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Abstract

It is well known that the celebrated Lipton-Tarjan planar separation theorem, in a
combination with a divide-and-conquer strategy leads to many complexity results for
planar graph problems. For example, by using this approach, many planar graph
problems can be solved in time 20V where n is the number of vertices. However,
the constants hidden in big-Oh, usually are too large to claim the algorithms to be
practical even on graphs of moderate size. Here we introduce a new algorithm design
paradigm for solving problems on planar graphs. The paradigm is so simple that it can
be explained in any textbook on graph algorithms: Compute tree or branch decom-
position of a planar graph and do dynamic programming. Surprisingly such a simple
approach provides faster algorithms for many problems. For example, INDEPENDENT
SET on planar graphs can be solved in time O(2%182V"n 4+ n*) and DOMINATING SET
in time O(2°%43vV"™n 4+ n*). In addition, significantly broader class of problems can
be attacked by this method. Thus with our approach, LONGEST CYCLE on planar
graphs is solved in time O(2229Vn(Inn+0.99p5/4 4 pdy and BISECTION is solved in
time O(23182V7n 4 n*). The proof of these results is based on complicated combina-
torial arguments that make strong use of results derived by the Graph Minors Theory.
In particular we prove that branch-width of a planar graph is at most 2.122y/n. In
addition we observe how a similar approach can be used for solving different fixed
parameter problems on planar graphs. We prove that our method provides the best
so far exponential speed-up for fundamental problems on planar graphs like VERTEX
COVER, (WEIGHTED) DOMINATING SET, and many others.
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1 Introduction

The design of (exponential) algorithms that are significantly faster than exhaustive search
is one of the basic approaches of coping with NP-hardness [19]. Nice examples of fast
exponential algorithms are Eppstein’s graph coloring algorithm [18] and the algorithm for
3-SAT [12]. For a good overview of the field see the recent survey written by Gerhard
Woeginger [35].

It is well known that by making use of the well-known approach of Lipton & Tarjan [27]
based on the celebrated planar separator theorem [26] one can obtain algorithms with time
complexity OV for many problems on planar graphs. However, the constants “hidden”
in O(y/n) can be crucial for practical implementations. During the last few years a lot
of work has been done to compute and to improve the “hidden” constants [3, 4]. In this
paper we observe a general approach for obtaining sub-exponential time ezact algorithms
for many problems on planar graphs. Our approach is based on dynamic programming for
graphs of bounded branch-width (tree-width). Combining our upper bound for branch-
width of planar graphs with this simple approach one can obtain exponential speed-up for
many known algorithms for many different planar graph problems. INDEPENDENT SET,
DoMINATING SET, SAT, MIN-BISECTION, LONGEST CYCLE (PATH) on planar graphs
are just a few examples of such problems.

Another field for implementation of our graph theoretical bounds is in the designing
of parameterized algorithms. The last ten years were the evidence of rapid development
of a new branch of computational complexity: Parameterized Complexity. (See the book
of Downey & Fellows [17].) Roughly speaking, a parameterized problem with parameter
k is fized parameter tractable if it admits a solving algorithm with running time f(k)|I|5.
(Here f is a function depending only on k, |I| is the length of the non parameterized part

k

of the input and 3 is a constant.) Typically, f(k) = ¢" is an exponential function for

some constant k. However, it appears, that for a large variety of planar graph problems

NG

much attention was paid to the construction of algorithms with running time V¥ for dif-

algorithms with growth of the form f(k) = ¢V* are possible. During the last two years
ferent problems on planar graphs. The first paper on the subject was the paper by Alber
et al. [1] describing an algorithm with running time 0(46‘/@71) (which is approximately
0(270‘/En)) for the PLANAR DOMINATING SET problem. Different fixed parameter algo-
rithms for solving problems on planar and related graphs are discussed in [4, 25]. We
observe that our technique can serve also as a simple unified approach for solving many
parameterized problems on planar graphs in subexponential time. Again, our approach is
based on combinatorial bounds on planar branch-width and tree-width and provides a bet-
ter running time for such basic parameterized problem like VERTEX COVER, DOMINATING
SET and many others.

The crucial part of our paper is devoted to the proof that such a simple approach
guarantees better time bounds and here we use complicated combinatorial arguments



coming from Robertson-Seymour’s Graph Minor Theory. More precisely, our proof is based
on a new upper bound to the branch-width and the tree-width of planar graphs. Both these
parameters where introduced (and served) as basic tools by Robertson and Seymour in
their Graph Minors series of papers. Tree-width and branch-width are related parameters
(See Theorem 2.1) and can be considered as measures of the “global connectivity” of a
graph. Moreover, they appear to be of a major importance in algorithmic design as many
NP-hard problems admit polynomial or even linear time solutions when their inputs are
restricted to graphs of bounded tree-width or branch-width. This motivated the search
for graphs where these parameters are relatively small. In this direction, Alon, Seymour
& Thomas proved in [6] that given a minor closed graph class G, any n-vertex graph G
in G has tree-width/branch-width O(y/n). As a consequence of this, any n-vertex planar
graph G has tree-width/branch-width < 14.697/n.

We show that every n-vertex planar graph G has branch-width < 2.122/n and tree-
width < 3.182y/n. To our knowledge, this is the best known upper bound for the value of
these parameters on planar graphs. To obtain the new upper bounds we use deep “dual”
and “min-max” theorems from Graph Minors series papers of Robertson & Seymour.

1.1 Previous results and our contribution

Computation of constants «; and ap such that for every planar graph on n vertices tw(G) <
apy/n 4+ O(1) and bw(G) < apy/n + O(1) is of a great theoretical importance. In [6]
Alon, Seymour & Thomas proved that any K,-minor free graph on n vertices has tree-
width< r!5y/n. (Here K, is complete graph on r vertices.) Since no planar graph contains
K5 as a minor, we have that ay(G) < 61° < 14.697.

Before we proceed, let us remind the notion of a minor. Given an edge e = {z,y} of
a graph G, the graph G/e is obtained from G by contracting the edge e; that is, to get
G /e we identify the vertices  and y and remove all loops and duplicate edges. A graph
H obtained by a sequence of edge-contractions is said to be a contraction of G. H is a
minor of G if H is the subgraph of a some contraction of G.

The following is a combination of statements (4.3) in [28] and (6.3) in [30].

Theorem 1.1 ([30]). Let k > 1 be an integer. Every planar graph with no (k x k)-grid
as a minor has branch-width < 4k — 3.

Because a graph on n vertices does not contain a (([/n] +1) x ([\/n]| +1))-grid as a
minor, we have that a;(G) < 4. Robertson, Seymour, and Thomas showed (unpublished
result announced by Thomas [34]) that any planar graph without a (k x k)-grid as a minor
has tree-width < 5k — 1 implying oy < 5.

To design the algorithms of this paper, we will reduce the constant oy to 2.122 (for
the case of branch-width) and oy to 3.182 (for the case of tree-width).



Lipton & Tarjan [27] were first to observe the existence of time 200V () algorithms
for several problems on planar graphs. However the constants hidden in big-Oh of the
exponent make these algorithms unpractical. Later, a lot of work was done on computing
and reducing these constants. The best known so far results can be found in [4], where
generalizations and complicated improvement of Lipton-Tarjan (together with kernel re-
duction techniques) are used to obtain subexponential parameterized algorithms.

Thus, for example, the approach suggested in [4] provides an O(2%97V"n In n) algorithm
for INDEPENDENT SET and an O(2!861V"Inn) algorithm for DOMINATING SET.

Here we suggest a unified approach based on branch decompositions (see Section 2 for
the definitions). Our algorithm is simple and is performed in two steps: First we compute
the branch decomposition of a planar graph and then do dynamic programming on graphs
of bounded branch-width. Optimal branch decomposition of a planar graph can be con-
structed in polynomial time by using the algorithm due to Seymour & Thomas (Sections 7
and 9 in [32]). (See also the results of Hicks [23] on implementations of Seymour & Thomas
algorithm.) For graphs with n vertices this algorithm can be implemented in O(n*) steps.
And what is important for practical applications, there is no large hidden constants in the
running time of this algorithm. As for the second stage, well known dynamic programming
algorithms on tree decompositions can be easily translated to branch decompositions. Us-
ing upper bounds for branch-width we prove that our approach provides more efficient
solutions for many well known problems on planar graphs.

The following table summarize some known and new results on some problems on
planar graphs (for more problems see Section 3). (See [33] for the definitions of PERFECT
CODE, H-COLORING, and H-COVERING problems and Appendix for the definitions of
other problems.)

Known results New results
PLANAR INDEPENDENT SET 029V Inn)[4] O(23182Vrp 4 pt)
PLANAR DOMINATING SET 021361V Inn)[4] O(25:943vnp 4 pt)
PLANAR (k,7)-CENTER O((2r + 1)3 182V 4 pt)
PLANAR LONGEST CYCLE O(2229Vnnnt0.99) p5/4 4 p4)
PLANAR LONGEST PATH 0(2229VnInn+0.99)p5/4 4 pd)
PLANAR BISECTION O(23182vnp 4 pt)
PLANAR WEIGHTED DOMINATING SET 0(26'37‘/571 +n?)
PLANAR PERFECT CODE 02637V 4 nt)
PLANAR TOTAL DOMINATING SET 0274V n + nt)
PLANAR H-COLORING O(21eh212Vnpp3/2 4 pt)
PLANAR KERNEL 0(2337Vrn? 4 n?)
PLANAR H-COVERING 02995V 4 nt)

Similar approach works well also for parameterized problems. The next table summa-
rize results on the most fundamental fixed parameter problems on planar graphs. (See [3]



for an overview of the results on this subject.) We include the result from [20] because it is
based on the main combinatorial result of this paper and is obtained by similar approach.

