Skip to main content

Algebraic Results on Quantum Automata

  • Conference paper
STACS 2004 (STACS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2996))

Included in the following conference series:

Abstract

We use tools from the algebraic theory of automata to investigate the class of languages recognized by two models of Quantum Finite Automata (QFA): Brodsky and Pippenger’s end-decisive model, and a new QFA model whose definition is motivated by implementations of quantum computers using nucleo-magnetic resonance (NMR). In particular, we are interested in the new model since nucleo-magnetic resonance was used to construct the most powerful physical quantum machine to date. We give a complete characterization of the languages recognized by the new model and by Boolean combinations of the Brodsky-Pippenger model. Our results show a striking similarity in the class of languages recognized by the end-decisive QFAs and the new model, even though these machines are very different on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambainis, A., Freivalds, R.: 1-way Quantum Finite Automata: Strengths, Weaknesses, and Generalizations. In: Proceedings of the 39th IEEE Symposium on Foundations of Computer Science, pp. 332–341 (1998)

    Google Scholar 

  2. Ambainis, A., Ķikusts, A.: Exact Results for Accepting Probabilities of Quantum Automata. Theoretical Computer Science 295, 3–25 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of STOC 2001, pp. 50–59 (2001)

    Google Scholar 

  4. Ambainis, A., Ķikusts, A., Valdats, M.: On the class of Languages Recognized by 1-way Quantum Finite Automata. In: Proceedings of STACS 2001, pp. 75–86 (2001)

    Google Scholar 

  5. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Quantum dense coding and quantum finite automata. Journal of ACM 49, 496–511 (2002)

    Article  MathSciNet  Google Scholar 

  6. Beaudry, M., Lemieux, F., Thérien, D.: Finite loops recognize exactly the regular open languages. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, Springer, Heidelberg (1997)

    Google Scholar 

  7. Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1- way quantum finite automata. In: ICM 2002. LNCS, vol. 2730, pp. 1–20 (2003)

    Google Scholar 

  8. Brodsky, A., Pippenger, N.: Characterizations of 1-Way Quantum Finite Automata. SIAM Journal on Computing 31(5), 1456–1478 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ciamarra, M.P.: Quantum Reversibility and a New Model of Quantum Automaton. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 376–379. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press, London (1976)

    MATH  Google Scholar 

  11. Fuchs, C., van de Graaf, J.: Cryptographic distinguishability measures for quantum mechanical states. IEEE Transactions on Information Theory 45(4), 1216–1227 (1999)

    Article  MATH  Google Scholar 

  12. Golovkins, M., Kravtsev, M.: Probabilistic Reversible Automata and Quantum Automata. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 574–583. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Gruska, J.: Quantum Computing, p. 160. McGraw-Hill, New York (1999)

    Google Scholar 

  14. Jeavons, P., Cohen, D., Gyssens, M.: Closure Properties of Constraint Satisfaction Problems. JACM 44(4), 527–548 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kondacs, A., Watrous, J.: On the power of Quantum Finite State Automata. In: FOCS 1997, pp. 66–75 (1997)

    Google Scholar 

  16. Marshall, A., Olkin, I.: Inequalities: Theory of Majorization and Its Applications. Academic Press, London (1979)

    MATH  Google Scholar 

  17. Moore, C., Crutchfield, J.: Quantum Automata and Quantum Grammars. Theoretical Computer Science 237(1-2), 275–306 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nayak, A.: Optimal Lower Bounds for Quantum Automata and Random Access Codes. In: Proc. 40th FOCS, pp. 369–377 (1997)

    Google Scholar 

  19. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Pin, J.E.: BG=PG: A success story. NATO Advanced Study Institute Semigroups, Formal Languages and Groups, pp. 33–47 (1995)

    Google Scholar 

  21. Pin, J.E.: On languages accepted by finite reversible automata. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 237–249. Springer, Heidelberg (1987)

    Google Scholar 

  22. Pin, J.E.: A variety theorem without complementation. Russian Mathematics (Izvestija vuzov. Matematika) 39, 80–90 (1995)

    MathSciNet  Google Scholar 

  23. Pin, J.E.: Varieties of Formal Languages. North Oxford Academic Publishers, Ltd., London (1986)

    MATH  Google Scholar 

  24. Rabin, M.: Probabilistic Automata. Information and Control 6(3), 230–245 (1963)

    Article  Google Scholar 

  25. Simon, I.: Piecewise Testable Events. In: Proc. 2nd GI Conf., pp. 214–222 (1975)

    Google Scholar 

  26. Vandersypen, L., Steffen, M., Breyta, G., Yannoni, C., Sherwood, M., Chuang, I.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambainis, A., Beaudry, M., Golovkins, M., Ķikusts, A., Mercer, M., Thérien, D. (2004). Algebraic Results on Quantum Automata. In: Diekert, V., Habib, M. (eds) STACS 2004. STACS 2004. Lecture Notes in Computer Science, vol 2996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24749-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24749-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21236-2

  • Online ISBN: 978-3-540-24749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics