaneously. The runs of I on the
terms ¢’ can, however, not be simulated as a whole but only in small pieces, namely, on every right-
hand side of transitions of T at a time. The problem is that runs of I require a global condition, namely
that the default and selecting states ¢¢ and ¢° of T are assigned to constants in a consistent way—by a
permitted substitution. To capture this global condition we use that runs of P also meet such a global
condition. More precisely, the permitted substitution in a run of P on ¢ will determine the permitted
substitutions that are considered in the runs of I on the trees ¢'. We distinguish the following cases:

1. Ifinarun of P on ¢ one constant c is assigned to g3, then this (and only this) constant will be
assigned to ¢® in the runs of I on the trees ¢'; in particular, all anonymous constants generated by
T are assigned to ¢¢.

2. If in a run of P on ¢, all constants occurring in ¢ are assigned to q%, then these constants are
assigned to ¢% in the runs of T on the trees ¢’ as well. The constants newly generated by T may
or may not be assigned to ¢*. One has to do some book keeping to guarantee that at most one of
the new constants is assigned to ¢®. The automaton P will simulate all runs of I on the trees ¢’
w.r.t. to all permitted substitutions where at most one newly generated constant is assigned to ¢*
simultaneously.

We now provide the formal definition of P. In Section 3.3, we show that P in fact recognizes the
pre-image.

State Space of P. The state space of P is defined to be
9201 » 994 x {yes,no} x 2Qrx{e"a’ IxQr  9Qrx{a’x}xQr
We need the following notation. Let b = (S, L, «, My, M) be a state of P. We define:
e Iset(b) = S,
e LA(b) =L,
e seen(b) = «,

o Di,5)(b) ={a| (g, s,a) € My} forevery g € Qr and s € {¢%, ¢*, +}, and
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® Sigs)(b) ={a|(g,s,a) € M} forevery g € Qrand s € {q%, *}.

Let us explain the intuitive meaning of the different components of a state. The first component .S
collects the possible states reachable by I on the input tree. The second component L is used to store
the possible values of the look-ahead of T. The case o = yes corresponds to 1. above and @ = no
corresponds to 2. In D, ) (b) we collect all states reachable in a run of I on some output tree ¢’ obtained
by running T on ¢ starting in state ¢ where the register is x (in case s = %) or a constant ¢ (in case
s € {¢% ¢°}) not occuring in ¢. The runs of T on some ¢’ are simulated w.r.t. a permitted subsitution
that maps all new constants to the default state ¢?%—the capital D in D 4,5)(b) being reminiscent of
this—and coincides with the permitted substitution used in the run of P on all constants occurring in
t. The value of s € {q¢,¢*} determines what state the constant c in the register is assigned to. The
interpretation of S, ;) (b) is similar: Here, we assume that all constants in ¢ are assigned to ¢* and
in the runs of I all permitted substitutions are considered which map all constants in ¢ to ¢ and at
most one new constant to the selecting state ¢°—the capital S in S, ;)(b) being reminiscent of this.
The case where the register is assigned to ¢* does not need to be considered. The intuition behind the
components of the states of P is formally captured in Lemma 15.

We now introduce some more notation. Given a transition as in (9), we write ot g b 8 abbreviation
for the term

tle,...,d,q" ..., q", D(qo,&o)(b)a . ,D(q,«_l,sT—1)(b)’ Iset(b), ..., lIset(d)]
and tz;kq,, » as abbreviation for the term

tl[ql, . ,q', q”, ... ,q”, D(qo,so)(b)’ . ’S(Qk,sk)(b)’ ... ,D(qT_l,sr_l)(b), Iset(b), . Iset(b)]

where in both cases s; = * if z; = %, 5; = ¢' if z; = vg,and s; = ¢" if z; = vn.
Given a transition as in (8), we write by g @S abbreviation for the term

tl[ql, . ,q', q”, e ,q", D(qo,so)(bjo)’ ey D(qr—l,sr—l)(bjr—l)’ |Set(bi0), . Iset(bi,_l)]

and tflqu,, as abbreviation for the term
tl[ql, - ,q', q”, . ,q”, D(qo,so)(bjo)’ ey S(Qkyé‘k) (bjk)7 . 7D(qrf1,sr71)(bjr—1)7 |Set(bi0),
.. Iset(b;,_,)]

where again in both cases s; = * if z; = *,5; = ¢' if z; = vg,and s; = ¢" if z; = V.
We need to define the epsilon closure of states. If b € @ p, its epsilon closure b is defined induc-
tively as follows: Let by = b.

o Iset(b;j11) = Iset(b), LA(b;11) = LA(b), seen(b;11) = seen(b),

e forevery g € Qr and s € {¢%,¢*, }, let D(4,5)(bi+1) = D(q,5)(bi) U{a | there exists an epsilon
transition as in (9) such that g4 € LA(b;), (z = * iff s = ), and a € [t 4 5 )1}, and

e forevery ¢ € Q7 and s € {¢%,}, let S(q,5)(bit1) = S(q,5)(bi) U {a | there exists an epsilon
transition as in (9) such that g4 € LA(b;), (z = * iff s = %), and a € [t . ;. Jiora € [t:l;d,bi]l
for some £},

We define b = b; for some j > 0 such that b; = bj41.
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The Default and Selecting States of P. The default state qji of P is defined as the epsilon closure
b of the following state b%:

e Iset(b?) = [¢%1.

o LA®Y) = [gd]a.

e seen(b?) = no.

o D5 (b%) =0 forevery g € Qrand s € {g% ¢*, +}.

o S(g,5)(b%) =0 forevery g € Qrand s € {¢%, +}.
The selecting state g3, of P is defined as the epsilon closure b of the following state *:

e Iset(b®) = [¢°]r.

o LA(®) = [g%]a-

e seen(b®) = yes.

o D5 (b°) =0 forevery g € Qrand s € {q% ¢*, +}.

o Sig5)(b°) =0 forevery g € Qrand s € {¢?, *}.

In what follows, by abuse of notation we write ¢¢ instead of qjé and ¢° instead of g5. In this way, we
can use the same permitted substitutions for both P and I. Recall that ¢ and ¢* are the default and the

selecting states of I, respectively.

Transitions of P. Forevery f € ¥, and by, ..., b,_1 € Qp, the_automaton P contains the transition
f(bo,---,b,_1) — bwhere b is defined to be the epsilon closure &' of the following state '

o Iset(t!) = [f(Iset(bp),-..Iset(b, 1))]1,

o LA®Y) = [f(LA(b), - .- LA(Bn-1))]a.

e seen(b’) = yes if there exists i such that seen(b;) = yes, and seen(d’) = no otherwise,

e Dy (V') = {a | there exists a E-transition as in (8) such that g4 € LA(Y), (z = * iff s = %),

and a € [t ,Jr} forevery g € Qrand s € {¢% ¢°, +}, and

o S(g,)(b) = {a | there exists a X-transition as in (8) such that g4 € LA(Y), (z = * iff s = %),
and a € [t5 J10ra € [ti;';dh for some &} for every ¢ € Q7 and s € {¢?, *}.

Final States of P. The set of final states F'p of P is defined as follows:

Fp = {b]|thereexists g € Iy and a € F such that
(seen(b) = yesand a € D, ,(b)) or (seen(b) =noand a € Sy, (b))}
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3.3 Correctness of the Construction

The following proposition states that our construction is correct.
Proposition 13 T'(P) = 7.3 (T(T)).

To prove this proposition, we need to prove two lemmas. The first lemma, which immediately follows
from the construction, states that P is complete and deterministic, and that reachable states are epsilon
closed.

