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Abstract. Sharing among program variables is vital information when
analyzing logic programs. This information is often expressed either as
sets or as pairs of program variables that (may) share. That is, either
as set-sharing or as pair-sharing. It has been recently argued that (a)
set-sharing is interesting not as an observable property in itself, but as
an encoding for accurate pair-sharing, and that (b) such an encoding is
in fact redundant and can be significantly simplified without loss of pair-
sharing accuracy. We show that this is not the case when set-sharing is
combined with other kinds of information, such as the popular freeness.

1 Introduction

Program analysis is the process of inferring at compile-time inferring information
about run—time properties of programs. In logic programs one of the most studied
run-time properties is sharing among program variables. Two program variables
share in a given run-time store if the terms to which they are bound have at
least one run-time variable in common. A set of program variables share if they
all have at least one run-time variable in common. The former kind of sharing
is called pair-sharing while the latter is called set-sharing. Any of the two may
be target observables of an analysis.

The importance (and hence popularity) of sharing comes from two sources.
First, sharing information is in itself vital for several applications such as ex-
ploitation of independent AND-parallelism [18, 5], occurs check reduction [26,
27], and compile-time garbage collection [23]. And second, sharing can be used
to accurately keep track of other interesting run-time properties such as freeness
(a program variable is free in a run-time store if it is either unbound or bound
to a run-time variable).

Sharing analysis has therefore raised an enormous amount of interest in our
research community, with many different analysis domains being proposed in the
literature (see e.g., [27,17,25,3,19]). Two of the best known sharing analysis
domains are ASub defined by Sgndergaard [27] and Sharing defined by Jacobs
and Langen [17,18]. The main difference between these two domains is the way
in which they represent sharing information: while ASub keeps track of pairs of
program variables that possibly share, Sharing keeps track of sets of program
variables that possibly share certain variable occurrences.

These differences have subtle consequences. On the one hand, the pair sharing
encoding in ASub allows it to keep track of linear program variables (a program



variable is linear in a run-time store if it is bound to a term which does not have
multiple occurrences of the same run-time variable). Linearity information, in
turn, allows ASub to improve the accuracy of the abstract sharing operations. On
the other hand, the set sharing encoding in Sharing allows it to represent several
other kinds of information (such as groundness and sharing dependencies) which
also result in more accurate abstract operations. In fact, when combined with
linearity, Sharing is strictly more accurate than ASub. In practice, this accuracy
improvement has proved to be significant [7].

As a result, Sharing became the standard choice for sharing analysis, usu-
ally combined with other kinds of information such as freeness or structural in-
formation, even though its complexity can have significant impact on efficiency.
However, the benefits of using set sharing for sharing analysis have been recently
questioned (see [10,1,2]). As a paradigm of the case, we cite the title of a paper
by Bagnara, Hill, and Zaffanella: “Set-Sharing is redundant for Pair-Sharing” [1,
2]. In this paper, the authors state the following

Assumption: The goal of sharing analysis for logic programs is to detect
which pairs of variables are definitely independent (namely they cannot
be bound to terms having one or more variables in common).

As far as we know this assumption is true. In the literature we can find
no reference to the “independence of a set of variables”. All the proposed
applications of sharing analysis (compile-time optimizations, occur-check
reduction and so on) are based on information about the independence
of pairs of variables.

Based on the above assumption, the authors focus on defining a simpler version of
Sharing which is however as precise as far as pair-sharing is concerned. This new
simpler domain, referred to in the future as SS”, is obtained by eliminating from
Sharing information which is considered “redundant” w.r.t. the pair-sharing
property. This elimination allows further simplification of the abstract operations
in SS? which can significantly improve its efficiency.

The popularity of the Sharing domain combined with the great accuracy
and efficiency results obtained for SS” (and the clarity with which the authors
explained the intricacies of the Sharing domain), ensured the paper had a sig-
nificant impact on the community, with many researchers now accepting that
set-sharing is indeed redundant for pair-sharing (see, e.g., [20, 8,22, 21]).

