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Borodin, Linial and Saks [6] introduced a general framewtrkmodel online
problems, callednetrical task systems. We are given an undirected and connected
graphG = (V, E), with node sef” and edge sef, and a positive length function
X\ : E — IR" onthe edges afi. Letn be the number of nodes {@. We extend\ to a
metricd onG. Letd : V x V — IR be a distance function such th&t, v) denotes
the shortest path distance (with respech}detween any two nodasandv in G. A
task 7 is ann-vector(r(vy), ..., (v, )) of request costs. The cost to process taskin
nodev; is7(v;) € IR$ U{oo}. The online algorithm starts from a given initial position
so € V and has to service a sequeite- (71, ..., 7,) of tasks, arriving one at a time.
If the online algorithm resides after task ; in nodew, the cost to service task in
nodev is d(u, v) +1(v); 0(u, v) is thetransition cost andr,(v) is theprocessing cost.
The objective is to minimize the total transition plus pregiag cost.

Many well-known online problems can be formulated as matriask systems;
for example, the paging problem, the static list accessiodplpm and thek-server
problem. One might as well consider metrical task system gsreeral scheduling
problem. Due to its generality, the competitive ratio of &goathm for metrical task
systems is usually weak compared to the one of an onlineidigothat is designed
for a particular problem, such as theserver problem.

A widely accepted measure for the performance of an onligerdhm is itscom-
petitiveratio [11]. Let ALG[S] andoPT[S], respectively, be the cost of the online and
the optimal offline algorithm on a sequens§e For a cost minimization problem, the
competitive ratiac of online algorithmaLG is defined as the supremum over all input
sequences of the ratioALG [S]/oPT[S].

Borodin, Linial and Saks [6] gave a deterministic onlinecsithm that has a com-
petitive ratio of2n — 1 for every metrical task system; this algorithm is known as
the work function algorithm and we will subsequently use WFA to refer to it. The
2n — 1 competitive ratio of WFA is optimal. Borodin, Linial and Saf6] and Man-
asse, McGeoch and Sleator [10] proved thaty deterministic online algorithm has
competitive ratio at leagn — 1 for any arbitrary metrical task system. We emphasize
that this lower bound is proven independently of the undieglynetric, i.e., it holds for
any arbitrary grapldé and length functiorh.
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Itis a known fact that the competitive ratio of an online altfon often is an overly
pessimistic estimation of its actual performance in pcactiSequences that force the
online algorithm into its worst case behavior might be aitfi and therefore rarely
occur in practice. In order to overcome the overly pessimigewpoint adopted in
worst case analysis, Spielman and Teng [12] propes®tthed analysis which can
be seen as a hybrid between average case and worst casaésanBlhesbasic idea is
to randomly perturb, osmoothen, the input instances and to analyze the performance
of the algorithm on the perturbed instances. Intuitivethg smoothed complexity of
an algorithm is small if the worst case instances are istlpéaks in the instance/time
space.

Based on the idea underlyirsgnoothed analysis, Becchetti et al. [3] recently pro-
posedsmoothed competitive analysisas an alternative to (worst case) competitive anal-
ysis of online algorithms. The idea is to perturb an advéasaput sequencs slightly
at random and to analyze the expected competitive ratioeoalorithm on the per-
turbed sequences. We use the notatior— f(S) to refer to a sequencs that is
obtained from an adversarial sequeitdy perturbingS according to a smoothing
distribution f. More formally, Becchetti et al. defined tlssoothed competitive ratio
¢ of an online algorithmaLG with respect to a smoothing distributighas

ALG [8]] . B

c=sup Eg_ ;s [7
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Here, we are mainly interested in the asymptotics of the sheabcompetitive ratio in
the long run. That is, we restrict our attention to sequescesose length exceeds a
certain threshold value.

Our contribution. We use the notion of smoothed competitiveness to charaeteri
the performance of WFA. We smoothen the request costs of a&haccording to
an additive symmetric smoothing model. Each cost entry isathed by adding a
random number chosen from a symmetric probability distiilouf with mean zero.
Therefore, on expectation each smoothed cost entry c@&saidth its original cost
entry. Our analysis holds for various probability disttibas, including the uniform,
double exponential and normal distributions. We @i$e refer to the standard deviation
of f.

Our analysis reveals that the smoothed competitive ratdd/BA is much better
than its worst case competitive ratio suggests and thapiigs on certaitopol ogical
parameters of the underlying graph:

e n = number of nodes ir;

e AL, = Minimum edge length with respect o
e A\L.x = Maximum edge length with respecttp
e A = maximum degree of a node (&,

e 0max = diameter ofG, i.e., the maximum length of a shortest path between any
two nodes; more formallyj,.x = max(, evxv d(u, v);



e ¢, = edge diameter of7, i.e., the maximum number of edges on a shortest
path (with respect to the number of edges) between any twesyadbserve that
emax)\min S 6max S emax)\max-

We prove several upper bounds.

1. We show that if the request costs are chosen randomly frdistabution f,
which is non-increasing if), o), the expected competitive ratio of WFA is
o1+ - -log(A)).

In particular, WFA has an expected competitive ratio@flog(A)) if o =
O(Amin). For example, we obtain a competitive ratio@flog(n)) on a clique
and ofO(1) on a binary tree.