Lemma 14 For every ¢ and permitted substitution o, there exists exactly one state b such that b €
[o(t)]p. This state is epsilon closed, i.e., b = b.

The second lemma is more involved, and it is the key for proving Proposition 13.

Lemma 15 For every term ¢ € Tx,c, b € Qp, and permitted substitution o such that b € [o(¢)]p the
following is true, where we write o’ \Occc(t) = U|occc(t) to say that ¢/ is a permitted substitution which
coincides with o on occe(t).

1. Iset(b) = [o(t)]1.
2. LA(b) = [t]a.
3. seen(b) = yes iff there exists ¢ € occe(t) such that o(c) = ¢°.

4. D(gs)(b) = {a | t' € Tsc,0'loccp(t) = Olocco(t): 0'(€) = q? for every ¢ € occe (') \ occe(t),
a € [o'(t')]1, and q(*,t) F* t'}.

@ (0) ={a |t € Txe,0|occoty = locca(ry o' (¢') = ¢ for every ¢ € occe(t') \ occo(t),
o'(c) = q¢% a € [0'(t')]1, and g(c, t) F* '} for every ¢ ¢ occo(t).

6. If seen(b) = no, then D(q’qs)(b) = {a | t e TEcaoJloccc(t) = U‘OCCC(t)JOJ(C) = ¢%,a €
[0/ (t)]1, and g(c, ) F* #'} for every ¢ ¢ occo(t). Note that o(c') = ¢ for every ¢ € occo(t)
since seen(b) = no.

7. If seen(b) = no, then S,.)(b) = {a | t' € Txc,0'locco(t) = Tloccat),@ € o' ()]1, and
q(x,t) F* ¢},

8. If seen(b) = Nno, then S(q,qd)(b) = {a | t e TZCaU,|occc(t) = O'|Occc(t),O'I(C) = qd,a €
[¢'(¢")]1, and g(c,t) F* t'} for every ¢ ¢ occe (t).

Before proving this lemma, we use it to establish Proposition 13:

“T(P) C 74 (T(T))”: Assume that ¢t € T'(P). It follows that there exists a permitted substitution o
and a final state b € Fp such that b € [o(¢)]p. We consider two cases. First, assume that seen(b) =
yes. Then, there exists ¢ € I and a € Fy such that a € D(q,*)(b). Lemma 15, 4. implies that there
exists ¢’ and a permitted substitution ¢’ such that ¢(*,¢) F* ¢’ and a € [¢/(¢')]1, and thus, ¢’ € T(I)
since a € Fy. This means that ¢ € 75" (T'(I)). Second, assume that seen(b) = no. Then, there exists
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q € ITand a € Frsuchthata € S(g,(b). By Lemma 15, 7. there exists t" and a permitted substitution
o' such that g(x,t) +* ¢' and a € [o'(#')]1. Thus, ¢’ € T(I) and ¢ € 7' (T(T)).

“T(P) D 70 (T'(X))”: Assume that ¢ € 74 (T'(I)). This means that there exists ¢/, a € Fy, and a
permitted substitution o such that ¢(x,t) F* ¢’ for some g € Ir and a € [o(t')]1. Letb € [o(t)]p. Such
a b exists and it is uniquely determined due to Lemma 14. We show that b € F'p, and thus, ¢t € T'(P).
First, assume that seen(b) = yes. Then, a(c) = ¢¢ for every ¢ ¢ occe(t) and by Lemma 15, 4. we
can conclude that a € Dy, (b). Otherwise, if seen(b) = no, Lemma 15, 7. implies thata € S, ,(b).
In both cases, we get that b € Fp.

Proof of Lemma 15. Lett¢ € Txe, b € Qp, and o be a permitted substitution such that b € [o(¢)]p.
The Statements 1., 2., and 3. are easy to see by the construction of P. We prove 4.—8. simultaneously.
We first show that the left-hand side is included in the right-hand side by structural induction on ¢ and
then establish the inclusion in the other direction by induction on the length of computations.

“C”™. Base case. Assume thatt € C. We know that b = b4 or b = b5. Let by = b® or
by = b® (both cases can be dealt with in the same way). For by the inclusions hold trivially. By
induction on ¢, we show that they hold for b;;1. We concentrate on 8. as it is one of the more in-
teresting cases. The other inclusions can be shown analogously. We assume that seen(b) = no
and @ € Sy 4ay(bit1). We need to show for every ¢ ¢ occe(t) that there exists ¢' and a permit-
ted substitution o’ such that o’|oce. 5y = Tlacca(t): 0'(¢) = ¢% qlc,t) F* ', and a € [o'(#)]1. If
a € S q4)(b;), this follows by the induction hypothesis. Otherwise, we know that there exists an
epsilon transition as in (9) such that g4 € LA(b;), 2 = vg, and a € [t¢ rora e [t5F .. It

qd ,q° ’bi qd :qd abi
for some k. First suppose that a € [tfld » » 1. Then, there exist a; € D, ,.(b;) such that a €

g%, ...,q%q% .., ¢% aq, ..., a,_1,lIs€t(b;),...,Iset(b;)]]1. Let d ¢ occo(t) U {c} and ¢; = * if
2z =% ¢ = cifz = vg, and ¢; = ¢ if z; = vy. Define /() = ¢° and o'(c") = ¢? for every
" # . Note that 0’| oee (1) = 0 oce () and o’ (c) = g®. Using the induction hypothesis on 4, it is easy
to verify that there exist ¢y, ..., t,_; such that g;(c;,?) =" ¢, a; € [0'(¢})]1, and the ¢ are chosen
in such a way that new constants generated in the computation g¢;(c;,t) F* t} are different from ¢, ¢/,
the constants occurring in ¢, and those that are generated in g (c;r,t) F* t}, for 5/ # 7. Note that
to establish the existence of the t’. with the above properties, we can in fact use ¢’ as the permitted
substitution for every j. Thus, we have g(c,t) H* t'[c,..., e, ..., tg, ... th_1, ¢, ..., 1] :==¢" and
a € [o'(")]1, which means that a belongs to the right-hand side of the identity in 8. The case where
a € [tf};’f d,bi]I for some & can be dealt with analogously. This concludes the proof of the base case.
What we have basically shown here is that if the inclusions hold for some state b, then they hold for
the epsilon closure of this state. The fact that ¢ is an anonymous constant was only used to show the
inclusions for bg.

Induction step. Assume that ¢ = f(to, ..., t,—1) and that the inclusions hold true for the subterms ¢;
of ¢t. Let b; be the unique element with b; € [o(¢;)]p. One first shows the inclusions for b as defined in
the definition of transitions of P. This can be done along the same lines as above. From the base case
we know that the inclusions stay true when taking the epsilon closure of a state. Thus, they hold true
forb="b'.

“D”: We prove 4.-8. simultaneously by induction on the length of computations. For computations
of length zero nothing is to show since in this case the sets on the right-hand side are empty. In the
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induction step, we again concentrate on 8. The other cases can be shown analogously. Assume that
seen(b) = noand letc ¢ occe(t). Forevery t” € Tx.c, a € @y, and permitted subsitution o’ such that
o’ loccr(t) = Tlocco (), o' (€) = ¢% a € [0"(t")]1, and g(c, t) H* ¢ we need to show that a € S, (D).
We distinguish two cases depending on whether the first transition 7" applied in g(c,t) F* ¢" is a 2- or
epsilon transition.

Y-transition. Assume that 7 is a X-transition of the form (8) where z = vi. Weuse ¢’ € C'\ (occe (t)U
{c}) as the new constant generated by T (in case T is generative). We have that t = f(¢g,...,tn_1)
for some ¢; € Tx.c. Let b; be the uniquely determined element in [o(¢;)]p = [0”(¢;)]p. Then, we know
that b is &’ (see the paragraph on transitions for the definition of »’). After applying 7" to ¢(c,t) we
obtain

! / /
t [C, ceeyCyCy. ..y C ,q()(C(),th), P 7QT—1(CT—1atjr71)atioa e ’til—l]
where ¢; = x if z; = %, ¢; = cif z; = vg,and ¢; = ¢ if z; = vn. Letty,...,tl_; be the terms such

that ¢;(c;, ¢;,) F* ¢, and
t"=1le,... e,y et gy Ty -
There exist a; € @ such that a; € [o’(¢)]1 and
a€lo'(e,...,c,dy .., ag, ... a1, [0 (tig)lLy - - -, [0 (i) In]n-

By Lemma 15, 1. and since o' and o coincide on occo(t), we have that Iset(b;) = [o'(t;;)]1.
Lemma 15, 2. ensures that g4 € LA(b') = LA(b) = [t]a. We distinguish two cases.

First, assume that o'(¢/) = ¢°, and thus, all other anonymous constants are mapped to ¢¢. It is
easy to check that o' meets the conditions in the sets characterizing Dy, ,,)(bj;) W.r.t. ¢;,. Thus, the
induction hypothesis on the length of computations yields that a; € D(qiysi)(bji). Now, it follows that

a € [tgd,qs]l’ and thus, a € S(q,qd) (b,) - S(qud) (y) = S(q,qd)(b).

Second, assume that o’ is a permitted substitution such that o’ (c”) = ¢ for every ¢ € occo(t) U
{¢,c'}. We consider two subcases. First, suppose that there exists k£ and ¢ € occe(t),) such that
o'(d") = ¢°. It follows that ¢" ¢ occe(t) U {c, '}, and thus, ¢’ was newly generated in g (ck, 5, ) F*
ty.. Consequently, ¢ does not occur in t; for i # k. It is easy to check that o' meets the conditions
in the sets characterizing Dy, 5,)(bj;) W.r.t. t;, for every i # k and S, 5,)(bj,) w.rt. ¢;,. Now, the
induction hypothesis on the length of computations yields that a; € D, ,,)(b;;) for every i # k and
ar € S(ge,s)(bji)- Thus, a € [th;’qu]I. Consequently, @ € S 4a)(8') C S(gq)(H) = S(g,40)(b). If
there is no k and ¢” € occe(t),) such that o’ (¢") = ¢°, then one can similarly show that a € [tz;'qu]I
even for every k, and thus, a € S(g 44)(b).

Epsilon transition. This case can be shown very similar to the case for X-transitions. Instead of using
the definition of transitions of P we use the definition of epsilon closure and the fact that b is epsilon
closed by Lemma 14. |

4 The Tree Transducer-based Protocol M odel

In this section we introduce our protocol and intruder model. The basic assumptions of our model
coincide with those for decidable models of non-looping protocols: First, we analyze protocols with
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respect to a finite number of receive-send actions, and in particular, a finite number of sessions. Second,
the intruder is based on the Dolev-Yao intruder. He can derive new messages from known messages by
decomposition, decryption, composition, encryption, and hashing. We do not put a bound on the size
of messages. As in [2], we assume keys to be atomic messages; in [24, 19, 4] they may be complex
messages.

The main difference between the model presented here and models for non-looping protocols is
the way receive-send actions are described—instead of single rewrite rules, we use TTACs. These
transducers have two important features necessary to model recursive receive-send actions, but missing
in models for non-looping protocols: First, they allow to apply a set of rewrite rules recursively to a
term. Second, they allow to generate new constants.

We now provide the formal definition of our tree transducer-based model by defining messages,
the intruder, protocols, and attacks.

4.1 Messages

The definition of messages we use here is rather standard, except that we allow an infinite number of
(anonymous) constants. As mentioned, we assume keys to be atomic.

More precisely, messages are defined as terms over the signature (X _4,C) with anonymous con-
stants. The set C is some countably infinite set of anonymous constants, which in this paper will be
used to model session keys (Section 7.1). The finite signature X 4 is defined relatively to a finite set A
of constants, the set of atomic messages, which may for instance contain principal names and (long-
term) keys. It also contains a subset KX C A of public and private keys which is equipped with a
bijective mapping - ! assigning to a public (private) key k& € K its corresponding private (public) key
k= € K. Now, X4 denotes the (finite) signature consisting of the constants A, the unary symbols
hash, (keyed hash) and encj (symmetric encryption) for every a € A, enc$ (asymmetric encryp-
tion) for every k € K, and the binary symbol () (pairing). Instead of ()(¢,¢') we write (¢,¢'). We
point out that hash,(m) shall represent the keyed hash of m under the key a plus m itself. Note that
anonymous constants are not allowed as keys (see also Section 4.4 and 8). The set of messages over
(X4,C) is denoted M = T, (C).

4.2 The Intruder

As in the case of models for non-looping protocols, our intruder model is based on the Dolev-Yao
intruder [11]. That is, an intruder has complete control over the network and can derive new mes-
sages from his current knowledge by composing, decomposing, encrypting, decrypting, and hashing
messages. We do not impose any restrictions on the size of messages.

The (possibly infinite) set of messages d(S) the intruder can derive from some set S C M is the
smallest set satisfying the following conditions:

1. § Cd(S);
2. if (m,m') € d(S), then m,m’ € d(S) (decomposition);
3. ifenci(m) € d(S) and a € d(S), then m € d(S) (symmetric decryption);

4. ifenci(m) € d(S) and k! € d(S), then m € d(S) (asymmetric decryption);
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5. if hash,(m) € d(S), then m € d(S) (obtaining hashed messages);

6. if m,m' € d(8), then (m,m') € d(S) (composition);

7. ifm € d(S) and a € ANd(S), then enci(m) € d(S) (symmetric encryption);
8. if m € d(S) and k € KN d(S), then enci(m) € d(S) (asymmetric encryption);
9. ifm €d(S) and a € ANd(S), then hash,(m) € d(S) (keyed hash).

Let an(S) denote the closure of S under 2.-5., and syn(S) the closure of S under 5.-9.
It is well-known that d(S) can be obtained by first applying an to S and to the result apply syn.
This is because we employ atomic keys; for complex keys this does not hold (see, e.g., [22]):

Lemma 16 For every S C M: d(S) = syn(an(S)).

We note that although principals have the ability to generate new (anonymous) constants, as they are
defined in terms of TTACs, for the intruder adding this ability is not necessary since it would not
increase his power to attack protocols (see also Section 4.4).

4.3 Protocols

Protocols are described by sets of principals and every principal is defined by a sequence of receive-
send actions, which in a protocol run are performed one after the other. Every receive-send action is
specified by a certain TTAC, which we call message transducer.

Definition 17 A message transducer T is a TTAC over (X 4,C).

Roughly speaking, a principal is defined as a sequence of message transducers.

Definition 18 A (TTAC-based) principal IT is a tuple ((To,...,Tn_1),Z) consisting of a sequence
(To,. .., Tn_1) of message transducers and an n-ary relation Z C Iy x --- x I,,_1 where I; denotes
the set of initial states of T;.