The aim of this paper is to prove that this is not always the case. In particular,
we will show that: (1) There exist applications which use set-sharing analysis
(combined with freeness) to infer properties other than sharing between pairs
of variables; and (2) When combined with information capable of distinguishing
among the different variable occurrences represented by Sharing, this domain
can yield results not obtainable with SS?, including better pair-sharing. Such a
combination is found in at least two common situations: when Sharing is used
as a carrier for other analyses (such as freeness), and when the analysis process
is improved with extra information (such as in-lined knowledge of the semantics
of some predicates, for example builtins). Possible approaches to combine SS?
with other kinds of information without losing accuracy are also suggested.



We believe our insights will contribute to the better understanding of an
abstract domain which, while being one of the most popular and more intensively
studied abstract domains ever defined, remains somewhat misunderstood.

2 Preliminaries

Let us start by introducing our notation as well as the basics of the Sharing
domain [17,18]. In doing this we will mainly follow the extremely clear summary
presented in [1]. Given a set S, p(S) denotes the powerset of S, and p¢(.S) denotes
the set of all the finite subsets of S. V denotes a denumerable set of variables.
Var € p¢(V) denotes a finite set of variables, called the variables of interest (e.g.,
the variables of a program). The set of variables in a syntactic object o is denoted
vars(o). Ty is the set of first order terms over V. A substitution € is a mapping
0 :V — Ty, whose application to variable x is denoted by xf. Substitutions are
denoted by the set of their bindings: § = {& — z0 | 0 # x}. We define the

image of a substitution 6 as the set img(6) e U{vars(z) | = € Var}.

The Sharing domain is formally defined as follows. Let SH & ©p(SG), where

SG & {§ CVar| S # 0}. Each element S € SG is called a sharing set. We will

write sharing sets as strings with the variables that belong to it, e.g., sharing set
{z,y, 2z} will be denoted zyz. A sharing set of size 2 is called a sharing pair.

The function oce(6, v) obtains a sharing set that represents the occurrence of
variable v through the variables of interest as per the substitution 6.

oce(0,v) & {x € Var|vewvars(xzd)}

The abstraction of a substitution # is obtained by computing all relevant
sharing sets: a(f) of {occ(8,v) | v € img(8)}.

Abstract element sh € SH approximates substitution 6 iff a(6) C sh. Con-
versely, the concretization of sh € SH is the set of all substitutions approximated

by sh. Projection over a set V C Var is given by

proj(sh, V) €SV | S € sh[V]}

where, for any syntactic object o and abstraction sh € SH,

shlo] € {S € sh | S Nwars(o) # 0}.

The pairwise (or binary) union of two abstractions is defined as:
shy W shg def {Sl U .Ss | S1 € shy,8 € Shg}.

The closure under (or star) union of an abstract element sh is defined as the

least set sh* that satisfies:
sh* = sh U {Sl U .Ss | 51,9, € Sh*}

Abstract unification for a substitution 6 is given by extending to the set of

bindings of 8 the following abstract unification operation for a binding:
amgu(sh,z — t) = (sh\ (shlz] U sh[t])) U (sh[z]* & sh[t]*).

The set-sharing lattice is thus given by the set

S5 < {(sh,U)|sh € SH,U C Var,¥S € sh: S CUYU{L,T}

which is a complete lattice ordered by <gg defined as follows. For elements

{d, (sh1,U1), (she,Uz)} € SS:



1 <ssd
d<ss T
(Sh1,U1) SSS (ShQ,Ug) iff U1 = U2 and Shl g Shg.

The lifting of U, proj, and amgu defined over SH to define the abstract
operations U, Proj, and Amgu over SS is straightforward.

Ezample 1. Let Var = {x,y, 2z} be the set of variables of interest and consider
the substitutions 6, = {z — f(u,u,v),y — g(u,v,w,0),z — h(u)} and 6 =
{x — u,y — u,z+— 1}. Then, shy = a(01) = {zy, zyz, y}, where sharing set xyz
represents the occurrence of variable w in z, y and z, sharing set xy represents the
occurrence of variable v in z and y, and sharing set y represents the occurrence
of variables w and o in y. Similarly, we have that shy = «(f2) = {ry} where
sharing set zy represents the occurrence of variable u in x and y. Let U = Var.
We then have that (she, U) <gg (shi,U) and thus (shy, U)U(she,U) = (shy,U).
Finally, let V = {z,y}, Proj((sh1,U),V) = ({xy,y}, V). Note that the sharing
set zy in the projected abstraction represents not only the occurrence of variable
u but also that of v. ¢

