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Borodin, Linial and Saks [6] introduced a general frameworkto model online
problems, calledmetrical task systems. We are given an undirected and connected
graphG = (V, E), with node setV and edge setE, and a positive length function
λ : E → IR+ on the edges ofG. Let n be the number of nodes inG. We extendλ to a
metricδ onG. Let δ : V × V → IR+

0 be a distance function such thatδ(u, v) denotes
the shortest path distance (with respect toλ) between any two nodesu andv in G. A
task τ is ann-vector(r(v1), . . . , r(vn)) of request costs. The cost to process taskτ in
nodevi is r(vi) ∈ IR+

0 ∪{∞}. The online algorithm starts from a given initial position
s0 ∈ V and has to service a sequenceS = 〈τ1, . . . , τr〉 of tasks, arriving one at a time.
If the online algorithm resides after taskτt−1 in nodeu, the cost to service taskτt in
nodev is δ(u, v) + rt(v); δ(u, v) is thetransition cost andrt(v) is theprocessing cost.
The objective is to minimize the total transition plus processing cost.

Many well-known online problems can be formulated as metrical task systems;
for example, the paging problem, the static list accessing problem and thek-server
problem. One might as well consider metrical task system as ageneral scheduling
problem. Due to its generality, the competitive ratio of an algorithm for metrical task
systems is usually weak compared to the one of an online algorithm that is designed
for a particular problem, such as thek-server problem.

A widely accepted measure for the performance of an online algorithm is itscom-
petitive ratio [11]. Let ALG[S] andOPT[S], respectively, be the cost of the online and
the optimal offline algorithm on a sequenceS. For a cost minimization problem, the
competitive ratioc of online algorithmALG is defined as the supremum over all input
sequencesS of the ratioALG[S]/OPT[S].

Borodin, Linial and Saks [6] gave a deterministic online algorithm that has a com-
petitive ratio of2n − 1 for every metrical task system; this algorithm is known as
the work function algorithm and we will subsequently use WFA to refer to it. The
2n − 1 competitive ratio of WFA is optimal. Borodin, Linial and Saks [6] and Man-
asse, McGeoch and Sleator [10] proved thatevery deterministic online algorithm has
competitive ratio at least2n− 1 for any arbitrary metrical task system. We emphasize
that this lower bound is proven independently of the underlying metric, i.e., it holds for
any arbitrary graphG and length functionλ.
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It is a known fact that the competitive ratio of an online algorithm often is an overly
pessimistic estimation of its actual performance in practice. Sequences that force the
online algorithm into its worst case behavior might be artificial and therefore rarely
occur in practice. In order to overcome the overly pessimistic viewpoint adopted in
worst case analysis, Spielman and Teng [12] proposedsmoothed analysis which can
be seen as a hybrid between average case and worst case analysis. The basic idea is
to randomly perturb, orsmoothen, the input instances and to analyze the performance
of the algorithm on the perturbed instances. Intuitively, the smoothed complexity of
an algorithm is small if the worst case instances are isolated peaks in the instance/time
space.

Based on the idea underlyingsmoothed analysis, Becchetti et al. [3] recently pro-
posedsmoothed competitive analysis as an alternative to (worst case) competitive anal-
ysis of online algorithms. The idea is to perturb an adversarial input sequencěS slightly
at random and to analyze the expected competitive ratio of the algorithm on the per-
turbed sequences. We use the notationS ← f(Š) to refer to a sequenceS that is
obtained from an adversarial sequenceŠ by perturbingŠ according to a smoothing
distributionf . More formally, Becchetti et al. defined thesmoothed competitive ratio
c of an online algorithmALG with respect to a smoothing distributionf as

c = sup
Š

E
S←f(Š)

[

ALG[S]

OPT[S]

]

. (1)

Here, we are mainly interested in the asymptotics of the smoothed competitive ratio in
the long run. That is, we restrict our attention to sequencesŠ whose length exceeds a
certain threshold value.

Our contribution. We use the notion of smoothed competitiveness to characterize
the performance of WFA. We smoothen the request costs of eachtask according to
an additive symmetric smoothing model. Each cost entry is smoothed by adding a
random number chosen from a symmetric probability distribution f with mean zero.
Therefore, on expectation each smoothed cost entry coincides with its original cost
entry. Our analysis holds for various probability distributions, including the uniform,
double exponential and normal distributions. We useσ to refer to the standard deviation
of f .