The single message transducers T'; in the definition of II are called receive-send actions. In a protocol
run, IT performs the receive-send actions one after the other. More precisely, at the beginning of a
protocol run, a tuple (qo,--.,¢,—1) € Z is chosen non-deterministically where ¢; will be the initial
state of T; in the current run. Now, if in the protocol run the first message II receives is my, then IT
returns some message my, with (mg, m{) € TTo(g0)- 1HEN, ON receiving the second message, say m1,
IT returns m} with (m1,m7) € 7r,(q,), and so on. By fixing the initial states at the beginning, we
model that IT can convey (a finite amount of) information from one receive-send action to another. For
example, if go encodes that IT expects to talk to Bob, then ¢g; might describe that in the second message
IT expects to see Bob’s name again.

We implicitly assume that the last receive-send action of a principal is marked “yes” or “no”,
indicating whether or not this receive-send action is considerd to be a challenge output action. The use
of these actions will further be explained in Section 4.4.

A protocol is defined as a finite family of principals plus, since we are interested in attacks on this
protocol, the initial intruder knowledge.
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Definition 19 A (TTAC-based) protocol P is a tuple ({IL; };<n,S) where

e {II;}i<y is a family of n (TTAC-based) principals, and

e S C M is afinite set, the initial intruder knowledge.

4.4 Attacks on Protocols

In an attack on a protocol, the intruder, who has complete control over the communication, interleaves
the receive-send actions of the principals in some way (i.e., determines a total ordering on the receive-
send actions), and tries to produce inputs for the principals such that from the corresponding outputs
and his initial knowledge he can derive some secret, i.e., some message not supposed to fall into the
hands of the intruder. Such a secret can for example be a session key or some secret message. Thus, one
can check whether a protocol preserves secrecy. One can also check authentication. In this case, the
secret may be some auxiliary message indicating that a principal completed a session with an instance
of another principal which does not exist in the specified protocol model. Now, if the intruder gets to
see the secret message, this means that the authentication property is violated.

In the definition of attacks we make use of challenge output actions. Recall that an action is called
challenge output action if it is the last receive-send action of a principal and marked to be a challenge
output action. In the interleaving of receive-send actions determined by the intruder, we require that
the last receive-send action (and only this action) is a challenge output action. This action determines
the secret the intruder tries to derive. That is, the output of this action is not added to the intruder’s
knowledge but it is presented to him as a challenge, i.e., a message to be derived.

The use of challenge output actions allows to determine secrets dynamically, depending on the
protocol run. This is for example needed when asking whether the intruder is able to derive a session
key (an anonymous constant, which may change from one protocol run to another) generated by a
key distribution server. Alternatively and equivalently (to dispense with challenge output actions),
one could ask whether the intruder can derive an a priori fixed atomic message, say secret, which
is encrypted by an anonymous constant (the session key): The encrypted secret can be derived by
the intruder iff the intruder knows the anonymous constant used to encrypt secret. However, since
in general we do not allow anonymous constants as keys (see Section 4.1 and the conclusion), we
find the use of challenge output actions more elegant than introducing special kinds of messages with
anonymous constants as keys. Moreover, challenge output actions are somewhat related to the way
security is defined in computational models for key distribution protocols where at the end of an attack,
the intruder is presented a string for which he needs to decide whether it is an actual session key or just
some random string [3].

We remark that the way attacks are defined here allows to ask whether the intruder can derive a
message that belongs to some pre-defined regular tree language. In models for non-looping procotols
this is usually not possible.

The third condition in the following definition ensures that new anonymous constants generated in
one receive-send action are also new w.r.t. the knowledge of the intruder before this action is performed.

Definition 20 Let P = ({II;};<n,S) be a protocol with II; = ((T},...,T% ), Z;) and Z; C
Iix - x I;'”_l for 4 < n. An attack on P is a tuple consisting of the following components:
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e a total ordering <, the interleaving of the receive-send actions, on a subset O of {(7,7) | i <
n,j < n;}suchthat (i) (¢,7) € O implies (3, 3') € O for every 5’ < j, (ii) (4,7) < (i,7") implies
j < j',and (iii) if (z,7) € O is the greatest element in O (w.r.t. <), then TJi is a challenge output
action and all previous receive-send actions are not challenge output actions.

e amapping ¢ assigning to every (i,j) € O atuple 9 (i, ) = (¢}, m}, m'é-)

such that

1. for every i, if (¢,7) € O is maximal, i.e., there does not exist a 3/ with j < 5 and (4, ') € O,
then there exist ¢}, ..., q,_y such that (gg, - .., qn,_1) € T,

1

2. m%,m'; € Mand (m},m';) € Tri(g) for every (i,5) € O,

3. (occe(m's) \ occe(mi)) N occe(SE) = 0§ for every (4, 5) € O, and
4. m! € d(S}) for every (i,j) € O

Where Sj- =8 U {m’§~ll | (i',5") < (4,4)} is the current intruder knowledge before performing the
receive-send action in step (z, 7).

An attack is called successful if the last receive-send action, the challenge output action, say with
index (i,7) € O, returns some c such that ¢ € d(S7) N (AUC).

The decision problem we are interested in is:
ATTACK: Given a protocol P, decide whether there exists a successful attack on P.

If there is no successful attack on a protocol, we say that the protocol is secure.
As mentioned above, extending the intruder by allowing him to generate new constants does not
increase his ability to attack protocols. The following remark makes this more precise.

Remark 21 If the initial intruder knowledge contains at least one anonymous constant, then there
exists an attack on a protocol P iff there exists an attack on P in which the intruder may generate new
anonymous constants.

The reason for this is that TTACs cannot check anonymous constants for disequality. If (m,m') be-
longs to the transduction of a TTAC, then so does (o(m), o(m')) where ¢ maps anonymous constants
in m to some arbitrary constant ¢’ ¢ occe(m') \ occo(m), i.e., some constant not newly generated.
As a consequence, to attack a protocol the intruder can always use the same (old) anonymous constant
instead of creating new once.

Since in models for non-looping protocols disequality tests between messages are usually not pos-
sible as well (see, e.g., [24, 19]), in these models extending the intruder with the ability to generate
new constants would also not increase his power to attack protocols.
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5 The Decidability Result

The main result of this section is the following:
Theorem 22 For TTAC-based protocols, ATTACK is decidable.

To prove this theorem it obviously suffices to show that the following problem is decidable.

INTERLEAVINGATTACK. Given a finite set S C M (the initial intruder knowledge), a sequence
Ty, ..., Tj_1 of message transducers (the interleaving of receive-send actions) with T; = (Q;, I;, Aj,
I';) for i < I, decide whether there exist messages m;, m; € M, i < [, such that

1. (mj,m}) € T, for every i </,
2. (occe(m]) \ occe(my)) Nocce(S;) = O for every i < I,
3. m; € d(S;) for every i < [, and

4. m! | €d(S_1)N(AUC)

where S; = S U {mj,...,m;_;} is the intruder’s knowledge before the ith receive-send action is
performed.
We write (S, To, ..., T1_1) € INTERLEAVINGATTACK if all the above conditions are satisfied.

The proof proceeds in two steps. First, we show that the intruder can be simulated by a TTAC.
Then, we reduce INTERLEAVINGATTACK to ITERATEDPREIMAGE.

5.1 Deriveis TTAC realizable

We wish to show that the messages in d({m}) for some message m can be produced by a TTAC. More
precisely, we will construct a TTAC T such that 7, (m) = d({m}) for every message m.
We first define what we call the key discovery automaton which is used as look-ahead in T ge.