3 Eliminating redundancy from Sharing

One of the main insights in [10, 1] regarding the Sharing domain is the detection
of sets which are redundant (and can thus be safely eliminated or not produced)
as far as pair-sharing is concerned. Given an element sh of SH, sharing set
S € sh is redundant w.r.t. pair sharing if and only if all its sharing pairs can
be extracted from other subsets of S which also appear in sh. Formally, let

pairs(S) def {zy | z,y € S,x # y}. Then, S is redundant iff

pairs(S) = U{pairs(T) | T € sh,T C S}

Ezample 2. Consider the abstraction sh = {xy, xz,yz,xyz} defined over Var =
{z,y, z}. It is easy to see that set xyz € sh is redundant w.r.t. pair sharing. ¢

Based on this insight, a closure operator, p : SH — SH, is defined in [1] to
add to each sh € SH the set of elements which are redundant for sh. Formally:

p(sh) e {§€SG|VereS:Seshlx]}.

This function is then used to define a new domain SS” which is the quotient
of SS w.r.t. the new equivalence relation induced by p: elements d; and ds are
equivalent iff p(dy) = p(da). The authors prove that (a) the addition of redundant
elements does not cause any precision loss as far as pair-sharing is concerned,
i.e., that SS” is as good as SS at representing pair-sharing, and that (b) p
is a congruence w.r.t. the abstract operations Amgu, U and Proj. Thus, they
conclude that SS? is as good as SS also for propagating pair-sharing through
the analysis process.



The above insight is used by [1] to perform two major changes to the Sharing
domain. Firstly, redundant elements can be eliminated (although experimental
results suggest that this is not always advantageous). And secondly, addition of
redundant elements can be avoided by replacing the star union with the binary
union operation without loss of accuracy. This is a very important change since it
can have significant impact on efficiency by simplifying one of the most expensive
abstract operations in Sharing.

The results obtained in [1] are indeed interesting and can be very useful in
some contexts. However, there are situations in which the lack of redundant sets
can lead to loss of accuracy w.r.t. pair sharing, and even incorrect results if the
full expressive power of Sharing is assumed to be still present in SS”.

Ezample 3. Consider the abstractions shy = {z,y, 2z, 2y, zz,yz} and shy =
{z,y, 2,2y, x2,yz, xyz} defined over Var = {x,y,z}, and note that p(sh;) =
sho, i.e., the sharing set zyz is redundant for sho.

Consider the Prolog builtin == y which succeeds if program variables x and
y are bound at run-time to identical terms. A sophisticated implementation of
the Sharing domain (such as that of [4]) could take advantage of this information
and eliminate every single sharing set in which the program variables x and y
appear but not together (since all variables which occur in  must also occur in
y, and vice versa). Thus, correct and precise abstractions of a situation in which
the builtin was successfully executed in stores represented by shi and shs, will
become sh}] = {z,zy} and sh, = {z, zy, zyz}, respectively. However, it is easy
to see that pairs(sh)) # pairs(sh}), since z is definitely independent of both x
and y in sh{ while it might still share with them in sh}. o

The above example shows that Sharing can make use of the information
provided by other sources in order to improve the pair-sharing accuracy of its
elements, while the same action might lead to incorrect results for elements of
SS57 if redundant sharing sets had actually been eliminated from those elements.
As we will see in the following sections, this can happen when using information
coming not only from builtins, but also from other domains (such as freeness)
which are usually combined with set-sharing. Furthermore, useful information
other than sharing can be inferred from combinations of Sharing and other
sources which are not possible with SS”.

4 When redundant sets are no longer redundant

The problem illustrated in the previous example is rooted in the always surpris-
ing complexity of the information encoded by elements of SH. As indicated by [1,
2], elements of SH can encode definite groundness (e.g., x is ground), groundness
dependencies (e.g., if  becomes ground then y is ground), and sharing depen-
dencies.? However, as we will see in this section, these are only by-products of the

3 The fact that it also encodes independence (e.g., = does not share with ) was
probably obviated because this is also encoded by pair-sharing.



main property represented by elements of SH: the different variable occurrences
shared by each set of program variables.