Known results New results
PLANAR k-VERTEX COVER O(24V3kn) [3] O(2*5VkE + k* 4 kn)
PLANAR k-DOMINATING SET | O(227Vkp) [25] | O(215-13VFE + k4 4 n3)[20]
PLANAR k-INDEPENDENT SET | O(24V6kp) [3] O(k* 4 24V45F 4 )

Thus our approach provides exponential speedup for the main basic parameterized
problems. Our method is quite universal and can be implemented to obtain an expo-
nential speed-up for many known algorithms for different problems with fixed parameters.
Mention just a few parameterized versions of the following problems: INDEPENDENT DOM-
INATING SET, PERFECT DOMINATING SET, PERFECT CODE, WEIGHTED DOMINATING
SET, TOTAL DOMINATING SET, EDGE DOMINATING SET, FACE COVER, VERTEX FEED-
BACK SET, MINIMUM MAXIMAL MATCHING, CLIQUE TRANSVERSAL SET, D1SJOINT CyY-
CLES, and DIGRAPH KERNEL. Another advantage of our results is that they apply not only
on planar graphs but on different generalizations of planar graphs, e.g. K3 3-minor-free or
Ks-minor-free graphs.

2 Definitions and preliminary results

All graphs in this paper are undirected, loop-less and, unless otherwise mentioned, they

may have multiple edges.

2.1 Tree-width and branch-width
A tree decomposition of a graph G is a pair ({X; |1 € V(T)},T), where {X; | i € V(T)}
is a collection of subsets of V(G) and T is a tree, such that

L. UieV(T) Xi =V(G),

2. for each edge {v,w} € E(G), there is an i € V(T') such that v,w € X;, and

3. for each v € V(@) the set of nodes {i | v € X;} forms a subtree of T.

The width of a tree decomposition ({X; | i € V(T)},T) equals max;cy(7)(|Xi| — 1). The
tree-width of a graph G, tw(G), is the minimum width over all tree decompositions of G.

A branch decomposition of a graph (or a hyper-graph) G is a pair (7, 7), where T is
a tree with vertices of degree 1 or 3 and 7 is a bijection from the set of leaves of T' to
E(G). The order of an edge e in T is the number of vertices v € V(G) such that there are
leaves t1,ts in T in different components of T'(V(T), E(T) — e) with 7(¢1) and 7(t2) both

containing v as an endpoint.



The width of (T, 7) is the maximum order over all edges of T', and the branch-width
of G, bw(G), is the minimum width over all branch decompositions of G. (In case where
|E(G)| < 1, we define the branch-width to be 0; if |E(G)| = 0, then G has no branch
decomposition; if | F(G)| = 1, then G has a branch decomposition consisting of a tree with
one vertex — the width of this branch decomposition is considered to be 0).

It is known from [28] that if H is a minor of G then bw(H) < bw(G). The following
result is due to Robertson & Seymour [(5.1) in [28]].

Theorem 2.1 ([28]). For any connected graph G where |E(G)| > 3, bw(G) < tw(G) +
1< 3bw(G).

From Theorem 2.1, any upper bound on tree-width implies an upper bound on branch-
width and vice versa.

2.2 Planar graphs, slopes and majorities

In this paper we use the expression X-plane graph for any planar graph drawn in the sphere
3. To simplify notations we do not distinguish between a vertex of a X-plane graph and
the point of ¥ used in the drawing to represent the vertex or between an edge and the open
line segment representing it. We also consider G as the union of the points corresponding
to its vertices and edges. That way, a subgraph H of G can be seen as a graph H where
H C G. We call by region of G any connected component of ¥ — E(G) — V(G). (Every
region is an open set.) We use the notation V(G), F(G), and R(G) for the set of the
vertices, edges and regions of G. A path of G is any connected subgraph P of G with two
vertices of degree 1 (we call them exztremes) and all other vertices (we call them internal)
of degree 2. A sub-path of a path P is any path P’ C P. A cycle of G is any connected
subgraph C of G with all the vertices of degree 2. The length |C| (| P|) of a cycle C' (path
|P|) is the number of its edges.

If A C ¥, then A denotes the closure of A, and the boundary of A is bd(A) =
ANY —A. An edge e (a vertex v) is incident with a region r if e C bd(r) (v C bd(7)).

We call a Y-plane graph G triangulated if all of its regions are triangles, i.e. for
every region r, bd(r) is a cycle of three edges and three vertices. Given a region r of a
triangulated graph G' we call the cycle bd(r) triangle of G. A triangulation H of a ¥-plane
graph G is any triangulated Y-plane graph H where G C H. Notice that any Y-plane
graph with all regions of size > 3 has a triangulation. A triangle of a triangulated ¥-plane
graph G is a regional triangle if it bounds a region of G.

Let G be a Y-plane graph. A subset of ¥ meeting the drawing only in vertices of G is
called G-normal. A subset of ¥ homeomorphic to the closed interval [0, 1] is called I-arc.
If the extreme points of a G-normal [-arc L are both vertices of G then we call it line of
G. If a simple closed curve F' C ¥ is G-normal then we call it noose.

The length of a line is the number of its vertices minus 1 and the length of a noose
is the number of its vertices. We denote by |N| (|L]) the length of a noose N (line L).



A C ¥ is an open disc if it is homeomorphic to {(x,y) : 22 + y?> < 1}. We say that a
disc D is bounded by a noose N if N = bd(D). From the theorem of Jordan, any noose
N bounds exactly two closed discs A1, Ay in ¥ where A1 N Ay = N. We call O-structure
S = (L1, Lo, L3) of G the union of three mutually touching lines. If for i,j,1 <i < j <3
the noose L; U L; has size < k then we say that S is a ©-structure of length < k. We call
a O-structure non-trivial if at least two of its lines have length > 2. We call the 6 closed
discs bounded by the nooses L; U L;,1 <1i < j < 3 closed discs bounded by S.

The radial graph of a X-plane graph G is the bipartite X-plane graph Rg obtained by
selecting a point in every region r of G and connecting it to every vertex of G incident to
that region. We call the vertices of Rg that are not vertices of G radial vertices. For an
example of a graph G drawn along with its radial, see Fig. 1 in the Appendix.

Slopes and majorities are important tools for improving upper bounds.
Slopes (Robertson & Seymour [29]). Let G be a ¥-plane graph and let & > 1 be an
integer. A slope in G of order k/2 is a function ins which assigus to every cycle C of G
of length < k one of the two closed discs ins(C') C ¥ bounded by C such that

[S1] If C,C’ are cycles of length < k and C' C ins(C’) then ins(C) C ins(C").

[S2] If P1, P5, P3 are three paths of G joining the same pair u, v of distinct vertices but
otherwise disjoint, and the three cycles Py U Py, P U P3, P, U Ps all have length < k
then

iIlS(Pl U PQ) U ins(Pl U Pg) U iIlS(P2 U Pg) #£ 3.

A slope is uniform if for every region r € R(G) there is a cycle C of G of length < k such
that r C ins(C).

We need the following deep result proved in the Graph Minors papers by Robertson
& Seymour. This result follows from Theorems (6.1) and (6.5) in [29] and Theorem (4.3)
n [28]. (See also Theorems (6.2) and (7.1) in [32].)

Theorem 2.2 ([29]). Let G be a connected and loopless X-plane graph where |E(G)| > 2
and let k > 1 be an integer. The radial drawing Rg has a uniform slope of order > k if
and only if G has branch-width > k.

Majorities (Alon, Seymour & Thomas [7]). Let G be a ¥-plane graph and let k£ > 0 be
an integer. A majority of order k is a function big that assigns to every noose N of length
< k a closed disc big(N) C ¥ bounded by N such that

[M1] If Py, Ps, P3 is a ©-structure of G with length < k and P3 C big(P; U P,), then
big(P1 U P3) - big(P1 U PQ) or big(PQ U Pg) - big(P1 U PQ).

[M2] If N is a noose of length < min(2, k) then either big(N) — N contains a vertex or
big (V) includes at least two edges of G.



The following result gives an upper bound on the order of a majority (statement (3.7)
of [7]). This is a basic ingredient of our bound for the branch-width of planar graphs.

Theorem 2.3 ([7]). Any majority of a X-plane graph G has order \/4.5 - |V(G)| — 1.

Our bounds on branch-width and tree-width follows from the following theorem that
is the main combinatorial result of the paper.

Theorem 2.4. Let G, |V (G)| > 5, be a triangulated X-plane graph without multiple edges,
drawn in Y along with its radial graph and let k > 2 be an integer. If there exists a uniform
slope of order k+ 1 in Rg then G contains a majority of order k.

The proof of Theorem 2.4 is rather long and technical. Due to space restrictions we
sketch here the main ideas of the proof. (The detailed proof has been moved to the
Appendix.)

2.3 The ideas of the proof of Theorem 2.4.

We want to correspond nooses of G to cycles of Rg and try to translate the slope axioms
to majority axioms. Corresponding nooses to cycles is not direct as not every noose is a
cycle of the radial graph. To overcome this problem we need to work with “classes” of
similar structures.

Let G be a Y-plane graph without loops or multiple edges and let S C > be an [I-
arc (simple closed curve) in ¥. We use the notation kg(S) = (v1,...,v5nv(q)) for the
ordering (cyclic ordering) of the vertex set S NV(G) that represents the way the vertices
of G are met by S. Notice that x can be applied to both cycles and nooses but also to
paths and lines. Especially for cycles and paths of graphs without multiple edges, we can
directly represent them with the output of the function s (we will use the same notation
for a cycle/path and the (cyclic) ordering of the vertices that it meets).

Let S be one of the following structures in G: a noose, a line, or a O-structure. A
variation of S is the operation that transforms S to a structure S’ of the same type in a
way that dif(S,5") := (SUS’) — (S NS’ is a noose of size 2 where one of the closed discs
D it bounds has the following two properties:

1. D —bd(D) contains no vertices of G,
2. D contains at most one edge of G.

If two structures S; and S; are variations each of the other, we denote it as S; ~ Ss. If
a structure S’ is the result of a finite number of consecutive variations with S as starting
point, we call S’ vibration of S and we denote this fact as S ~* S’. (See Fig. 1 in the
Appendix.) Notice that if S ~* S’ then V(G) NS = V(G)NS" and S, S’ have the same
length.



The importance of vibrations is that in a triangulated Y-plane graph without multiple
edges every noose is a vibration of a cycle of the radial graph. This fact is intuitively clear
but needs a technical proof. (We move this proof to the Appendix, Lemma B.7.)

Let ins be a uniform slope of order k£ + 1 in Rg. To construct a majority we need
to define the function big. Every noose IV in Y of size < k is a vibration of a cycle C
in Rg and the length of C' is < 2k. Cycle C' is also a noose in 3 and because C' and N
are vibrations of each other, they “separate” the same vertex sets in G. In other words,
if ins(C), X — ins(C) are closed discs bounded by C' then for one of the closed discs D
bounded by N, we have that DNV (G) = X — ins(C) N V(G). We define big(N) = D.

The proof of the fact that the function big defined via ins satisfies majority axioms is
quite technical. It uses some results about vibrations of ©-structures. (These results are
moved to the Appendix, Section B.4.) and requires a series of auxiliary results assuring
that the basic topological properties involved in the majority axioms are invariants under
vibrations. (Section B.6 of the Appendix.)

Theorem 2.4 implies our main combinatorial result.

Theorem 2.5. For any planar graph G, bw(G) < \/4.5|V(G)| < 2.122/|V(G)]|.

Proof. We assume that G has no multiple edges (notice that the duplication of an edge
does not increase the branch-width of a graph with branch-width > 2). It is easy to
see that G has a triangulation H without multiple edges. It is enough to prove the
bound of the theorem for H. By Theorem 2.3, H does not have any majority of order

> (3/v/2)1/|V(G)|. By Theorem 2.4, Ry has no slope of order > (3/+/2)\/|V(G)| + 1.

The result now follows from Theorem 2.2. O

Since 9/(2v/2) < 3.182, Theorems 2.1 and 2.5 imply the following:
Theorem 2.6. For any planar graph G, tw(G) < 3.182/|V(G)]|.

In the next section examine the algorithmic consequences of our combinatorial bounds.

3 Algorithmic consequences

In this section we discuss some applications of our results for different problems on planar
graphs.

3.1 Exact algorithms

The following simple theorem is the source for obtaining subexponential algorithms for
many graph problems.

Theorem 3.1. Let II be an optimization problem that is solvable on graphs of branch-width
< lin time f(£)g(n). Then on planar graphs problem 11 is solvable in time O(f(2.122y/n)g(n)+
nt)



Proof. First we compute an optimal branch decomposition of planar graph. To compute
an optimal branch decomposition of a planar graph one can use the algorithm due to
Seymour & Thomas (Sections 7 and 9 in [32]). (See also the results of Hicks [23] on
implementations of Seymour & Thomas algorithm.) This algorithm can be implemented
in O(n*) steps. Then Theorem 2.5 implies the proof. O

Corollary 3.2. Let Il be an optimization problem that is solvable on graphs of branch-
width/tree-width < € in time 2°(£Z)po|y(n,€). Then on planar graphs problem 11 is solvable
in subexponential time (in 2°0 steps).

In spite of its simplicity, Theorem 3.1 provides a general framework for obtaining
subexponential algorithms for a broad range of problems. And the only thing one needs
to know to estimate the running time of the algorithm is how fast a problem can be
solved on graphs of bounded branch-width/tree-width!. But really surprising is that such
a trivial approach provides better time estimation than many, complicated to analyze,
algorithms based on separator theorems.

Let us give just few examples. It is well known that on graphs of tree-width ¢ INDE-
PENDENT SET can be solved in time O(2‘n) and hence on graphs of branch-width < ¢ it
can be solved in time O(23/2n). Thus by Theorem 3.1 we obtain that INDEPENDENT
SET on planar graphs is solvable in O(2%182V7n, 4 nt). DOMINATING SET on graphs of
branch-width < £ is solvable is time O(2%°843m) [13]. Thus on planar graphs, DoMI-
NATING SET is solvable in 0(25'043\/En +n*). Similar arguments, based on the algorithms
in [5], work for for the planar versions of different variations of the DOMINATING SET
problem like INDEPENDENT DOMINATING SET, PERFECT DOMINATING SET, PERFECT
CoDE, WEIGHTED DOMINATING SET, RED BLUE DOMINATING SET where the time is
026371y 4+ n*), and for TOTAL DOMINATING SET and TOTAL PERFECT DOMINATING
SET where the time is O(274V"n + n4).

LONGEST CYCLE and LONGEST PATH problems on graphs of tree-width ¢ are solved in
O(012%n) time [8] implying an O(2229Vnnnt0.94),5/4 L n4y algorithm on planar graphs?.
MIN-BISECTION is solvable in O(2¢n) [24] on graphs of tree-width £ and the planar version
of the problem is solvable in O(2%182V7n 4 n4). In [21], Gutin et al. gave a time O(3¢kn)
algorithm for finding a kernel of size k in a digraph whose underlying graph has treewidth
at most £. This implies that KERNEL is solvable in O(2337V"n? 4 n*). The H-COLORING
problem is solvable in O(R*1¢n) on graphs of tree-width £ [15], therefore its planar version
is solvable in time O(21°8"212V7p3/2 4 p4) H-COVER is solvable in time O(n23") [33] on
graphs of tree-width < ¢ and thus for planar graphs in time O(2%546vV7hy 4 n4). Finally,

'Let us remark that any algorithm solving a problem on graphs of tree-width < £ in time f(£)g(n) can
be easy translated to the algorithm for graphs of branch-width < ¢ with running time O(f(3/20)g(n)+m)
where m is the number of edges of the input graph.

2The calculation of the exponent in this algorithm makes use of Stirling’s formula.
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(k,7)-CENTER is solvable in time O((2r + 1)%'Em) on graphs of branch-width < ¢ [13]
providing an O((2r 4 1)3182V7p, 4 n4) algorithm for the planar version of the problem.

More generally, almost every natural problem expressible in MSOL is solvable in time
O(cn®W), O(nOM) or O(1c!n®M), and by Corollary 3.2 is solvable in subexponen-

tial time on planar graphs. Examples of such problems where ¢ is a small constant are
VERTEX FEEDBACK SET, DISJOINT CYCLES, FACE COVER. EDGE DOMINATING SET,
CLIQUE TRANSVERSAL, and MAXIMAL MACHING (see [10, 14]). For all these problems
Corollary 3.2 provides subexponential algorithms with small hidden constants.

Actually, one can further strengthen the conditions of Corollary 3.2 towards extending
the framework where subexponential algorithms are possible. Indeed, it is enough to have
a time (poly(£,n))°*) algorithm for the problem II for graphs of treewidth/branchwidth
at most £. Notice that such problems are not necessarily expresible in MSOL. As an
example we mention the problems of finding a non-preemptive multicoloring with minimum
sum/makespan (see Appendix for the definitions). These problems can be solved in time
O(n-(fplogn)“*1) for graphs with tree-width < ¢ (see [22]). Therefore, they can be solved

in time O(pn3/2logn - 21-151egplognloglognyn 4 p4y on planar graphs.

3.2 Parameterized algorithms

Similar ideas work for parameterized problems. Let £ be a parameterized problem, i.e.
L consists of pairs (I,k) where k is the parameter of the problem. Reduction to linear
problem kernel is the replacement of problem inputs (I,%) by a reduced problem with
inputs (I’, k') (linear kernel) with constants ci, co such that

K < cik, |I'| < eok and (I,k) € £ < (I, K) € L.

(We refer to Downey & Fellows [17] for discussions on fixed parameter tractability and
the ways of constructing kernels.)

Theorem 3.3. Let L be a parameterized problem (I, k) (here I can be a graph, hypergraph
or matroid) such that
— There is a linear problem kernel computable in time Tyernel(|1|, k) with constants cy,
co and such that an optimal branch decomposition of the kernel is computable in time
wa(|I,|)'

On graphs (hypergraphs, matroids) of branch-width < € and ground set of size n the
problem L can be solved in O(2°%'n), where c3 is a constant.
— bw(I') < caVk, where cy is a constant. Then L can be solved in time 0(26304‘/Ek +

wa(\f'\) + Tkernel('ﬂa k))
Proof. The algorithm works as follows. First we compute a linear kernel in time Tyeppner (||, k).
Then we construct a branch decomposition of the kernel in Tj,,(|I’|) steps. The size of the

kernel is at most cycok = O(k). The branch-width of the kernel is at most caV'k and it
takes 0(20364‘/Ek: + Tow (| I']) + Trerner(|1], k)) to solve the problem. O
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Let us give some examples, where Theorem 3.3 provides proven better bounds for
different parameterized problems.

The PLANAR k-VERTEX COVER problem is the task to compute, given a planar graph
G and a positive integer k, a vertex cover of size k or to report that no such a set exists.
A linear problem kernel of size 2k (with constants ¢; = 1 and ¢ = 2) for the k-VERTEX
COVER problem (not necessary planar) was obtained by Chen et al. [11]. The running
time of the algorithm constructing a kernel of a graph on n vertices is O(kn + k). So in
this case Thernet(|I], k) = O(kn + k). It is well known that the VERTEX COVER problem
on graphs on n vertices and with bounded tree-width < ¢ can be solved in O(2‘n) time.
The dynamic programming algorithm for the VERTEX COVER on graphs with bounded
tree-width can be easy translated to the dynamic programming algorithm for graphs with
bounded branch-width with running time O(23/2m), where m is the number of edges in
a graph, and we omit it here. For planar graphs 2%/2/m = 0(23/%n), thus c3 < 3/2.