5.1.1 Key Discovery

The key discovery automaton D is a complete and deterministic WTAAC containing all information
about which keys can be accessed in a given message. More precisely, the set of states @ p of the
key discovery automaton are the functions 24 — 2“4 and the automaton is set up in a way such that
[m]p(K) = an({m} U K) N Afor every K C A and message m. Note that since D is complete and
deterministic, [m]p = {} for some function ¢ € @ p. In the following, it is argued that this is indeed
possible, that is, we will construct D with the desired property.

The default state of D is the identity mapping. The transitions of D are defined as follows. For
every a € A, D contains a transition

a—d

where d(K) = K U {a} forevery K C A.
For every a € Aand d,d € Qp, D contains a transition

enci(d) —d
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iff d(K) = K ifa ¢ K and d(K) = d'(K) otherwise, for every K C A.
Forevery k € K and d,d’ € Qp, D contains a transition

enci(d) — d

iffd(K) = Kifk~! ¢ K and d(K) = d'(K) otherwise, for every K C A.
Forevery a € Aand d,d’ € Qp, D contains a transition

hash,(d') — d

iff d(K) = d'(K).
The transitions for (-, -) are more complicated. For every d,d’,d” € Qp, D contains a transition

(d,d"y —d
iff for every K C A, d(K) is the smallest set such that
e K Cd(K),
e if K' C d(K),thend (K') C d(K),
e if K' Cd(K),thend"(K') C d(K).
The following lemma is easy to prove.
Lemma 23 For every message m € M and K C A we have that

[m]p(K) =an({m} UK).

5.1.2 The Transducer T g

The TTAC Tye has a distinguished initial state ¢; and, for each K C A, there are two states (gg, K)
and (g4, K), the indices being reminiscent of “syn” and “an”. The transducer works in three phases.
The first phase is just one step and simply determines the keys that can be discovered from the given
message m. In the second phase, the *“syn part” is carried out, that is, non-deterministically a message
mg is constructed which can be written as t[m,m,m, ..., m] where ¢(zo, ..., z,_1) is a linear term
which is built using messages from an({m}) only. In the third phase, the “an phase”, every copy of m
int[m,...,m] is (non-deterministically) replaced by some message from an({m}).

To be more precise, we have the following transitions in T ge. Since for Tge nNO register is used,
in what follows we write s(¢) instead of s(x,t) where s is a state of Tyer, i.€., s = q1, s = (g5, K), Of
s = (qa, K) for some K C A.

For the first phase, for every d € @ p, Tger CONtains the transition

qr(z) =% (g5, d(0))(z)

For the second phase, for every K C A, T ge contains the following transitions:

23



(g5, K)(z) — {(gs,K)(z),(gs,K)(z))

(gs,K)(z) — enci((gs,K)(z)) fora € K
(g5, K)(z) — enci((gs,K)(x)) forke KNK
(g5, K)(z) — hashy((gs,K)(z)) fora € K
(g5.K)(z) — (g4,K)(z)

For the third phase, for every K C A, Tge contains the following transitions:

(g4, K)(z) — =
(g1, K)(z) — a fora € K
(g4, K)({z0,71)) — (g4, K)(z0)
(g4, K)((zo,71)) — (ga,K)(z1)
(ga,K)(enci(z)) — (qa,K)(z) fora e K
(g4, K)(encd(z)) — (qa,K)(z) fork'e KNK
(ga, K)(hash,(z)) — (qa,K)(z) foraec A

Writing Tqger instead of 7r,, , We can state:
Lemma 24 1ge(m) = d({m}) for every m € M.

Note that even if we allowed the intruder to generate anonymous constants, we could model such
an intruder by a TTACs since TTACs can generate anonymous constants. More precisely, one could
simulate the intruder by a composition of two TTACSs: The first TTAC copies the input into the output
and adds an arbitrary number of new anonymous constants to the output. This can be achieved by using
epsilon transitions. The second transducers works just as the transducer described above. Note that this
transducer obtains the original message together with the constants generated by the first transducer
as input. However, as stated in Remark 21, since the intruder is not more powerful if he can generate
anonymous constants, it suffices to model the simpler intruder.

5.2 Reduction to the Iterated Pre-image Word Problem

In the reduction, we describe INTERLEAVINGATTACK as a composition of transducers. We need to
introduce two variants of Tge and one variant of T;, mainly to pass on the intruder’s knowledge from
one transducer to the next.

The first variant of Tger, called T, copies its input to the first component of a pair and simulates
Tyer ON the second component, i.e.,

rpew = {(m, (m,m’)) | m" € d({m})}.
The modification of Tge that accomplishes this is very simple. It gets one more state, say ¢;°*¥, which
is the inital state of T, and we add the following transition:
Q;Opy(* .T) - <£L‘, ql(*a SL')>

Recall that g is the initial state of Tger. Let 749" = Topey.
er

The second variant, called TS, expects an input of the form (m,m’), copies the second compo-

nent into the output and simulates T g 0N the first component. We call this transducer the challenge
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transducer since it receives in the second component the challenge and tries to derive it from the first
component, the intruder’s knowledge. The modifiction of Tge that accomplishes this is again very
simple. It gets one more state, say ¢$*#, which is the inital state of T$2!, and we add the following
transition:

i (x, (20, 1)) = (qr(*,70), z1).

Let 78l — 7 copy. Finally, we introduce a variant T; of T; to i) pass on the intruder’s knowledge and
der Ty

ii) to satisfy condition 2. in the definition of INTERLEAVINGATTACK. To this end, Ty only accepts pairs
as input, copies the first component into the output (this component stands for the intruder’s knowl-
edge) and simulates T; on the second component (this component corresponds to the input for T';).
Obviously, T; accomplishes i) but also ii) since by definition of computations, anonymous constants
generated by a transducer are different from those that occur in the input. It is again straighforward to
obtain T; from T;: We add one state q to the set of states of T';, which is the new initial state, and for
every initial state g; of T;, we add the transition

q(*, (z0, 1)) = (T0,q1 (%, T1))-
Let7; = T,
We also need the tree language
R ={(a,a) |a € A} U{{c,c) | ceC}.

which using Example 1 can easily be seen to be TAAC recognizable. For a finite set S = {ug,.--,
up—1} Of messages let m g be the message (ug, (u1, (- - - (up—2,upn—1) - - -))) (the order of the u;’s does
not matter). Finally, let

chall copy

T = Tge ©Tj—10 ngrpy 0T 90 T((j:grpy O+ 0 Tyy 4

A CO|
o Tp©O Tder .
Then, we obtain the following characterization for INTERLEAVINGATTACK.
Lemma 25 For every S and Ty, ..., Ty 1 as in the definition of INTERLEAVINGATTACK , we have
(S, To,...,T1 1) € INTERLEAVINGATTACK iff ms € 771(R).
Together with Corollary 10 this immediately implies

Theorem 26 INTERLEAVINGATTACK is decidable.

This concludes the proof of Theorem 22.

By reduction from the intersection problem for top-down tree automata, which is known to be
EXPTIME-complete [25], it is easy to see that ATTACK and INTERLEAVINGATTACK are EXPTIME-
hard. Our decision procedure for the iterated pre-image word problem is non-elementary. Thus, it
remains to find a tight complexity bound.
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6 Adding Features of Models for Non-looping Protocols and Undecid-
ability Results

As mentioned in Section 4, the basic assumptions of our tree transducer-based protocol model and
models for non-looping protocols coincide (finite number of receive-send actions, Dolev-Yao intruder
without a bound on the size of messages). In fact, in the TTAC-based protocol model as introduced
in Section 4, many non-looping protocols can be analyzed with the same precision as in decidable
models for non-looping protocols with atomic keys (see, e.g., [2]). More precisely, this is the case for
protocols where a) the receive-send actions can be described by rewrite rules with linear left-hand side,
since TTACs can simulate all such rewrite rules, and b) only a finite amount of information needs to be
conveyed from one receive-send action to the next. This includes for instance many of the protocols in
the Clark-Jacobs library [9]. (To illustrate this, in Section 7.2 we provide a formal TTAC-based model
of the Needham-Schroeder Public Key Protocol.)