The groundness of variable z, and the sharing independence between vari-
ables  and y (i.e., the fact that « and y are known not to share) can be expressed
by an element sh € SH as follows:

ground(z) iff VS € sh: z ¢S
indep(x,y) it VS € sh:axy € S

where ground(z) represents the fact that variable x is ground in all substitutions
abstracted by sh, and indep(x,y) represents the fact that variables « and y do
not share in any substitution abstracted by sh € SH.

Groundness dependencies in sh € SH can be easily obtained from the above
statements in the following way. Let us assume that x is known to be ground.
We can then modify sh by enforcing VS € sh : = ¢ S to hold, i.e., by elim-
inating every S € sh such that x € S. If we can then prove that the same
statement holds for some other variable y, we would then know that the im-
plication ground(xz) — ground(y) holds for sh. This simply illustrates the well
known result that Sharing subsumes the groundness dependency domain Def.
The same method can be used for obtaining other dependencies for elements sh
of SH. The following were used in [5] for simplifying parallelization tests:

1. ground(z1) A ... A ground(z,) — ground(y) if
VS € sh: ify€ Sthen {z1,...,2,} NS #0
2. ground(xi) A ... A ground(z,) — indep(y, z) if
VS € sh: if {y,z} C S then {x1,...,2,} NS #0
3. indep(z1,y1) A ... Nindep(Tp, yn) — ground(z) if
VS € sh: if z € S then 35 € [1,n], {z;,y;} CS
4. indep(x1,y1) A ... Nindep(zy, yn) — indep(w, z) if
VS € sh: if {w,z} C S then 35 € [1,n], {z;,y;} C S

Let us now characterize in a similar way the (non-symmetrical) property
covers(x,y) expressed by an element sh € SH as follows:

covers(x,y) it VS € sh: if y € S then x € S

where covers(z,y) indicates that variable y shares all its variables with variable
x and, therefore, every sharing set in which y appears must also contain x. We
can now derive other sharing dependencies for any sh € SH, such as:

5. covers(xzy,y1) A ... A covers(xy, yn) — ground(z) if

VS esh: ifze Sthen3je(l,n], y; €85, z; ¢S
6. covers(zy,y1) A ... A covers(zy,yn) — indep(w, z) if

VS € sh: if {w,z} CSthen3jel,n], y; €85, z; ¢S
7. covers(zi,y1) A ... A covers(Ty,yn) — covers(w, z) if

VS esh: ifze S,w¢gSthen3je(l,n], y; €8, z; ¢S



It is important to note that while the expressions with only ground(z) and
indep(x,y) elements can also hold for any element of SS?, this is not true for
the expressions with coverage information.

Ezxample 4. Consider again the abstractions introduced by Example 3, shy =
{z,y,2z,zy,22,yz} and shs = {x,y,z,zy, vz, yz, xyz} which are defined over
Var = {x,y, z}. Let us assume that both abstractions belong to Sharing. While
implication covers(z,y) A covers(y,z) — indep(x, z) holds for shy, it does not
hold for shs. If we now consider the SS5” domain, both abstractions would be
represented by the element shi. Therefore, the implication should not hold for
shi in SS5°. ¢

In order to understand why, consider the differences between the expressions
ground(z) iff VS € sh : x € S, and indep(zx,y) iff VS € sh : xy € S, and the
expression covers(x,y) iff VS € sh: if y € S then x € S. While in the first two
the sharing sets which violate the right hand side of the expressions would always
include the redundant set (if any), those which violate the last expression would
not. Thus, to assume coverage might result in the subset of a redundant set
being eliminated without the redundant set itself being eliminated. In this way
sharing sets which are considered redundant at some point, might become non
redundant once coverage information is added and, therefore, their elimination
(or non generation) can lead to incorrect information. For example, consider the
substitution sh = {zyz,xy, xz,yz}. While the problematic sets for ground(x)
and indep(z,y) in sh are xyz, xy, rz and xyz, xy, respectively, the only one for
covers(x,y) is yz. But once yz is removed from sh, xyz is no longer redundant:
it is the only sharing set able (when x covers y) to represent the possible sharing
between x and y.