From the constructions used in the reduction algorithm of Chen et al. [11] it follows
that if G is a planar graph then the kernel graph is also planar. To compute an optimal
branch decomposition of a planar graph one can use the algorithm due to Seymour &
Thomas [32]. This algorithm (applied to the kernel graph) can be implemented in O(k*)
steps. The kernel graph I’ has at most 2k vertices. Then by Theorem 2.5, ¢4 < VA4.52 =
3. Thus by making use of Theorem 3.3, we conclude that PLANAR k-VERTEX COVER can
be solved in O(k* + 245Vkf 4 kn).

A Ek-dominating set D of a graph G is a set of k vertices such that every vertex outside
D is adjacent to a vertex of D. The PLANAR k-DOMINATING SET problem is the task to
compute, given a planar graph G and a positive integer k, a k-dominating set or to report
that no such a set exists.

Alber, Fellows & Niedermeier [2] show that the PLANAR DOMINATING SET problem
admits a linear problem kernel. (The size of the kernel is 335k.) This reduction can be
performed in O(n?) time. DOMINATING SET problem on graphs of branch-width < ¢ can
be solved in O(231°843“m) steps [20]. Thus c3 < 3logy3. It is proved in [20] that for
every planar graph G with dominating set k, the branch-width of G is at most 3v/4.5V/k,
ie. ¢4 < 3v4.5. Then by Theorem 3.3, PLANAR DOMINATING SET can be solved in
0(215-13‘/Ek+n3 + kY.

3.3 Other problems and generalizations.

Our ideas can be adapted to different problems by using the bounds and tree-width
(branch-width) based algorithms in the same fashion as it is done in [1, 3, 10, 14]. That
way, our upper bound implies the construction of faster algorithms for a series of prob-
lems when their inputs are restricted to planar graphs. As a sample we mention param-
eterized versions of the following problems: INDEPENDENT DOMINATING SET, PERFECT
DOMINATING SET, PERFECT CODE, WEIGHTED DOMINATING SET, TOTAL DOMINAT-
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ING SET, EDGE DOMINATING SET, FACE COVER, VERTEX FEEDBACK SET, MINIMUM
MAXIMAL MATCHING, CLIQUE TRANSVERSAL SET, Di1sJOINT CYCLES, and DIGRAPH
KERNEL (see [1, 3, 10, 14] for the exact definitions).

Finally let us note that our upper bound for treewidth holds not only on planar graphs
but on different generalizations of planar graphs. This follows directly from the results
of [14] and implies an exponential speed-up of all the aforementioned problems on certain
classes of non-planar graphs such as K3 3-minor-free or Ks-minor-free graphs.

4 Discussion and open problems

In this section we present three open problems emerging from our main combinatorial
result and the methodology of our proof.

Improving the constant 2.122. According to Theorem 2.5, any planar graph on n vertices
has branch-width < 2.122y/n. The constant 2.122 follows from the constant of Theo-
rem 2.3 proven by Alon, Seymour, and Thomas in [7]. Any improvement of the constant
of Theorem 2.3 implies also an improvement of our bound.

Given a graph G, a function w : V(G) — R, and a set S C V(G), we call S (2/3)-
separator of G if V(G) — S can be partitioned into two sets A1, Ao where no edge of F(G)
has one endpoint in A; and the other in Ay and such that w(4;) < Zw(V(G)). If we
strengthen the definition of a (2/3)-separator by asking that w(A;) + Fw(S) < 2w(V(G)),
we define the notion of a strong (2/3)-separator of G. If G is X-plane and there exist a
noose N bounding the open discs D, D’ such that DNV (G) = A1, D'NV(G) = Ag, and
S = NnNV(G) then we call S (strong) cyclic (2/3)-separator of G.

In [7], Alon, Seymour and Thomas proved the following.

Theorem 4.1. Let G be a X-plane graph with n vertices, let w : V(G) — R be a function,
and let k > 0 be an integer. If every majority of G has order < k then G has a strong
(2/3)-separator of G of size < k.

Theorems 4.1 and 2.3 were proved in [7] in order to imply the following.

Theorem 4.2. Let G be a X-plane graph with n vertices and let w : V(G) — R be a
function. Then G has strong cyclic (2/3)-separator of size < 2.122\/n.

Curiously, any proof of Theorem 4.2 for a better constant ¢, implies the reduction of
the constant of Theorem 2.5 from 2.122 to max{2,c}. Indeed, this is correct because of
Theorems 2.2 and 2.5 and the following interesting result (statement (3.9) of [7]).

Theorem 4.3. Let G be a X-plane graph with n vertices, let w: V(G) — R be a function,
and let k be an integer where k > 2\/n — 1. If G contains a strong (2/3)-cyclic separator
of size < k then every majority of G has order < k.
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In [16], Djidjev & Venkatesan proved that every ¥-plane graph on n vertices contains
a cyclic 2/3-separator of size 2y/n+ O(1). It is an interesting challenge to strengthen this
result so that it guarantees the existence of a strong cyclic (2/3)-separator, as required by
Theorem 4.2. This would make it possible to reduce to 2 the constant 2.122 of our main
result (and to improve the time bounds of our algorithms).
Creating slopes from majorities. We believe that the ideas of this paper can be useful for
proving the following conjecture.

Conjecture. Any planar graph G has a cyclic (2/3)-separator of size < bw(G).

Conjecture 4 can follow from Theorems 2.2 and 4.1 if the inverse of Theorem 2.4 holds

for general graphs. In this direction, one should show that majorities can be “transformed”
to slopes. As any cycle C' of Rg is also a noose of G we can directly define ins(C) =
¥ — big(C), following the idea in the proof of Theorem 2.4 (notice that in this direction
the idea does not need the “vibration” machinery). Moreover it is possible to prove that
the axiom [M2] for big implies the uniformity of ins and axiom [M1] for big implies
axiom [S2] for ins. However, it is not easy to prove that axiom [S1] also holds for ins and
this is the main obstacle for any proof of Conjecture 4 based on the possible “translation”
of majorities to slopes.
Constructive upper bounds. While Theorem 2.5 gives an upper bound to the branch-width
of any planar graph, it does not provide any way to construct the corresponding branch
decomposition. The “non-constructiveness” of our proof emerges from the fact that it
makes strong use of the results in [7], [28] and [30] that are not (at least directly) “trans-
latable” to a polynomial time algorithm. However, the algorithmic results of [30] make
it possible to construct, for any n-vertex planar graph, a branch decomposition of width
< 2.122y/n in time O(n*) and such a branch decomposition can be easily transformed to
a tree decomposition of width < 3.128,/n using the results of [29]. It is an open prob-
lem, whether Theorem 2.5 can admit a simple proof implying faster algorithms for the
construction of the corresponding decompositions. Robin Thomas (in private communi-
cation) mentioned that by adapting the arguments from [7] one can obtain similar bounds
on branch-width/tree-width. Perhaps this can bring us to faster algorithms.
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A Appendix: Definitions of some problems

A wvertex cover C of a graph is a set of vertices such that every edge of G has at least one
endpoint in C. A dominating set D of a graph G is a set of vertices such that every vertex
outside D is adjacent to a vertex of D. We denote the corresponding problems of finding
minimum vertex cover and dominating set as VERTEX COVER. and DOMINATING SET.

(k,r)-center is a natural generalization of dominating set. We define the r-neighborhood
of a set S C V(G), denoted by N;(S), to be the set of vertices of G at distance at most
r from at least one vertex of S if there exists a set S of centers (vertices) of size at most
k such that N(S) = V(G).

An independent set I of a graph G is a set of vertices such that no two vertices
of I are adjacent. The problem of computing maximum minimum independent set is
INDEPENDENT SET.

LONGEST PATH (CYCLE) problem is to find a path (cycle) in a graph of the maximum
length.

BISECTION is the problem of a partitioning the vertex set V(G) of a graph G into two
parts V3 and Vb, such that |Vi| = |V,| and the number of edges between V; and V5 is
minimal.

A set S of vertices in a digraph D = (V, A) is a kernel if S is independent and every
vertex in V' — S has an out-neighbor in S. We denote the corresponding decision problem
as KERNEL.

Let G = (V,E) be a graph and z : V — N some function mapping vertices to non-
negative integers. Let also p = max,cy x(v). A non-preemptive multicoloring® of G is
an assignment v mapping each vertex of v to some set of xz(v) consecutive positive
integers such that adjacent vertices receive non-intersecting sets. The sum of a multi-
coloring ¢ is equal to X,cy max;cy(y)i. The makespan of a multicoloring ¢ is equal to

MaX,cy MaX;eqy(y) b-

B Appendix: Creating majorities from slopes

This part of Appendix is devoted to the complete proof of our main combinatorial result:

Theorem B.1. Let G, |V(G)| > 5, be a triangulated X-plane graph without multiple
edges, drawn in X along with its radial graph and let k > 2 be an integer. If there exists a
uniform slope of order k + 1 in Rg then G contains a majority of order k.

This section is devoted to the proof of Theorem B.1 and is organized as follows. We
start with the definitions of the notions of variations and vibrations (Subsection B.1).
Then we prove that any noose can be transformed, after applying to it a sequence of

3The multicoloring problem has numerous aplications in job scheduling on multiprocessor systems [22],
traffic intersection control [9], compiler design and VLSI routing [31].
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Figure 1: An example of a YX-plane graph G drawn i) with its radial R ii) with a noose
S that is not a cycle of Rg and with a noose S’ that is a cycle of Rg and a vibration of S.

variations, to a cycle of the radial graph (Subsection B.3). We also prove that the same
type of representation via variations applies also to the O-structures (Subsection B.4).
That way, we are able to “translate” the slope axioms to majority ones. This requires
a series of auxiliary results assuring that the basic topological properties involved in the
majority axioms are invariants under vibrations (Subsection B.6). With all this knowledge
on hands we proceed with the proof of the main result in Subsection B.7.