Our analysis reveals that the smoothed competitive ratio ofWFA is much better
than its worst case competitive ratio suggests and that it depends on certaintopological
parameters of the underlying graph:

• n = number of nodes inG;

• λmin = minimum edge length with respect toλ;

• λmax = maximum edge length with respect toλ;

• ∆ = maximum degree of a node inG;

• δmax = diameter ofG, i.e., the maximum length of a shortest path between any
two nodes; more formally,δmax = max(u,v)∈V×V δ(u, v);
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• emax = edge diameter ofG, i.e., the maximum number of edges on a shortest
path (with respect to the number of edges) between any two nodes; observe that
emaxλmin ≤ δmax ≤ emaxλmax.

We prove several upper bounds.

1. We show that if the request costs are chosen randomly from adistributionf ,
which is non-increasing in[0,∞), the expected competitive ratio of WFA is

O
(

1 + σ
λmin

· log(∆)
)

.

In particular, WFA has an expected competitive ratio ofO(log(∆)) if σ =
Θ(λmin). For example, we obtain a competitive ratio ofO(log(n)) on a clique
and ofO(1) on a binary tree.

2. We prove two upper bounds on the smoothed competitive ratio of WFA:

O

(

δmax

λmin

(

λmin

σ
+ log(∆)

)

)

and O

(

√

n · λmax

λmin

(

λmin

σ
+ log(∆)

)

)

.

For example, ifσ = Θ(λmin) andλmax/λmin = Θ(1), WFA has smoothed com-
petitive ratioO(log(n)) on any graph with constant edge diameter andO(

√
n)

on any graph with constant maximum degree. Note that we obtain anO(log(n))
bound on a complete binary tree.

3. We obtain a better upper bound on the smoothed competitiveratio of WFA if
the adversarial task sequence only consists ofβ-elementary tasks. A task isβ-
elementary if it has at mostβ non-zero entries. (We will use the termelementary
task to refer to a1-elementary task.) We prove a smoothed competitive ratio of

O
(

β · λmax

λmin

(

λmin

σ
+ log(∆)

))

.

For example, ifσ = Θ(λmin) andλmax/λmin = Θ(1), WFA has smoothed
competitive ratioO(β log(∆)) for β-elementary tasks.

We also present lower bounds. All our lower bounds hold forany deterministic online
algorithm and if the request costs are smoothed according tothe additive symmetric
smoothing model. We distinguish betweenexistential and universal lower bounds.
Existential lower bounds only hold for a certain class of graphs while universal lower
bounds hold for any arbitrary graph.

4. For a large range of values forδmax and∆, we present existential lower bounds
that are asymptotically tight to the upper bounds stated in 2. This means (a) that
the stated smoothed competitive ratio of WFA is asymptotically tight and (b) that
WFA is asymptotically optimal under the additive smoothingmodel—no other
deterministic algorithm can achieve a better smoothed competitive ratio.

5. We also prove two universal lower bounds on the smoothed competitive ratio:

Ω
(

λmin

σ
+ λmin

λmax

log(∆)
)

and Ω

(

min

{

emax,
√

emax · λmin

λmax

(

λmin

σ
+ 1

)

})

.
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Assume thatλmax/λmin = Θ(1). Then the first bound matches the first upper
bound stated in 2 if the edge diameteremax is constant, e.g., for a clique. The
second bound matches the second upper bound in 2 ifemax = Ω(n) and the
maximum degree∆ is constant, e.g., for a line.

6. Forβ-elementary tasks, we prove an existential lower bound of

Ω
(

β ·
(

λmin

σ
+ 1

))

.

This implies that the bound in 3 is tight up to a factor of(λmax/λmin) log(∆).

Our smoothed competitive analysis renders meaningless formetrical task systems whose
tasks obey a certain combinatorial structure, e.g., for thepaging problem, thek-server
problem, etc. The reason for this is that our smoothing modeldestroys zero request
costs and thus the underlying combinatorial structure of these problems. As a con-
sequence, the smoothed task sequence cannot be interpretedin terms of the original
problem. One way out of this would be to consider zero-retaining smoothing models.
However, as will be addressed in the paper, these models cannot yield a smoothed com-
petitive ratio better than2n−1 for any deterministic online algorithm and independent
of the underlying metric. Therefore, the general frameworkof metrical task systems is
not suitable to investigate the smoothed competitiveness of these problems.