As a result, sharing sets initially redundant for pair-sharing can prove use-
ful whenever combined with other sources of information (coming from builtins,
other analysis domains, etc.) capable of distinguishing between the variable oc-
currences represented by the redundant sharing sets and the variable occurrences
represented by their subsets, so that, once the extra information is added, a shar-
ing set previously identified as redundant will no longer be so.

5 Combining Sharing with freeness

In this section we will use the popular combination of Sharing with freeness
information to illustrate two points. First, that very common sources of infor-
mation (such as freeness) can distinguish between variable occurrences, an ability
which can be exploited in ways that can make a redundant set no longer redun-
dant. Thus, it can be advantageous not to eliminate them. And second, that
the goal of sharing analysis for logic programs is not only to detect which pairs
of variables are definitely independent, but also to detect (or propagate) many
other kinds of information.

In order to illustrate these points we will use the notion of active sharing sets
[6]. A sharing set S € sh is said to be active for store ¢ € y(sh) iff S € a(c). All



sharing sets {S1,---,S,} C sh are said to be active at the same time if there
exists a store ¢ € y(sh) such that V1 <i < n,S; € a(c). If only the information
in Sharing is taken into account, then all sharing sets in any sh € SH can be
active at the same time.

Ezample 5. Consider the set-sharing abstraction sh = {z,xy,yz} defined over
Var = {x,y, z}. All sets in sh can be active at the same time since there exists
a store, say 0 = {z = f(u,v),y = f(v,w),z = f(w)}, such that a(8) = sh. In
particular, w is the variable represented by sharing set x, v is represented by xy,
and w is represented by yz. ¢

However, this is not always the case when considering information outside
the scope of Sharing. In some cases, two or more sharing sets cannot be active
at the same time since, thanks to some extra information, we can determine that
these sharing sets must represent the same variable(s) occurrence.

Ezample 6. Consider again the set-sharing abstraction sh = {x, zy,yz} defined
over Var = {z,y,z}, and let us now assume y and z are known to be free
variables. As pointed out in [6], since each sharing set in an abstraction represents
a different occurrence of one or more variables, no two sharing sets containing
the same free variable can be active at the same time (the same variable cannot
be a different occurrence). In our example, zy and yz cannot be active at the
same time since there is no concrete store with both y and z free, such that both
share a variable not shared with anyone else (sharing set yz) and y also shares
a different variable with « (sharing set zy). ¢

Knowing which sharing sets in abstraction sh can be active at the same
time according to §2 is useful because we can use thois notion to divide sh into
{sh1,- -, shp} such that sh = shy U...Ush,, Vi,1 <1i <n all sets in sh; can
be active at the same time, and —35,1 < j <n:j #1,sh; C sh;.

Ezample 7. Consider again the abstraction sh = {z, zy, yz} defined over Var =
{z,y,z}. If y and z are known to be free variables, sh can be divided into two
different sets, {x, 2y} and {x,yz}, whose sharing sets can all be active at the
same time. The former represents the concrete stores in which x definitely shares
a variable with y (which is actually known to be y itself), and x might also have
some variable which is not shared with anyone else. The latter represents the
stores in which the free variables y and z are aliased and x might have some
variables which are not shared with anyone else. ¢

Note that the different sh; together with {2 describe disjoints sets of concrete
stores. Furthermore, even though (|J; v(sh;)) N~(£2) is still equivalent to v(sh)N
~(£2) (which justifies the correctness of dividing sh into the different sh; in the
presence of §2), it is often the case that (J; v(sh;) C v(sh), as it happens in the
above example. As a result, it is generally easier to understand the concretization
of sh and {2 by means of the concretization of each sh; and {2. Let us use this to



show how the direct-product domain [11] of Sharing and freeness can be used
to improve pair-sharing.