B.1 Variations and vibrations

If G is a X-plane graph without loops or multiple edges and S C ¥ is an [-arc (simple
closed curve) in ¥ then we use the notation kg(S) = (v1,...,vsqv(q)) for the ordering
(cyclic ordering) of the vertex set F'NV(G) that represents the way the vertices of G are
met by S. Notice that x can be applied to both cycles and nooses but also to paths and
lines. Especially for cycles and paths of graphs without multiple edges, we can directly
represent them with the output of the function xk (we will use the same notation for a
cycle/path and the (cyclic) ordering of the vertices that it meets).

The basic idea of the proof is to correspond nooses of G to cycles of Rg and try to
translate the slope axioms to majority axioms. Corresponding nooses to cycles is not
direct as not every noose is a cycle of the radial graph (see Figure 1). To overcome this
problem we need to introduce the concepts of variations and vibrations of nooses.

Let S be one of the following structures in G: a noose, a line, or a O-structure. A
variation of S is the operation that transforms S to another structure S’ of the same type
such that (SUS’) — (SN S’) is a noose of size 2 and one of the closed discs bounded by
this noose, we denote this disc by dif(S,S’), has the following two properties:

1. dif(S,S") — bd(dif (S, S")) contains no vertices of G,
2. dif (S, 5”) contains at most one edge of G.

If two structures S7 and Ss are variations each of the other, we denote it as S1 ~ Ss. If
a structure S’ is the result of a finite number of consecutive variations with S as starting
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Figure 3: Examples of the proofs of Lemmata B.2 and B.3.

point, we call S” vibration of S and we denote this fact as S ~* S’. Notice that if S ~* S’
then V(G)NS = V(G)NS" and S and S” have the same length. In fact, it is easy to
observe that if N, N are nooses or lines where N ~* N’ then kg (N) = kg (N'). Moreover,
if S = (L1, L, L3) and S’ = (L}, L}, L%) are O-structures with S ~* S/, then we order
the elements of S and S’ such that for every i, 1 <i<j <3, L;UL;~* L;UL/. For
examples of the notions of variation and vibration, see Figure 2.

B.2 Corresponding nooses and lines to cycles and paths

Lemma B.2. Let G be a triangulated X-plane graph without multiple edges. If S is a line
or a noose of length 2 then exists a unique path Q in G such that kg(S) = ka(Q). If S is
a noose of length > 3, then there exists a unique @Q in G such that kg(S) = ka(Q).

Proof. Let kg(S) = (vo,...,vy—1). We prove that for any i = 0,...,7 — 2, the vertices
v, Vig1 € kg(S) are adjacent via only one edge (in case S is a noose we take i = 0,...,r—1
and indices are taken modulo 7). As S is G-normal, the portion of S that is between v;
and v; 41 should be a subset of some, say r, of the regions of G (this region is not well
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defined only if |V(G)| = 3 and, in this case, r can be any region of G). Notice that r
is a triangle where v;,v;41 € bd(r) and therefore {v;,v;11} is an edge of G. This edge
is unique because G does not have multiple edges (for an example, see the first graph of
Figure 3). O

Lemma B.3. Let G be a triangulated X -planar graph without multiple edges and let N1, No
be nooses of G where |N1|,|Na| > 3. Then kg(N1) = kg(N2) implies N1 ~* Nj.

Proof. Suppose that Ni, No are nooses where |Ny|,|Na| > 3 and kg(N1) = kg(Nz2). By
Lemma B.2, there is a unique cycle C' where kG(C) = kg(N7) and a unique cycle C” where
kG(C') = kg(N2). As kg(N) = kg(N') we have that kg(C) = kg(C’) and as G does
not have multiple edges, we have that C' = C’. We use the notation C' = (zg,..., 2, 1).
For j = 1,2, we define the function o; corresponding to each edge e; = {z;,zi41} of C
the unique line, oj(e;) in ¥ that is a subset of N; and has endpoints z; and z;41 (as
IN1|,|Na| > 3, 0; is well defined). Let Ay, As be the closed discs bounded by C'in ¥. We
define
Dj={i| oj(e;) € As—j},j=1,2.

For j = 1,2 we apply a sequence of variations on N; as indicated by the following routine.
The target of this routine is to put the whole IV; inside the closed disc A;.

1. If D; is empty then stop and output Nj.

2. Pick an integer ¢ in D;.

3. Let L be any line L C ¥ where |L| =1, L C Aj, and LN Lj = xj, Tjt1.

4. Set Nj « N;j —oj(e;) U L. (Notice that this is a variation operation on Nj.)
5. Recalculate o; and D;. (Notice that now ¢ ¢ D;.)

6. Go to step 1.

For j = 1,2, we call N] the resulting nooses and observe that N; C A; and N; ~* N7
We now apply the following sequence of variations on Ny: For any i = 0,...,7r — 1, we
set Nj = Ni — o1(e;) U oa(e;). The resulting noose is No and therefore, N| ~* NJ. We
conclude that N7 ~* Ny and this completes the proof of the lemma (for an example, see
the second and the third graph of Figure 3). O

B.3 Representing nooses by vibrations

Observe that if G is a 3-plane graph drawn in X along with its radial graph Rg then any
cycle of Rg of length 2k is a noose of length k. Any path of length 2k in Rg with both
endpoints in V(G) is a line in G of length k. Notice that if r is a region Rg then bd(r) is
a cycle of length 4 where 7 contains exactly one edge of G. Every edge e of G is contained
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Figure 4: a) If F' contains the edges of the “fat” cycle then the graph Hp is the one formed

by the dotted vertices and the white vertices. b) Examples of the constructions (1) and
(2) of the proof of Lemma B.4 when generalized (z)-path is a (z,y)-paths and a cycle.

in 7 for some region r. From now on, we use the notation r. to denote this region. If T’
is a triangle of G and |V(G)| > 4 then we use the notation v(T') for the unique vertex of
Rq that is adjacent in R with all the vertices of T'.

Let G be a triangulated ¥-plane graph and let F' C E(G). We define the graph Hp
as the subgraph of a dual graph G* formed by edges F*. In other words, its vertices are
the triangles of G that contain some edge in F' and two such triangles are connected by
an edge if they have an edge of F' in common. To distinguish the vertices of Hg from the
vertices of the original graph we refer to the vertices of Hr as to triangles.

Notice that, as G is triangulated, the maximum degree of the vertices of Hp is 3 (in
the extreme case where the maximum degree is 3 we have that three of the edges in F
induce a triangle in G). This construction will be the basic common ingredient of the
proofs of this and the next subsection. We call two triangles of degree 1 in Hp irrelevant
if they belong in different connected components of Hp.

We call a subgraph P of a ¥-plane graph G generalized (x)-path if either

e P is a path with an extreme x, or

e it is a cycle of length > 4 passing through x and such that there is no edge connecting
the neighbors of z in P.

Notice that the stressed cycle of the graph of Figure 4 is a generalized (x)-path iff x is one
of the grey vertices.

Lemma B.4. Let G be a triangulated Y-plane graph without multiple edges and where
\V(G)| > 4, drawn in ¥ along with its radial graph Rg. Let also P be a generalized (x)-
path of G with the property that Hgp) is connected. Let also T' be a triangle of degree 1
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in Hgpy. Then there exists a generalized (x)-path Pr in Rg such that kg(Pr) = ka(P)
and v(T) & Pg.

Proof. We use the notation P = (z = vg,...,v, = y),r > 1 (in case P is a cycle we
have x = y). As |V(G)| > 4 and G does not have multiple edges, the connectivity of
Hgpy yields that Hppy is a path whose extreme vertices are triangles of G. Each of
these triangles has only one edge in common with P. Therefore we can denote them as
(a,vo,v1) and (vp—1,vr_2,b) for some a # vy and b # vg. Notice that, for j =2,...,7r —2
the edge {vj,vj41} is the common edge of the triangles (vj_1,v;,vj41) and (v}, vj41, Vjy2)
in V(H). Moreover {vg, v} is the common edge of (a, v, v1) and (vg, v1,v2) and {v,_1, v, }
is the common edge of (v,—2,v,—1,v,) and (v,—1, vy, b).

If (b,v,—1,v,) =T we set

Pr = (vo,v(a,v0,v1),v1,V(vo,v1,v2),v2, v(v1,v2,03),. ..

R V(’Uqu.’ Vg—2, Uqfl)v Vg1, V(UT‘*Qa Ur—1, UT)? U’F) (1)
If (a,vp,v1) = T we set

Pr = (vo,v(vo,v1,v2),v1,v(v1,v2,03), 02, ...

<ee Up—2, V(”r727 Ur—1, Ur)a Ur—1, V(b, Ur—1, Ur)a ’07-) (2)

In any case, we guarantee that we can choose a line Pr that does not meet the vertex
v(T"). Observe that, by the construction of Pr, kg(Pr) = kg(P) and the lemma follows.
For examples of the above constructions see Figure 4. O

The next Lemma is a generalization of Lemma B.4 for the general case where Hpg(p)
is not necessarily connected.

Lemma B.5. Let G, |V(G)| > 4, be a triangulated X-plane graph without multiple edges
drawn in X along with its radial graph Rg. Let also P be a generalized x-path of G and
let T be a collection of mutually irrelevant degree one triangles in V(HE(p)). Then there
exists a generalized x-path Pr in Rg such that Vper,v(T) € Pr and kg(Pr) = kg(P).

Proof. Let Pi,..., Py be the maximal sub-paths of P with the property that Hgp,) is
connected. (When P is a cycle these sub-paths still exist because z belongs into two
distinct degree one triangles of Hg(p).) Notice that {P; | i =1,...,q} is a partition of P
and assume that its indices order it into consecutive segments of P. We assume that the
endpoints of P; are a;,b;, 1 <1 < g where z = ay,b; = ao,...,b;—1 = a4, and b, = y; the
equalities follow from the maximality of each P; (when P is a cycle, z = y). We denote
as Hi,..., H, the connected components of Hp(p) indexed in a way that H; = Hgp,).
Notice that [T NV (H;)| < 1,i=1,...,q (otherwise we should have two irrelevant degree
one triangles in the same component of H). If |7 N V(H;)| is non empty, then let T; be
the unique triangle in it. Otherwise let T; be any of the triangles of V(H;) with degree
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Figure 5: a) An example of the proof of Lema B.5. b) Examples of the case |C| = 3 of the
proof of Lemma B.6. ¢) Example of the first case of the proof of Lemma B.6.