Nevertheless, numerous other online problems fall into theframework of metrical
task systems and we therefore obtain a smoothed competitiveanalysis for a large class
of problems. As an example, one might consider the followingonline problem of
schedulingn jobs onm unrelated parallel machines with predefined set-up costs. Let
[k] denote the set{1, . . . , k}. The time jobj ∈ [n] needs to be processed on machine
i ∈ [m] is given by its processing timepj,i. Moreover, we have a predefined symmetric
functiong : [m] × [m] → R

+
0 , which specifies machine set-up costs. If jobj − 1 has

been processed on machinei′, the cost to process jobj on machinei is g(i′, i) + pj,i.
We assume thatg(i, i) = 0 for all i ∈ [m]. The goal is to find an assignment of jobs
to machines such that the total set-up plus processing cost is minimized. This problem
can be formulated as a metrical task system in a straight-forward way: Each machine
i ∈ [m] corresponds to a nodevi in G. We draw an edgee between nodesvi and
vi′ of lengthλ(e) = g(i, i′) for all i, i′ ∈ [m], i < i′. The arrival of a new jobj
now corresponds to a taskτj , where the request costrj(vi) of nodevi in G is given
by pj,i. Observe that the maximum degree ofG is m and the edge diameter is1. The
above mentioned lower bound for metrical task systems implies that every deterministic
algorithm for this scheduling problem has a competitive ratio of Ω(m). As opposed to
this, our analysis implies that if the processing times of the jobs are perturbed randomly,
the smoothed competitive ratio of WFA isO(log(m)) for this problem (assuming that
σ = Θ(λmin) andλmax/λmin = O(1)). Above we definedG as the complete graph
in order to capture all possible set-up functionsg. We remark that depending ong, one
might be able to construct a refined graph (e.g., the all-pairshortest path graph) that
still reflects the set-up functiong but allows to relax the conditionλmax/λmin = O(1)
or/and even leads to an improved smoothed competitive ratioof WFA.
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Related work. Several other attempts were made in the past to overcome the overly
pessimistic estimation of the performance of an online algorithm by its competitive
ratio. One idea was to enhance the capability of the online algorithm by allowing
a limited lookahead [1, 2]. Another idea was to restrict the power of the adversary
[5, 4, 9]. Yet another idea, was to use a resource augmentation model in which the
online algorithm has access to more resources than the optimal offline algorithm [7].
The diffuse adversary model by Koutsoupias and Papadimitriou [8] is another attempt
to refine the notion of competitiveness. In this model, the actual distribution of the
input is chosen by an adversary from a known class of possibledistributions.

We believe that smoothed competitive analysis is a natural alternative to adequately
characterize the performance of online algorithms.
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erage case and smoothed competitive analysis of the multi-level feedback algorithm. In
Proceedings of the Forty-Fourth Annual IEEE Symposium on Foundations of Computer
Science, pages 462–471, 2003.

[4] M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie. The online TSP against fair
adversaries.INFORMS Journal on Computing, 13(2):138–148, 2001.

[5] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality of
reference.Journal of Computer and System Sciences, 50(2):244–258, 1995.

[6] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical task systems.
Journal of the ACM, 39:745–763, 1992.

[7] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.Journal of the
ACM, 47(4):617–643, 2000.

[8] E. Koutsoupias and C. Papadimitriou. Beyond competitive analysis. InProceedings of the
Twenty-Fifth Symposium on Foundations of Computer Science, pages 394–400, 1994.

[9] S. O. Krumke, L. Laura, M. Lipmann, A. Marchetti-Spaccamela, W. de Paepe, D. Poens-
gen, and L. Stougie. Non-abusiveness helps: AnO(1)-competitive algorithm for minimiz-
ing the maximum flow time in the online traveling salesman problem. InProceedings of the
5th International Workshop on Approximation Algorithms for Combinatorial Optimization,
pages 200–214, 2002.

[10] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for on-line
problems. InProceedings of the Twentieth Annual ACM Symposium on Theory of Comput-
ing, pages 322–333, 1988.

[11] D. Sleator and R. E. Tarjan. Amortized efficiency of listupdate and paging rules.Commu-
nications of the ACM, 28:202–208, 1985.

[12] D. A. Spielman and S. H. Teng. Smoothed analysis of algorithms: Why the simplex algo-
rithm usually takes polynomial time.Journal of the ACM, 51(3):385–463, 2004.

5