Ezample 8. Consider the abstraction sh = {zy,xz,yz,zyz} defined over pro-
gram variables z,y and z. If we knew that x, y, and z are free we could divide
sh into the sets shy = {zy}, she = {xz}, shs = {yz} and shy = {zyz}. Now, shy
represents stores in which z is known to be ground, which is not true according
to our freeness information. Thus, its sharing sets (zy) can be eliminated from
sh. The same reasoning applies to sho and shs. Thus, sh can be simplified to
{zyz} indicating that all variables definitely share (which of course also implies
their definite pair-sharing dependencies). Note that if the set zyz did not belong
to the abstraction, the concretization of sh in the context of freeness would be
empty (indicating a failure in the program). ¢

The above example shows how the direct-product domain of SS” and freeness
might be incorrect if the full power of set-sharing is assumed to be still present in
SS5P. This occurs whenever a redundant set is known to contain a free variable,
since it would then appear in an sh; without one or more of its subsets. Thus,
the set would no longer be redundant for sh;. A simple solution would be to
behave as if redundant sets containing free variables were present in the SS?
abstractions even if they do not appear explicitly in them. It would be easy
to think that such solution does not lose accuracy w.r.t. pair sharing. This is,
however, not true.

Ezample 9. Consider the set-sharing abstraction sh = {zy, xz,yz} defined over
Var = {x,y,z}. If we knew that y and z were free, we could divide sh into
the sets shy = {xy, zz} and shy = {yz}, respectively representing the concrete
stores in which x shares with y and z, which do not share among them, and those
in which x does not share with anyone and y shares with z. Note that these two
situations are mutually exclusive. This allow us to prove (among others) that:
indep(y, z) iff —indep(z,y) and indep(y, z) iff —indep(z, 2).

This is crucial pair-sharing information (e.g., for automatic AND-parallelization,
as we will see in the next section). If the redundant set xzyz could have been
eliminated from sh, the above expression might not hold, since the variables
might then be aliased to the same free variable, thus capturing also the case in
which all of them are definitely dependent of each other. ¢

Let us now show how combining Sharing and freeness information, as done
for example in Sharing+Freeness [25], yields interesting kinds of information
other than the sharing itself, information which is the goal of such analyses for
several applications.

Ezample 10. Consider again the set-sharing abstraction sh = {zy,zz,yz} de-
fined over Var = {x,y,z}. As mentioned above, if we knew that y and z were
free, we could divide sh into the sets shy = {zy,xz} and she = {yz}. The
concrete stores represented by these sets can in fact be described much more
accurately than we did in the previous example: While sh; represents stores in
which z is bound to a term with two (and only two) non-aliased free variables



(y and z), sho represents those stores in which z is ground, and y and z are free
aliased variables. As a result, we can be sure sh only represents stores in which
x is bound to a non-variable term. ¢

Definite information about non-variable bindings is used, for example, to
determine whether dynamic scheduled goals waiting for a program variable to
become non-variable can be woken up, as performed by [15]. However, such
information cannot be obtained if redundant sets containing free variables are
eliminated.

Ezample 11. Consider the set-sharing abstractions sh = {xy, xz,yz} above and
sh’ = shU{zyz} where y and z are known to be free, we could divide sh’ into the
sets shy = {xy, zz} and shy = {yz} and shy = {xyz}. The first two are as above,
while the third represents stores in which all x,y and z share the same variables
(with z possibly being a free variable). Thus, sh’ does not only represent stores
in which x is bound to a non-variable term. ¢

Definite knowledge about non-variable bindings is not the only kind of useful
information that can be inferred from combining Sharing and freeness. The
combination can also be used to detect new bindings added by some body literal.

Ezample 12. Counsider again the set-sharing abstraction sh = {xy, zz,yz} where
y and z are known to be free. Let us assume that sh is the abstract call for body
literal p(x,y, z) (i.e., the abstraction at the program point right before executing
the literal) and that sh’ = {zy,xz,yz, xyz} is the abstract answer for p(zx,y, 2)
(i.e., the abstraction at the program point right after executing the literal) with
y and z still known to be free. The addition of sharing set zyz means that a new
binding aliasing y and z might have been introduced by p(z,y, z). However, if
the abstract answer is found to be identical to the call sh, we can be sure that
none of the three program variables has been further instantiated (since they
are still known to be free) nor any new aliasing introduced among them. ¢

The above kind of information is used, for example, for detecting non-strict
independence [6] as we will see in the next section. As shown in the above
example, this information cannot be inferred if redundant sets might have been
eliminated (or not produced).