1 in H;. We now apply Lemma B.4 for H; and T; and we get a path P]i% connecting a;
and b; in Rg and such that kg(Ph) = kg(P) and v(T;) € Ph. We set Cr = Uiz1,..4 PL
and observe that, for any T € 7, v(T;) ¢ Pp. As none of the triangles in Hp(py belongs
to two different connected components of Hg(py, we have that kg(Pr) = kg (P) and the
lemma follows (for an example, see Figure 5.a.). O

Lemma B.6. Let G be a triangulated X-plane graph with > 4 vertices and without multiple
edges, drawn in X along with its radial graph Rg. Let also C be a cycle in G and T be an
collection of mutually irrelevant degree one triangles in Hg(cy. Then there exists a cycle

Cr in Rg such that kg(Cr) = ka(C) and Vrer,v(T) ¢ Cr.

Proof. 1f |C| = 3, then we use the notation C' = (z,y, z) and we notice that

bd(F(; 1 UTqy,.1 UT( )

is a subgraph of Rg and contains as a subgraph at least one cycle Cr of length 6 as
required (it meets all the vertices of C, otherwise, G should have a multiple edge — see
also Figure 5.b).

Suppose now that C = (xg,...,z,—1,20),7 > 4. As |C| > 4, we have that all the
vertices in Hp ) have degree at most 2 (otherwise C' is a triangle). We examine two
cases:

Case 1: H is a cycle of r vertices. In this case we should have 7 = (). Observe that
CR = ($07 V(.TO’ zy, xQ)a x2, V(l‘la x2, I3)a <oy Tp—1, V(w'rfla Zo, xl)v IO)

is the required cycle of Rg (all indices are taken modulo ). For an example of this case,
see Figure 5.c.

24



Figure 6: The case |Py U P3| = 3 and |P;| = 2 of the proof of Lemma B.8.

Case 2: All the connected components of H are paths. In this case, there will exist a vertex
x € C such that its neighbors in C' are not adjacent. Therefore C' is a generalized (z)-path,
it is not a triangle, and by applying Lemma B.5 for C and 7 the result follows. O

The following lemma, is the main conclusion of this subsection.

Lemma B.7. Let G be a triangulated X-plane graph with > 4 vertices and without multiple
edges, drawn in X along with its radial graph Rg. Then any noose N, |N| > 2, of G is a
vibration of some of the cycles of Rq.

Proof. 1f [N| = 2 then let e be the unique edge connecting the extreme points of N (e is
unique because G does not have multiple edges). We directly have that bd(r.) is a cycle
of Rg and it is easy to verify that it is also a vibration of N. Therefore, we may assume
that |N| > 3. From Lemma B.2 there exist a unique cycle C' where kg(C) = kg(N).
From Lemma B.6, there exist a noose Cr of G where kg(Cr) = kg(C). Notice that Cgr
is a cycle of Rg and, as kg(N) = kg(CRg), from Lemma B.3, we conclude that N ~* Cg.

O

B.4 Representing O-structures by vibrations

Let N be a noose in ¥ and let Q be a continuous subset of ¥ such that N N Q = 0.
then one of the discs bounded by N does not contain points of (). We call this disc by
Q-avoiding disc bounded by N.

Lemma B.8. Let G be a triangulated Y-plane graph with > 5 vertices and without multiple
edges, drawn in X along with its radial graph Rg. Then for any three paths P!, P?, P3
of G that connect two vertices x and y and are otherwise disjoint, there exists three paths
P}%, PI%, PI?% in Rg that connect x and y and are otherwise disjoint and such that for any
i,1 <1 <3, kg(Ph) = ka(PY).
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Proof. We first examine the special case where some of P, U Py, P, U P3, or P, U P3 has
length 3. W.lLo.g we assume that |P, U P3| = 3 and, in particular we let P, = (z,y) and
P; = (z,z,y). Notice that |P;| > 2 because G has not multiple edges. We examine two
subcases:

|P1| = 2. We assume that P, = (z,w,y). We examine first the case where either
x or y is connected with a vertex u of the {z,y}-avoiding open disc D bounded by
(z,z,y,w) (see Figure 6.a). W.l.o.g. assume that x is adjacent to u and let (w,z,uq)
and (z,z,ug2) be the regional triangles containing {w,z} and {z,x} where uj,us € D
(each of these two triangles can have {z,u} as an edge). Let also (w,y,z’) be the re-
gional triangle containing {w,y} and such that 2’ € D (notice that z and z’ may be
identical). Then we set lez = (z,v(z,u1,w),w, v(y,w,2'),y), P122 = (z,v(z,w,y),y), and
P} = (z,v(z,u2,2),2,v(z,2,y),y). Observe that Ph i = 1,2,3 are paths and that for
every i, 1 <i < 3, kg(Ph) = ka(P?).

In the remaining case, w and z are adjacent, and the triangles (w,z, z) and (w,y, 2)
are both regional (see Figure 6.b). Then, as |V(G)| > 5, there exist a vertex u that is
adjacent to either z or y and is included into either the w-avoiding open disc bounded by
(z,y,z) or into the z-avoiding open disc bounded by (z,y,w). W.l.o.g. we assume that u
is adjacent to  and that x is included in the w-avoiding open disc D bounded by (z,y, z).
Let (z,u1,y) and (z,us,z) be the regional triangles containing {z,y} and {z,z} where
ui,uz € D (each of these two triangles can have {x,u} as an edge). Let also (w,y,t) be
a regional triangle containing {w,y} where ¢ belongs in the z-avoiding open disc bounded
by (z,w,y). Then we set P} = (z,v(z,w,2),w,v(w,y,t),y), P2 = (z,v(z,u1,y),y) and
P} = (z,v(z,u2,2),2 v(w, 2,9),y). Observe that for every i, 1 <i <3, P5 i=1,2,3 are
paths and kg (P%) = ka(PY).

|P1| > 3. We assume that P, = (z = vp,v1,...,0—2,0 = ¥y), 7 > 3 and observe that
C = (vo,v1,...,0-1,v,) is a cycle of G where |C| > 4. We call D the {z,y}-avoiding
closed disc bounded by Py U Ps in ¥. Let T, = (z,y,z). Also let T, = (x,z,a) be the
unique regional triangle different than (z,y, z) that contains {z, z} and where a € D and
let T, = (y,2,b) be the unique triangle different than (x,y,z) that contains {y, 2z} and
where b € D. We now construct the set 7 distinguishing 4 cases (see also Figure 7).

1. If a # vy and b # v,_1 then we set T = (.

2. If a = v; and b # v, then we have that Ty is a triangle of degree 1 in HE(C) and
we set T = {T,}.

3. If a # vy and b = v,y then we have that T}, is a triangle of degree 1 in Hg) and
we set T = {T}}.

4. If a = v; and b = v,_; then we have that both T, and T}, are triangless of degree 1 in
Hgc). As |C| > 4, any connected component of H E(C) has two triangles of degree
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Figure 7: Examples of the proof of Lemma B.8 for the case where |P> U P3| = 3 and
|P1| > 3 (subcases 1,2,3,4.1).

1. This implies that either {77, 7} or {T%, T} is a collection of mutually irrelevant
degree one triangles in V(H E(C)). We distinguish two subcases:

4.a. If T, and T, are irrelevant we set 7 = {1}, 7, }.
4.b. If T, and T, are irrelevant we set 7 = {1, T} }.

(If both pairs T, T, and T.,T, are irrelevant we make an arbitrary choice.)

For any of the above cases we apply Lemma B.6 for C and 7 and we get a cycle
Cgr in Rg where kg(Cgr) = kg(C). Clearly, Cr is the union of two internally dis-
joint paths P}{ and PIQ{ that connect in Rg the vertices x and y. In cases 1-3, we set
P} = (z,v(T,),z,v(Ty),y). In case 4.a, we set Pp = (x,v(T}),2,v(1:),y). In case
4.b, we set Py = (z,v(1.),z,v(T,),y). It is now easy to see that, in any case, for all
i, 1 <i<3, ka(Ph) = ke(P?). This completes the analysis of the special case.

Assume now that for alli,j, 1 <1i < j <3, |P'UPJ| > 4. Let P; = (x,v1,...,v—2,¥), P» =

(z,u1,...,us_2,y) and Py = (z,w1,...,wi_2,y). We consider the cycle C = P'U P? and
the path P = P? As |C| > 4 and |P| > 3, V(Hpg)) and V(Hpgp)) can have at
most 4 triangles in common that can be the triangles A = (uy,z,w1), B = (v1,x,w1),
C = (us—2,y,wr—2) and D = (v,_2,y,wr_2). Our target will be to apply Lemmata B.5
and B.6 on P and C in order to construct a path Pr and a cycle Cr without com-
mon radial vertices. In order not to use the same interior vertices of Rg two times we
have to apply them with the restrictions imposed by suitably chosen collections 7o, 7p
of mutually irrelevant degree one triangles in V(Hg(cy) and V(Hgp)) respectively. We
set C = V(Hpg)) NV (Hgp)) and we distinguish the following cases (for examples, see
Figures 8 and 9).

1. |C| = 0. Then we set 7o = Tp = 0.

2. |C| = 1. Then we set 7c = V(Hg(cy) NV (Hpgp)) and Tp = 0.

L

. |C| = 2. Then we put in 7¢ one of the two elements of C and we put in 7p the other.