However, some features present in decidable models for non-looping protocols are missing in the
TTAC-based protocol model:

1. Equality tests for messages of arbitrary size, which are possible when left-hand sides of rewrite
rules may be non-linear (this corresponds to allowing non-linear left-hand sides in transitions of
TTAGCs) or arbitrary messages can be conveyed from one receive-send action to another and can
then be compared with other messages [2, 24, 19, 4];

2. complex keys, i.e., keys that may be arbitrary messages [24, 19, 4]; and

3. relaxing the free term algebra assumption by adding the XOR operator [7, 10] or Diffie-Hellman
Exponentiation [8].

The main result of this section is that these features cannot be added without losing decidability.

Our undecidability results show that if one equality test can be performed than ATTACK is undecid-
able. While in 1. the equality test is explicitly present, in 2. and 3. implicit equality tests are possible.
In the following subsections, the undecidability results are presented in detail.

We remark that when an intruder is allowed to use an unbounded number of copies of a principal
to perform an attack, i.e., the protocol is analyzed w.r.t. an unbounded number of sessions—and thus,
receive-send actions—, then ATTACK is undecidable as well. This is not surprising. The same is true
for models of non-looping protocols (see, e.g., [2]).

6.1 Equality Tests on Messages

We define the following extension of TTACs. A top-down tree transducer with non-linear left-hand
side (TTNL) is a TTAC with transitions of the form as defined in (5) but where ¢ is not required to
be linear. A protocol where the receive-send actions are defined by TTNLs is called a TTNL-based
protocol.

We show the following:

Theorem 27 For TTNL-based protocols, ATTACK and INTERLEAVINGATTACK are undecidable.
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The proof of the theorem is by reduction from Post’s Correspondence Problem (PCP), which is well-
known to be undecidable. The proof for for ATTACK and INTERLEAVINGATTACK is essentially the
same.

An instance of PCP is defined as follows: Given an alphabet 3 with at least two letters and two
sequences ajq,...,ay and By, ..., B, of words over the alphabet 3 (including the empty word ¢),
decide whether there exist indices ig, ..., i1, k > 0, such that o, ... cs, | = Big ... Biy,_,-

We will encode a word a@ = ag...aq;—1 € X* with a; € X by the term ¢, := (ao, (a1, -,
(aj—1,L)---), where L is a new constant. We also have to encode the indices 7 € {1,...,n}. Letd
be a new constant and let ¢ denote the word b--- b of length i. Then, i is encoded by #; = #,:. In
addition to b, we will use the new constants b, bo, and secret. The set of atomic messages is defined
to be A := X U {b,b1,be, L,secret}.

The main idea of the reduction is that the intruder tries to guess a solution of the PCP and then a
principal checks whether this is in fact a solution. More specifically, we use one principal who performs
four receive-send actions. The initial intruder knowledge is S = X U {b, L}. The intruder guesses a
solution of PCP, i.e., a sequence 4o, . .., ix_; Of indices encoded as mqo = (tiy, (tiys- -5 (tip_1r L) -+ )
and sends m to the principal. In the following steps, it is checked whether m in fact encodes a
solution of PCP. This is done as follows. When the principal receives mg, in her first receive-send
action she duplicates mq and encrypts it with by, i.e., the principal retumns mg = encg ({mo, mo)).
The encryption is done to prevent the intruder from changing this message. In the second receive-
send action, the principal will only accept messages encrypted by b;. Thus, the intruder must send
my, to the principal. Now, the principal performs the second receive-send action by reading m(, and
turning the my’s into words over X (encoded as terms) by replacing every index 7 by the corresponding
word «;, for the mq on the left-hand side, and g;, for the mg on the right-hand side. The message,
m/, which the second receive-send action returns, is encrypted by b9, for the same reason the first
message was encrypted by by. In the third receive-send action, the principal reads m/ and checks
whether the two words encoded in m/ are equal. This can be done because the left-hand sides of
transitions may be non-linear. If the two words coincide, the secret message secret is given to the
intruder. The last receive-send action is a challenge output action which returns secret as output. Thus,
the challenge given to the intruder is secret. The input of the challenge output action does not matter.
For concreteness, we will assume that the challenge output action expects secret as input. It is easy to
see that the intruder is successful iff the instance of the PCP has a solution.

More formally, we now define To, T1, T2, and T3, the receive-send actions of the principal
informally explained above. Since we do not need registers we simple write s(¢) instead of s(x,t).
The state g7 will always denote the initial state. The TTNL T is given by one transition:

qI(<J),$I)) - enC21(<<$,wl>, <'T7 .’I)’)))

By writing (x, z') we make sure that the sequence of indices is not empty. The transitions of T are:

gr(enc, ((z,2'))) — encj, ({ga(2), ("))

and for every i € {1,...,n} with a; = ap---a;_1:

da((ti;z)) — (ao,(a1,...,{a—1,qa(x)) )
ga(Ll) — L.
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The transitions for the ;s are defined analogously. The transducer T2 is given by the transition:
gr(ency,((z,z))) — secret.

Note that the term on the left-hand side of the transition is non-linear. This is the only place where
an equality test is used. Finally, T's which is considered a challenge output action has the following
transition:

qr(secret) — secret.

One easily shows that the instance of the PCP has a solution iff there exists a successful attack on the
protocol just described, and that this is the case iff (S, Tg, Ty, T2, T3) € INTERLEAVINGATTACK.
This concludes the proof of Theorem 27.

We point out that the transducers T'; used in the reduction are deterministic and that they do not
use epsilon transitions or anonymous constants.

Since TTNLs (with epsilon transition) can simulate the intruder, as a consequence of the reduction
presented in Section 5.2 we obtain:

Corollary 28 For TTNLs the pre-image word problem is undecidable.

The same results hold true for other extensions of TTACs which enable the transducer to perform
equality tests. For example:

e TTACs which can store one message of arbitrary size and compare it with the input message for
equality, either directly or recursively by comparing the head of the current input with the head
of the message stored in memory.

e TTACs which are equipped with a parameter (taking a message) used to remember a message
when going from one TTAC to another and which can compare the parameter with another
message (see 1. at the beginning of Section 6). Recall that in the model presented in Section 4,
only a finite amount of information can be conveyed from one receive-send action to another.

e TTACs where in the right-hand side of transitions the state symbols can occur everywhere in the
term instead of only at subterms of the term on the left-hand side.

We note that for the undecidability result of Corollary 28, the existence of epsilon transitions is essen-
tial: If epsilon transitions are not allowed, then on a given input, a transducer can only produce a finite
number of outputs modulo new anonymous constants. It is easy to bound the number of anonymous
constants to be considered. Thus, we obtain:

Observation 29 For TTACs or TTNLs without epsilon transitions, i.e., only »-transitions of the form
(8), the pre-image word problem is decidable.
6.2 Complex Keys

To model complex keys, we replace the unary symbol enc3(-), by the binary symbol enc(-,-). The
message enc (m, m') with m, m’ € M stands for the message m’ encrypted by m. Note that the key
m may be a complex message.
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Accordingly, we extend the intruder’s ability to derive messages. If the intruder knows m,m’ € M,
then he can generate enc(m, m'). If he knows enc(m, m’) and m, then he knows m' as well.