6 When independence among sets is relevant

This section uses the well-known application of automatic parallelization within
the independent AND-parallelism model [9] to illustrate how some applications
(a) require independence among sets (as opposed to pairs) of variables, and (b)
can benefit from combining Sharing with freeness information in ways which
would not be possible with SS?. The relevance of this application comes from the
fact that it is not only one of the best known applications of sharing information,
but also the one for which the Sharing domain was developed.

In the independent AND-parallelism model goals g; and g2 in the sequence
g1, g2 can be run in parallel in constraint store c if go is independent of gy for



store c. In this context, independence refers to the conditions that the run-time
behavior of these goals must satisfy in order to guarantee the correctness and
efficiency of their parallelization w.r.t. their sequential execution. This can be
expressed as follows: goal g5 is independent of goal g; for store c iff the execution
of g2 in ¢ has the same number of computation steps, cost, and answers as that
of go in any store ¢’ obtained from executing g; in c.

Note that the general independence condition introduced above is thus nei-
ther symmetric nor established between pairs of variables, as assumed by [1, 2].
However, this general notion of independence is indeed rarely used. Instead, suf-
ficient (and thus simpler) conditions are generally used to ensure independence.
These conditions can be divided into two main groups: a priori and a posteriori.
A priori conditions can always be checked prior to the execution of the goals
involved, while a posteriori conditions can be based on the actual behaviour of
the goals to be run in parallel.

A priori conditions are more popular even though they can be less accurate.
The reasons are twofold. First, they can only be based on the characteristics
of the store ¢ and the variables belonging to the goals to be run in parallel.
Thus, they are relatively simple. And second, they can be used as run-time
tests without actually running the goals themselves. This is useful whenever
the conditions cannot be proved correct at compile-time. Note that a priori
conditions must be symmetric: goals g; and g are independent for c iff g; is
independent of gy for ¢ and go is independent of g; for c.

The most general a priori condition, called projection independence, was de-
fined in [14] as follows: goals g1 and go are independent for ¢ if for any variable
x € vars(gr) Nvars(gz), « is uniquely defined by ¢ (i.e., ground), and the con-
straint obtained by conjoining the projection of ¢ over vars(g;) and the projec-
tion of ¢ over vars(gs) entails (i.e., logically implies) the constraint obtained by
projecting ¢ over vars(gi) U vars(gz).

Ezample 13. Consider the literals p(z), ¢(y),(z) and constraint ¢ = {x = y +
z}. The projection of ¢ over the sets of variables containing either one or two
variables from {z,y, z} is the empty constraint true. Thus, we can ensure that
every pair of literals, say p(x) and ¢(y), can run in parallel. However, no literal
can run in parallel with the goal formed by the conjunction of the other two
literals, e.g., p(x) cannot run in parallel with goal ¢(y), 7(z), since the projection
of c over {x,y, z} is c itself, which is indeed not entailed by true. ¢

Therefore, as mentioned in both [24] and [13], in general projection indepen-
dence does indeed rely on the independence of a pair of sets of variables. However,
for the Herbrand case projection independence is equivalent to the better known
a priori condition called strict independence, which was introduced in [9, 12] and
formally defined and proved correct in [16]. It states that goals g; and go are
strictly independent for substitution 6 iff vars(g;) do not share with vars(gs)
for 6, i.e., iff vars(g10) Nvars(g20) = 0. It is easy to prove that this is equivalent
to requiring that for every pair of variables zy, x € vars(g1),y € vars(gz),  and
y do not share.



Therefore, only for a priori conditions and the Herbrand domain, is paral-
lelization based on the independence of pairs of variables. And even in this case,
the Sharing domain is more powerful than SS” when combined with other kinds
of information.

Ezample 14. Consider again the abstractions sh = {zy,zz,yz, vyz} and sh’ =
{zy, zz,yz} defined over Var = {x,y, z}. Example 9 illustrated how the formula
indep(y, z) iff —indep(z,y) and indep(y, z) iff —indep(x, 2)

hold for sh’ but not for sh when y and z are known to be free.