I’

. |C| = 3. Then we distinguish the following subcases:

27



Figure 8: Examples of the proof of Lemma B.8 for the case where |P> U P3| = 3 and
|P1| > 3 (subcases 4.2,4.3,4.4,5).

Figure 9: If F' contains the edges of the stressed cycle then the graph Hp is the one formed
by the dotted vertices and the white vertices.

4.a. if C = {A, B,C} then 7¢ = {A} and 7p = {B,C}.
4.b. if C ={A,C,D} then 7c = {C} and 7p = {A, D}.
4.c. if C = {A, B, D} then 7o = {A} and 7p = {B, D}.
4.d. if C = {B,C, D} then 7c = {C} and 7p = {B, D}.

5. |C| = 4. Then we set 7c = {A, D} and 7p = {B,C'}.

Notice that, in any of the above cases, the triangles in 7o and 7p are mutually irrelevant
degree one triangles of V(Hg(cy) and V(Hgp)) respectively. Therefore, we can apply
Lemma B.5 for P and 7p and Lemma B.6 for C' and 7¢ and construct the cycle Cr and
the path Pr where kg(Cr) = ka(C) and kg(Pr) = kg(P). Notice that, in each case,
the choice of 7 and 7p do not allow Cr and Pr to have common radial vertices. Cg
defines two paths P! and P? connecting = and y and if we set P}% = Pgr we have that
kG(Ph) = kg(P?) for all 1 <i < 3. O

Let us remind that a ©-structure is non-trivial if at least two of its lines have length
> 2.

Lemma B.9. Let G be a triangulated X-plane graph with > 5 vertices and without multiple
edges, drawn in 3 along with its radial graph Rg. If S = (L, L% L?) is a non-trivial
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O-structure of G, then there exist a non-trivial ©-structure (P}%,PI%,PJ%) of G that is a
vibration of S where P}%,PI% and P}% are paths of Rg.

Proof. We apply Lemma B.2 for the noose N = L' U L? and we get a cycle C of G where
kq(C) = kg(N). This cycle defines two internally disjoint paths P! and P? between
and y in G where rkg(P") = kg(L'),i = 1,2. Applying now again Lemma B.2 for the
line L3, we get a path P3 between z and y in G where kg(P3) = kg(L3). We now apply
Lemma B.8 on P?,i = 1,2,3 and get three internally disjoint paths P}i, P12{> PI% of Rg that
connect z an y and such that for each i, 1 < i < 3, kg(Ph) = ka(P'). Resuming the
previous equalities we get kg(Ph) = kg(L'), 1 < i < 3. Notice that (Pk, P3. Pp) is a
non-trivial ©-structure in G. In what remains we will show that it is also a vibration
of (L', L2 L3). Notice that kg(P} U P3) = kg(L! U L?) and applying Lemma B.3 we
have that P}% U P12% ~* LY U L? and this, in turn, implies that Pé ~* L' and P12% ~* L2,
Notice now that P%UL? is a noose of G. Recall that kg(Pp) = kg(L*) which implies that
ka(L*UPY) = kg(L?UL?). From Lemma B.3 we have that L? U P3 ~* L? U L? and this,
in turn, implies that Pj ~* L3. Therefore, (P}, P4, Py) is a vibration of (L!, L%, L?). O

B.5 A topological property of O-structures

Lemma B.10. Let S = (L1, Lo, L3) and S" = (L, La, L3) be two non-trivial ©-structures
of some X-plane graph G where S ~ S’. Then, for one, say D*, of the closed discs bounded
by Lo U Ls, holds that D* N dif(S,S") C Lo N Ls.

Proof. Let {x,y} = Ly N Ls. Let also L and L' be the length-1 lines comprising the
length-2 noose (SUS") — (SNS’) = LUL, assuming that L C Ly and L' C L}. In the
case analysis that follows, we will define a disc D* bounded by Lo U L3 and we will show
that LU L' C ¥ — D*.

Case 1. 1f | L], |L}| > 2, we can choose a vertex v € (LU L')NV(G) that is different that x
and y. Therefore v ¢ Lo U L3 and we can define D* as the closed disc bounded by Lo U L3
that does not contain v. Notice that Ly U L] contains at most one point in common with
Lo U Ly = bd(D*) = bd(X — D*). We need the following topological fact.
Fact 1. Let A be a closed disc on a sphere ¥ and let N be a simple closed curve where
NNbd(A) is either empty or is just a point . Then (A —bd(A))NN # () implies N C A.
As (X — D)YN (LUL'") # 0, we apply the fact for L U L’ and ¥ — D*, obtaining
LUL'CY— D
Case 2. |L1|,|L}| = 1. Notice that, then, |Lo|,|Ls| > 2. Notice that L; — {z,y} cannot
have common points with the noose Lo U Ls. Therefore it will be a subset of some of the
closed discs bounded by Lo U L3. Notice also that the same holds for L]. Observe now
that L1 — {z,y}, L] — {x,y} cannot be subsets of different discs bounded by the noose

La U L3 because then each of the discs bounded by the noose L; U L} should contain a
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Figure 10: An example of the application of the function dif.

vertex of G. Let D* be the disc containing none of Ly — {z,y},L] — {z,y}. This means
that the noose L; U L} is a subset of ¥ — D*. As L; = L and L} = L', we have that
LLUL, CS= D~

Here is the second topological property we use in our proof.

Fact 2. Let A be a closed disc on a sphere X and let N be a simple closed curve where
N C A. Then some of the closed discs bounded by N will be a subset of A.

Let A and A’ be the discs bounded by L1 U L. By Fact 2, one, say A, of A, A’ should
be a subset of ¥ — D*. Notice that A should be dif(S,S’), otherwise A = X — dif(S, 5’)
and as A C ¥ — D* we have that ¥ — dif(S,5’) C ¥ — D* = D* C dif(S,5’). Hence
D*NV(G) C dif(S,5) N V(G) = {z,y} a contradiction as |(D* N V(G)) — {z,y}| > 1
(this follows from the fact that S is non-trivial). We conclude that dif (S, S’) C ¥ — D*,
therefore dif(S, §') — bd(dif(S,5")) C ¥ — D* = (dif(S, S') — bd(dif(S, §")) N D* = 0.
As bd(dif(S,5")) = L1 U L), we have that bd(dif(S,S"))ND* = (LU L)) N D* C {z,y}
and the proof is complete.

O]

B.6 Vibration invariants of O-structures

Let N, N’ be two nooses of some Y-plane graph G. Let N ~ N’ and let D = {D1, D3}
and D' = {D}, D}} be the closed discs bounded by N and N’ respectively. We set up a
bijection o n7 : D — D’ such that if D € D then

(D) =1 D dif(N,N') if dif(N,N") C D
NNAEITA DUdif(N, N if dif (N, N') € D

Also, for notational convenience, we enhance the definition of o so that o n(D) = D. It
is easy to verify that oy ' = J]Q,l y (for an example, see Figure 10).

Let N and N’ be nooses where N ~* N’. Thenif N =Ny~ Ny ~---~N,_1 ~ N, =
N’ we define ON.N' = ONg,Ny ©ON;,N, ©* 00N, ;,N,. Notice that o, v is well defined as
it does not depend on the way N is transformed to N’ (however we stress that this fact is

. . . o 1
not used in our proofs). Again it follows that a}*\,’ N = 0}‘\,,7 N
The following lemma is a direct consequence of the fact that dif(/N, N') does not

contain vertices that are not met by both N and N'.
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Lemma B.11. Let N1, Ny be nooses of G where N1 ~* Ny. If D is some disc bounded by
N1 then V(G) Noy, n, (D) =V(G)ND.

We need the following lemma.

Lemma B.12. Let G be a X-plane graph and S = (L1, Lo, L) and S’ = (L}, L, LY) be
non-trivial ©-structures in G where S ~* S'. If D is a closed disc bounded by the noose

LU Lg and Ly C D then L C UzluLz,LllUle (D).

Proof. 1t is sufficient to prove the statement of the lemma only for the case L C O L1ULs, L UL (D).
(Using this case as an induction assumption, one can prove the lemma by making use of
induction on the number of variations required in order to transform S to S’.)

We set {z,y} = L1 N Ly N Ls. We also set A = dif(S,S’) and notice that a variation
affects only one of the lines in S. Therefore, we can distinguish the following cases.

Case 1. LyU Ly = Ly U Iy, Then A = dif(L; U Ly, I, U L),

Subcase la. If A ¢ D then or,yr, rrury (D) = DU A. Therefore, Ly = Ly C D C
DUA =op,ur,,0m (D)

Subcase 1.b. If A C D, apply Lemma B.10 on S and S’ and let D33 be the closed
disc bounded by Lo U L3 where Dos M A C {z,y}. As (L1 — {z,y}) N A # 0, it implies
that Ly — {z,y} € ¥ — Dy 3. This means that Dy3 C D. We now have Dy 3 — {z,y} C
Dy3—(D23NA)=Dy3—AC D—A. Therefore, Ly C Dy3=Dy3—{z,y} CD - A=

O0L1ULy, Ly UL, (D).

Case 2. L1 U Ly = L U LY. This case is symmetric to the Case 1.

Case 3. L1 ULy = L} U L5. Again we apply Lemma B.10 on S and S” and let D; o be the
disc bounded by L; ULy where D1 2NA C {z,y}. As (L3 —{z,y})NA # 0, we imply that
Ls—{z,y} € X — D;o. Applying the same argument for L% we get L —{z,y} C X —D; 5.
Therefore, Ly and L% are both included in the same disc bounded by Ly U Ly. As L3 C D
we conclude Ly € D = o, yr, 1oz, (D). O

Lemma B.13. Let G be a X-plane graph and S = (L1, L2, L) and S = (L}, LY, L) be
non-trivial ©-structures in G where S ~* S'. If Dy 5 is a closed disc bounded by the noose
L1 ULg and D13 is a closed disc bounded by the noose L1 U L3 such that D13 C Dy o then

UzguLg,L’luLg (Dy3) € UzluLg,LguL’Q (Dy,2).