The transducers used to define principals are not extended, except that the signature changes.

To see that in this setting ATTACK and INTERLEAVINGATTACK are undecidable it suffices to ob-
serve that in the reduction from Section 6.1, the transition defining T2 can be replaced by

gr(enc(bq, (z,7')) — (enc(z,secret),z’).

This ensures that the intruder can get hold of secret iff the messages substituted for z and ' coincide.
In other words, the reduction uses that decryption for complex keys requires equality tests for messages
of arbitrary size. We have shown:

Theorem 30 For TTAC-protocols with complex keys, ATTACK and INTERLEAVINGATTACK are un-
decidable.

This result is also true if the challenge may be an aribtrary message. More precisely, the setting is as

follows. The message space is defined as in Section 4. So far we require that in a challenge output

action the principal returns a challenge in CU.A. Now we drop this requirement and allow any message

from M as challenge. Itis easy to see that then ATTACK and INTERLEAVINGATTACK are undecidable:
In the above reduction we define the transition of T'5 to be

ar(encs,((z,2))) — (encj (z),enc;, (z'))

and the one for T3 to be
gr(ency, (z)) — encg,(z).

Thus, the challenge for the intruder is enc}, (z') which he can meet only if the messages substituted
for z and 2’ in the transition of T5 coincide. This shows:

Theorem 31 The problems ATTACK and INTERLEAVINGATTACK are undecidable in the TTAC-based
protocol model in case challenges may be arbitrary messages (instead of constants from C U A).

6.3 XOR and Diffie-Hellman Exponentiation

We first consider XOR. The message space is extended as follows: We add the constant 0 and the
binary symbol & which among others has the following algebraic property: m & m = 0 (see, e.g.,
[7] for other properties of XOR.) These properties induce an equivalence relation on messages. For
instance, enc; (m @ m) = enc;(0). Note that this gives a way to compare messages for equality.

In general, one would extend the intruder by the ability to combine messages using the XOR
operator. For the undecidability result this is however not needed.

Also, one would require the transducers to work on equivalence classes of messages. However, it
is easy to see that for the reduction this does not make a difference.

To show undecidability, we can again use a similar reduction from PCP as in Section 6.1. The only
difference is the definition of T5 and T3 and that we need another transducer T 4.

The transducer T is given by the following transition:

gr(ency, ((z,2'))) — enc,(z @ a').
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Thus, the intruder obtains enc}, (0) iff the messages substituted for  and 2 coincide.
Now, T3 checks whether the intruder knows encj_(0) and in this case returns secret. That is, T's
is defined by the following transition:

gr(encj,(0)) — secret.

Finally, T4 is defined just as Tg in Section 6.1.
A similar reduction is possible for Diffie-Hellman Exponentiation [8] since the normalization also
involves comparison of arbitrary messages. We obtain:

Theorem 32 For TTAC-protocols with XOR or Diffie-Hellman Exponentiation, the problems ATTACK
and INTERLEAVINGATTACK are undecidable.

7 Modeling Cryptographic Protocols

In this section, we present formal TTAC-based protocols models for the recursive authentication pro-
tocol (as an example of a recursive protocol) and the Needham Schroeder Public Key Protocol (as an
example of a non-looping protocol).

7.1 The Recursive Authentication Protocol

In Section 7.1.1, we first give an informal description of the recursive authentication protocol (RA
protocol). Section 7.1.2 provides a formal TTAC-based model for this protocol. In what follows, we
abbreviate messages of the form (my, ..., (my—1,my) - --) by mg - - - my Or mg, ..., my.

7.1.1 Informal Description of the RA Protocol

The RA protocol was proposed by Bull and Otway [6] and it extends the authentication protocol by
Otway and Rees [21] in that it allows to establish session keys between an a priori unbounded number
of principals in one protocol run. Our description of the RA protocol follows Paulson [22].

In the RA protocol one assumes that a key distribution server S shares long-term keys with the
principals. In Figure 1 a typical protocol run is depicted. In this run, A wants to establish a session key
with B and B wants to establish a session key with C. The number of principals involved in a protocol
run is not bounded. In particular, C' could send a message to some principal D in order to establish
a session key with D and D could continue and send a message to £ and so on. In the protocol run
depicted in Figure 1, we assume that C' does not want to talk to another principal and therefore sends
a message to the key distribution server S, who is involved in every protocol run.

In Figure 1, K, denotes the long-term key shared between A and S. Similarly, K and K, are the
long-term keys shared between B, C, and S, respectively. With N,, N, and N, we denote nonces (i.e.,
random numbers) generated by A, B, and C, respectively. Finally, K3, Kj., and K¢ are the session
keys generated by the server and used by the principals for secure communication between A and B,
B and C, and C and S, respectively. The numbers (1. — 6.) attached to the messages only indicate the
order in which the messages are sent and do not belong to the protocol.

We now take a closer look at the messages exchanged between the principals in the order they are
sent: In the first messages (1.), principal A indicates that she requests a session key from the server
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enchc(KcsSNC)

6.ency (KaBNqa)| [L hashg,(ABNa—) enci. (KpcBNc)
enc}b(KbCCNb)

3. hashg (CSNchashg, (BCNyhashg, (ABN,—))) encs, (KapAN,)

enc}a(KabBNa)

2. hashg, (BCNyhashg (ABN,—))
B) c
5. enc}b(KbcCNb)enc}b(KabANb)enc}a (KapBNg)

Figure 1: A Run of the Recursive Authentication Protocol

for secure communication with B. The symbol “—" says that this message started the protocol run.
Now, in the second message (2.), B sends something similar to C' but with A’s message instead of
“—7_ indicating that he wants to share a session key with C. As mentioned, this step could be repeated
as many times as desired, yielding an ever-growing stack of requests. The process is terminated if one
principal contacts S. In our example, we assume that C' does not request another session key, and
therefore, sends the message received from B to S (3.). This message is now processed by S. This can
be done in different ways. In what follows, we describe one possible way.

First, S checks whether the outer request is in fact addressed to S. If so, S generates a new
session key and stores it. Now, S processes the requests starting from the outermost. In general, S
has a “frame” containing two requests at a time. In the example, S starts with a frame containing
the requests CSN, and BCN,. Thus, S knows that C' wants to talk to S and that B wants to talk
to C. Consequently, S has to generate two certificates for C, one that contains the session key for
communication with S and the other one for communication with B. These certificates are generated
by S as follows. The first one contains the session key stored, the name S of the server, and C"’s nonce
N.. For the second certificate, S generates a new session key, stores it for later use, and then assembles
the second certificate for C' containing the session key just generated, B’s name, and C’s nonce N.. At
this point, all certificates for C' have been prepared. Therefore, S moves the frame one request further
and processes this frame as before. Note that now the frame contains the requests BC Ny and ABN,,
and that for the first certificate sent to B, S uses the session key stored. After the two certificates for B
have been prepared, S moves the frame one request further. Now this frame contains only one request,
namely, ABN,—. The marker “—" indicates that A started the protocol. Therefore, only one certificate
for A is generated. It contains the session key stored, B’s name, and A’s nonce N,. After this, S has
prepared all certificates and sends them back to the principal who called S. In the example this is C'.