2. We prove two upper bounds on the smoothed competitive o&tivVFA:

o(iw(% +log(A))) and O(\/n- e +1og(A)))-

min min

For example, it = O(Amin) andAmax/Amin = ©(1), WFA has smoothed com-
petitive ratioO(log(n)) on any graph with constant edge diameter ard/n)
on any graph with constant maximum degree. Note that wembtad (log(n))
bound on a complete binary tree.

3. We obtain a better upper bound on the smoothed competittie@ of WFA if
the adversarial task sequence only consists-elfementary tasks. A task isj-
elementary if it has at mogtnon-zero entries. (We will use the teslementary
task to refer to al-elementary task.) We prove a smoothed competitive ratio of

03y (4 + og(4))

min

For example, ifc = ©(Amin) @aNd Apax/Amin = ©(1), WFA has smoothed
competitive ratiaO (/5 log(A)) for f-elementary tasks.

We also present lower bounds. All our lower bounds holdsfordeterministic online
algorithm and if the request costs are smoothed accorditlget@dditive symmetric
smoothing model. We distinguish betweexistential and universal lower bounds.
Existential lower bounds only hold for a certain class ofpfigwhile universal lower
bounds hold for any arbitrary graph.

4. For a large range of values féy,., andA, we present existential lower bounds
that are asymptotically tight to the upper bounds stated ith’s means (a) that
the stated smoothed competitive ratio of WFA is asympttitght and (b) that
WFA is asymptotically optimal under the additive smoothingdel—no other
deterministic algorithm can achieve a better smoothed ebithe ratio.

5. We also prove two universal lower bounds on the smoothetpettive ratio:

QA 4 Jmin Jog(A))  and Q<min{emax, \/emax- Quin. (Amin 4 1)}).
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Assume that\,.x/Amin = ©(1). Then the first bound matches the first upper
bound stated in 2 if the edge diametgr. is constant, e.g., for a clique. The
second bound matches the second upper bound ire.if = (n) and the
maximum degred\ is constant, e.g., for a line.

6. For(-elementary tasks, we prove an existential lower bound of
Q(F - (2 1 1)).

This implies that the bound in 3 is tight up to a factor &f,ax /Amin ) log(A).

Our smoothed competitive analysis renders meaninglessdtiical task systems whose
tasks obey a certain combinatorial structure, e.g., fopdging problem, thé-server
problem, etc. The reason for this is that our smoothing mddstroys zero request
costs and thus the underlying combinatorial structure e$¢hproblems. As a con-
sequence, the smoothed task sequence cannot be interjprééechs of the original
problem. One way out of this would be to consider zero-rétgismoothing models.
However, as will be addressed in the paper, these modelstyiefd a smoothed com-
petitive ratio better than — 1 for any deterministic online algorithm and independent
of the underlying metric. Therefore, the general framewadninetrical task systems is
not suitable to investigate the smoothed competitivenetteege problems.
Nevertheless, numerous other online problems fall intdrids@ework of metrical
task systems and we therefore obtain a smoothed competitalgsis for a large class
of problems. As an example, one might consider the followdngine problem of
scheduling: jobs onm unrelated parallel machines with predefined set-up coss. L
[k] denote the sefl, ..., k}. The time jobj € [n] needs to be processed on machine
i € [m]is given by its processing time ;. Moreover, we have a predefined symmetric
functiong : [m] x [m] — R{, which specifies machine set-up costs. If job 1 has
been processed on machiiigthe cost to process jobon machine is g(i’, i) + p; ;.
We assume thajf(i,i) = 0 for all i € [m]. The goal is to find an assignment of jobs
to machines such that the total set-up plus processingsasnimized. This problem
can be formulated as a metrical task system in a straightafiar way: Each machine
i € [m] corresponds to a nodeg in G. We draw an edge between nodes; and
vy of lengthA(e) = g(i,4") for all i,i’ € [m], ¢« < i’. The arrival of a new joly
now corresponds to a task, where the request cosf(v;) of nodew; in G is given
by p; . Observe that the maximum degree(dfs m and the edge diameteris The
above mentioned lower bound for metrical task systems &spliat every deterministic
algorithm for this scheduling problem has a competitiveoraf 2(m). As opposed to
this, our analysis implies that if the processing times efjtibs are perturbed randomly,
the smoothed competitive ratio of WFA@(log(m)) for this problem (assuming that
0 = O(Amin) @andAyax/Amin = O(1)). Above we defineds as the complete graph
in order to capture all possible set-up functign®Ve remark that depending gnone
might be able to construct a refined graph (e.g., the all-gairtest path graph) that
still reflects the set-up functiopbut allows to relax the conditioR,ax /Amin = O(1)
or/and even leads to an improved smoothed competitive 0&igFA.



Related work. Several other attempts were made in the past to overcomerénly o
pessimistic estimation of the performance of an online réliga by its competitive
ratio. One idea was to enhance the capability of the onligerdahm by allowing
a limited lookahead [1, 2]. Another idea was to restrict tloever of the adversary
[5, 4, 9]. Yet another idea, was to use a resource augmentataziel in which the
online algorithm has access to more resources than the alptiiftine algorithm [7].
The diffuse adversary model by Koutsoupias and Papadouif8] is another attempt
to refine the notion of competitiveness. In this model, thei@cdistribution of the
input is chosen by an adversary from a known class of posgisigbutions.

We believe that smoothed competitive analysis is a natlteahative to adequately
characterize the performance of online algorithms.
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