Proof. As in the previouse lemma, it is sufficient to prove only the case S ~ S’. (And then

use the induction on the number of variations required in order to transform S to S’.)
We set {x,y} = L1 N Lo N L3. We also set A = dif(S,S’) and notice that a variation

affects only one of the lines in S. Therefore, we can distinguish the following cases.

Case 1. Ly U Ly = L, U Lj. Notice that A = dif(L; U L3, L} U L%)
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Subcase l.a. If A ¢ D;5 then, from, D3 C D;s we also have that A € Dy 3.
Therefore, op,u,, 110z, (D1,2) = D12UA, OLyULs L, UL), (D13) = D1 3UA and the required
relation follows as D 3 C Dj 2.

Subcase 1.b. If A C Dy o we apply Lemma B.10 on S and S’ and let Ds 3 be the disc
bounded by Lo U Ly where Doz N A C {z,y}. As (L1 — {z,y}) N A # 0, we imply that
L1 —{z,y} € ¥ — Dy 3. This means that Dy 3 C Dj . Combining this with the fact that
D13 C D12, we have that Dy 9 = Dy 3UDj 3. So, we can assume that Dy — Dy 3 C Dy 3.
Notice that A — {J?,y} - A — (Dz’g N A) = A — D2,3 - Dl,g — D2,3 - Dl,g. As also
{z,y} € D;3, we have that A C D; 3 and therefore ULluLg,L’luLg(Dlﬁ) = Dy3— A.
Moreover, op,uL,,1,uL, (D1,2) = D12 — A and the result follows as Dy 3 — A C Dy 9 — A

Case 2. L1 U Ly = L} U Lj. Notice that A = dif (L, U L3, L} U L%).

Observe that in this case the variation does not affect the noose L1 U Ly. Therefore,
0r,0Ly, 4oLy (D1,2) = Di2. In both subcases that follow, our target will be to prove that
Dy 2 op,uLs.501,(D13).

Subcase 2.a. If A ¢ D; 3, we apply Lemma B.10 on S and S” and let D* be a disc
bounded by L; U Ly where D* N A C {z,y}. As (L — {z,y}) N A # (), we imply that
Ly —{z,y} € ¥ —D*. As L3 C D;9, we get that D* = ¥ — Dy 5. Combining this with
D*NA C {z,y} we take A C D1 5. Therefore UL1UL3,L3uLg(D1,3) =D13UA C Di2UAC
D1 5.

Subcase 2.b. If A C D3 then UL1UL3,L’1UL3(D1,3) =D13—ACD13C Dio.

Case 3. L1 U Ly = L} U Lf. Notice that A = dif (L U Lo, L} U LY).

Observe that in this case the variation does not affect the noose L1 U Ls. Therefore,
OL,ULs, L} UL, (D1,3) = D1,3. In both subcases that follow, our target will be to prove that
D13 C 01,010,101, (D1,2)-

Subcase 3.a. If A Z D; 5 then O LyULy, L, UL}, (D12) =D12UA D Dj3 2D Dy3.

Subcase 3.b. If A C Do, we apply Lemma B.10 on S and S’ and let D* be a disc
bounded by L; U Ly where D* N A C {z,y}. As (La — {z,y}) N A # (), we imply that
Ly — {z,y} € ¥ — D*. This means that D* = D;3. We now have D3 — {z,y} C
Di3—(D13NA)=Di;3—A C Djy— A. Therefore ULluLg,L’luL’Q(Dm) =Di2—AD
Dy3 —{z,y} = D13 U

B.7 Proof of Theorem B.1

Lemma B.14. Let G be a triangulated -plane graph without multiple edges and let ins
be a uniform slope of order k + 1 in Rg for k > 2. Then, for any region r of Rqg,
ins(bd(r)) =T7.
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Proof. As ins is uniform we have that there exists a cycle C” of length < 2k such that
r C ins(C’). This means that bd(r) C ins(C’) and from axiom [S1] we have that
ins(bd(r)) C ins(C’). Therefore, ins(bd(r)) = 7. O

We are now ready to prove the main technical result of this paper.

of Theorem B.1. Let ins be a uniform slope of order £+ 1 in Rg. We define the function

big as follows. Let N be a noose of G with size < k. As G is triangulated, Lemma B.7

implies that NV is the vibration of some of the cycles, say C' of Rg. Observe that C' has

length < 2k. In the trivial case |N| < 1 we define big(N) as the closed disk bounded by

N and containing all the vertices of G. For [N| > 2 we set big(N) = o7, y (¥ — ins(C)).
We claim that the function big satisfies the majority axioms on G.

Proof of [M1]: Let S = (L1, L2, L3) be a ©-structure of size < k where L3 C big(L1UL2).
We will prove that big(L; U Ls) C big(L; U Lo) or big(Le U L3) C big(L1 U Ls). For this
we distinguish two cases.

Special case. S = (L1, Lo, L3) is trivial. Notice that L;,i = 1,2, 3 have the same vertices,
say x,y of G as endpoints. Also, from Lemma B.2, e = {z,y} is an edge of G. We will
first prove the following claim.

Claim. If |L; U Lj| = 2,1 < i < j < 3, then one, say A, of the closed discs bounded by
L; U L; contains all the vertices of G and big(L; U L;j) = A.

Proof of Claim. The fact that G is triangulated and without multiple edges implies that
G is 3-connected. Therefore, one of the closed discs, we denote it A, bounded by L; U L;
contains all the vertices of G. It remains to prove that big(L; U La) = A.

By Lemma B.7, the noose L;ULj, is a vibration of some cycle C of Rg. As|L,UL;| = 2,
the only cycle of Rg with this property is the boundary of ry,, . By Lemma B.14,
ins(C) = ins(bd(ry,,))) = T(s,)- From the definition of big we have that for all i, j,
1 <i<j <3, big(LiUL;) =05 1,0, (5 — T(sy))- Notice that ¥ — (., NV(G) = V(G)
and Lemma B.11 yields that for 1 < i < j < 3, UE‘,L,-ULJ-(E —T,y) NV(G) = V(G),
therefore big(L; U L;) should be equal to A and the claim holds.

We now distinguish the following subcases of the special case.

Subcase 1. |L;| = 1,i = 1,2,3. Applying the claim above, we have that for 7,75,1 < i <
J < 3, big(L; U Lj) is the closed disc bounded by L; U L; and containing all the vertices of
G. L3 C big(Ly U Lo) implies that either Ly — {z,y} C ¥ —big(L; U L3) or L1 — {z,y} C
E*big(LgULg). Then either big(L1 UL3) - big(L1 ULQ), or big(LgULg) - big(L1 ULQ).

Subcase 2. |L;| = 1,9 = 1,2 and |L3| = 2. From Lemma B.3 we have that L; U Lz ~*
Lo U Ls. From the claim above, big(L; U Ls) is the closed disc bounded by L; U Ly and
containing all the vertices of G. Therefore, ¥ — big(L; U Lo) = dif (L1 U L3, Lo U L3). We

33



now assume that big(LyULs) € big(L1ULs). This can be rewritten as ¥ —big(L1ULs) €
S — big(Ls U L3) which implies that dif(Ly U Lg, Ly U Ly) € S — big(Ls U Ly) and thus
dlf(Ll ULs, LoU Lg) - blg(L2 U Lg) We now have

big(L; UL3) = 0r,0uLs,L,uLs(big(La U Ls))
= big(Ly U L) —dif(Ly U Lg, Ly U L3)
C ¥ -—dif(L1ULs, Ly U Ls)
= big(L; U Ly).

Subcase 3. |L1| = 2 and |L;| = 1,7 = 2,3. Observe that L3 C big(L; U Lo) implies that
dif(L1 ULy, L1 U Lg) - big(L1 U LQ). Therefore,
big(L1 U L3) = or,uL,,LuLs(big(L1 U L2))
= blg(Ll U LQ) — dlf(L1 ULy, L1 U Lg)
C big(L1 U Ly).

Subcase 4. |L1| =1 and |L2| = 2 and |L3| = 1. This case is symmetric to Case 3.

General Case. S = (L1, Lo, L3) is non-trivial. Then, from Lemma B.9, there exist a non-
trivial ©-structure (Pp, P2, P3) of G that is a vibration of S where P}, P% and P} are all
paths of Rg. Lemma B.12 implies that P3 C big(P; U P). As big(P; U P) is a cycle of
Rg, the definition of big implies that

Ps Z inS(PlLJPQ) (3)

Suppose now that big(P; U P3) Z big(P; U P») and big(P, U P3) € big(P; U P,) and we
will show that this assumption leads to a contradiction. As P, U Pj,1 <17 < j < 3, are
cycles of Rg, the definition of big implies that
ins(PLUP,) ¢ ins(PU P3) and (4)
iIlS(Pl U P2) z ins(P1 U P3) (5)
From (3) (4), and (5) we have that ins(P; U P,) Uins(P; U P3) Uins(P, U P3) = X and
this is a contradiction to [S2]. Therefore, we get that

big(P U Ps) C big(P1UFP,)  or  big(P U Ps) C big(P U B,). (6)

Applying now Lemma B.13 on each of the relations of (6), we conclude that either big(L;U
L3) C big(Ly U L2) or big(La U L3) C big(L1 U La).

Proof of [M2]: Let N be a noose in G where |[N| = 2 and C be a path of Rz where
N ~* C (in the case where |N| < 1, [M2] follows from the bi-connectivity of G). By
Lemma B.2, there exist an edge e = {z,y} such that (z,y) = kg(N). Clearly, if r = T,
then C' = bd(r). By Lemma B.14, ins(C) = r and thus, ¥ — ins(C) NV (G) = V(G). By
Lemma B.11, big(N) NV(G) = o, 5 (X —ins(C)) N V(G) = V(G) and [M2] follows. [
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