Principal C accepts the first two certificates, extracts the two session keys, and forwards the rest of
the message to his predecessor in the chain (5.). Then, B does the same, and forwards the last certificate
to A (6.) Since according to the intruder model, the message send by S is sent to the intruder, we may
assume that every principal only receives his or her certificates and does not need to forward the rest
of the message to his or her predecessor.

7.1.2 The TTAC-based Protocol Model

We now provide a formal description of the RA protocol in the TTAC-based protocol model.
First we note that although in the RA protocol the number of receive-send actions performed in
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one protocol run is unbounded, in our model we assume a fixed bound—extending the TTAC-based
protocol model to handle an unbounded number of receive-send actions would lead to undecidability
(Section 6). Nevertheless, even with such a fixed bound it is still necessary to model recursive pro-
cesses: In the RA protocol, the intruder can generate an unbounded sequence of requests which must
be processed by the server. In other protocols in which the number of receive-send action in a protocol
run is fixed, recursive processes may also occur independently of the intruder. One example is IKE
[14].

In what follows, let Py, ..., P, be the principals participating in the RA protocol. We assume that
P, = S is the server. Every P;, i < n, shares a long-term key K; with S. The nonce sent by P; in the
request message is denoted N;, 7 < n.

7.1.3 Modeling the Agents

An agent P;, i < n, performs two receive-send actions and is given by the tuple (T{], Til,Ii). The
different components are defined next.
The message transducer Tﬁ) for sending the request message consists of the following transitions:

(request,L,PjI)(*,init) — haShKi(Pi,le,Ni,—),
(request, P;, Py )(x,hashy (P}, P;,zo,z1)) — hashg,(P;, Py, N;,hash,(P;, P, zo,21))

where z( and z; are variables, ;' < n, j < n,a € A, and init € A is some atomic message known
to the intruder. The first transition is applied if P; initiates a protocol run and calls P;;. The second
transition is applied if P; is called by P; and sends a message to P;:. The initial states of T}) are
(request, L, P;) and (request, P;, Pjr) for every j' <nand j < n.

The transducer T} is a challenge output action which receives a session key and sends it out to the
intruder as a challenge. For every 5/ < n and j < n, T} contains the following transitions:

(key,J_,Pj/)(*,enc%i(wo,le,Ni)) — Xy
(key’ljjaf)j')(*a<enC§(,-($Oaf)j'aNi)aenc?(i(a:l’ljj’Ni))) — o
(keyaljjaljj')(*a<enC§(i(anIDj’aNi)aenci(i(xlaljjaNi)>) - I

where xo and z; are variables. The first transition is applied if P; initiated the protocol run for com-
munication with P;:. The other two transitions are applied if P; was called by P; and called Pj. All
states occurring in T are initial states.

It remains to define Z¢. We want to guarantee that P; remembers who he called and who wants to
communicate with P;. Therefore, we set

Ii = {((requeStaJ-a]Dj’)a(keyaJ—’Pj’)) | jl < TL}U
{((requeSta Pj7 Pj’)? (keya Pja Pj’)) ‘ jl < n,j < n}
This model of the agents is more precise than the one presented in [15] where word transducers have
been used instead of tree transducers. While in [15], the nonces (the messages substituted for zq in

T{]) needed to be typed since a word transducer can not parse arbitrary message, here any message can
be substituted for x.
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7.1.4 Modeling the Server

Since the server S = P, performs only one receive-send action, it can be described by a single message
transducer, which we call T,.

The transducer T, has two states and works as described in Section 7.1.1. In state start, the initial
state, T, checks whether the first request is addressed to S and generates a session key which is stored
in the register. In state read, the requests are processed. In this phase, the register is used to store a

session key while moving the frame to the next request.
The transitions of T, are specified as follows:

start(x,hashg, (P;, Pn,x0,21)) — read(vy,hashg,(P;, P, xo,%1))

read(vg, hashg, (P;, Pj,z0,—)) — enc,(vgr,Pj,zo)

read(vg, hashg, (P;, Pj, zo,hashg,, (Py, Pi,1,22))) — enc,(vr, Pj,x0),enc, (vn, Py, xo),
read(vn,hashg,, (P, P;, z1,%2))

where 7,4, 5 < m and zg,z1,zo are variables which take arbitrary messages, and v and v are the
variables for the register and the new anonymous constants, respectively.

This model of the server is more precise than the one presented in [15]. First, we do not need
to assume that nonces are typed. The server accepts any message as nonce. In the word transducer
model this was not possible since i) word transducers cannot parse arbitrarily nested messages and ii)
they cannot copy messages of arbitrary size, which is however necessary in the last transition of the
server. Second, TTACs allow to generate anonymous constants, and thus, provide a very natural way
of modeling the generation of new session keys. The word transducers as considered in [15] did not
have this capability. Therefore, in [15], the server could only choose from a finite set of session keys.
Since the number of session keys the server needs to generate is not fixed a priori, this was only an
approximation of the server’s actual behavior.

It is clear that with decidable models for non-looping protocols [24, 19, 4, 2] the server cannot be
modeled faitfully since these models do not allow to describe recursive processes.

7.2 The Needham Schroeder Public Key Protocol

The Needham Schroeder Public Key Protocol is a famous public key challenge response protocol (see,
e.g., [9] for a more detailed description). In our terminology it is a non-looping protocol since its
receive-send actions do not require iteration or recursion.

In the standard Alice and Bob notation the protocol can be described as follows where K 4 and Kp
denote A’s and B’s public key, respecitvely, and N4 and Ng denote nonces generated by A and B,
respectively:

A — B: ency (Na,A)
B

B — A: enc%, (N4, Np)

A — B: enc%,(Ng)

B— NB

The last action of B is a challenge output action. That is, B presents N g as a challenge for the intruder
since Np may be used as session key.
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We model the protocol as follows: We assume that A runs one instance of the protocol as initiator
with the intruder 1. We also model one instance of B running in the role of a responder with A.

All receive-send actions can be modeled by TTACs with only one state, which we call start, and
one transition.

Principal A performs two receive-send actions, and thus, is described by two TTACs, T4 and T4,
with the following transitions:

TE:  start(x,init) — ency, (Ng, A)
T{:  start(x,ency, (Na,z)) — ency, (z)

Principal B performs two receive-send actions as well, described by T8 and T2:

Tg: start(x,enck (z,4)) — enck,(z,Np)
TP: start(x,enc}, (Np)) — Np

Itis easy to see that there is an attack on this protocol, which was first found by Lowe [16]. In particular,
this attack can automatically be found by our decision algorithm.

We point out that nonces are not required to be typed. The principals accept any message as nonce.
In fact, the formulation of the Needham-Schroeder Protocol as described here is as accurate as other
formulations based on models for non-looping protocols [24, 19, 4, 2]. As above, in [15] one would
have to assume that nonces are typed.

8 Conclusion

The main goal of this paper was to shed light on the feasibility of automatic analysis of recursive
cryptographic protocols. The results obtained here trace a fairly tight boundary of the decidability of
security for such protocols. To obtain our results we introduced tree automata (TAACS) and transducers
(TTACS) over signatures with an infinite set of (anonymous) constants and proved that for TTACs the
iterated pre-image word problem is decidable. We believe that the study of TAACs and TTACs started
here is of independent interest.

One open problem is to establish tight complexity bounds for our decidability results. While so far
we do not allow anonymous constants as keys, this would be an interesting extension of our model.
In this paper, we have identified the computation of pre-images as a means to analyze protocols. It is
worthwhile to investigate to what extent this method is practical and whether it could be an altnerative
to constraint solving approaches usually employed for the analysis of (non-looping) protocols.
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