Consider the automatic parallelization of sequential goal p(y),q(z),r(x)
for the usual case of the a priori condition strict independence and the Herbrand
domain. In the absence of any information regarding the state of the store oc-
curring right before the sequential goal is executed, the compiler could rewrite
the sequential goal into the following parallel goal (leftmost column):

( indep(y,z) -> ( indep(y,z) -> ( indep(y,z) ->
( indep(x,y) ->
( indep(x,z) ->
p(y)&q(2) &r(x)
s PN &(q(2),r(x)
)
s (p(y)&q(z)) ,r(x) (p(y)&q(z)) ,r(x) (p(y&q(z)) ,r(x)
)
; indep(x,z) -> ; ; indep(x,z) ->
p(y), (a(z2)&r(x)) p(y), (@(z2)&r(x)) p(y), (a(z2)&r(x))
; p(y),q(2),r(x) ; p(y),q(2),r(x)
) ) )

where the operator & represents parallel execution of two goals, and the run-time
test indep(x,y) succeeds if the two variables do not share at run-time. The
middle and right columns represent the simplifications that can be performed to
the parallel goal in the context of sh’ and sh, respectively. This is because while
test indep(x,y) is known to fail if indep(y,z) succeeds for both sh and sh’,
test indep(x,z) is known to succeed if indep(y,z) fails for sh’ but not for sh.
Thus, indep(x,z) still needs to be tested at run-time with the resulting loss of
efficiency. ¢

The assumption is also incorrect when considering a posteriori conditions,
even those associated to the Herbrand domain. In particular, strict independence
has been generalised to several different [16] a posteriori notions of non-strict
independence. These notions allow goals that share variables to run in parallel
as long as the bindings established for those shared variables satisfy certain
conditions. For example, one of the simpler notions only allows g; to instantiate
a shared variable and does not allow any aliasing (of different shared variables) to
be created during the execution of g; that might affect goals to the right. Thus,
for this notion, the conditions are established between the bindings introduced
by the two goals over their respective set of variables, and cannot be expressed
using only sharing between pairs of variables.



There has been at least one attempt [6] at inferring non-strict independence
at compile-time using the abstract domain Sharing+Freeness. The inference
is based on two conditions. The first ensures that (C1) no shared variables are
further instantiated by g;. This is done by requiring that (a) all shared variables
share through variables known to be free in the abstract call of g; (all sharing
sets in the abstract call containing shared variables also contain a free variable),
and (b) all these variables must remain free in the abstract answer of g; (all
such sharing sets still contain a free variable after the analysis of g;). This first
condition can be detected in the SS? domain since the existence of a free variable
in every sharing pair ensures the existence of a free variable in the “redundant”
sharing set. Thus, the absence of such sharing set is not a problem.

This is not however the case for the second condition, which ensures that no
aliasing is introduced among shared variables by requiring C1 and, additionally,
that (C2) there is no introduction in the abstract answer of any sharing set
resulting from the union of several sets such that none contain the same free
variable, and at least two contain variables belonging to both goals.

Ezample 15. Consider again the set-sharing abstraction sh = {zy, zz,yz} where
y and z are known to be free. Let us assume that sh is the abstract call for body
p(x,y, 2),q(x,y,z) and that sh’ = {zy,zz,yz, xyz} is the abstract answer for
p(x,y,z) with y and z still known to be free. All sharing sets in sh containing
variables from both literals contain a free variable which remains free in sh’.
Thus, C1 is satisfied. However, there exists a set xyz in sh’ which can be obtained
by unioning at least two sets xzy and xz in sh which contain variables from
both literals and have no variable in common known to be free in sh. The
appearance of such a set represents the possible aliasing of y and z by p(z, v, 2).
This appearance violates C2 and thus the goals cannot run in parallel. Note
that if the abstract answer was found to be identical to sh (i.e., if the redundant
set xyz was absent), we would have been able to ensure that none of the three
program variables had been further instantiated nor any new aliasing introduced
among them. Therefore, we could have ensured that gs is independent of g¢;
for the stores represented by sh and the associated freeness information, thus
allowing their parallel execution. ¢

The above example illustrates the fact that an equivalent inference cannot be
performed in the S'S” domain augmented with freeness unless care is taken when
considering redundant sharing sets which include program variables known to be
free. This is because the inference strongly depends on distinguishing between
the different bindings introduced during execution of the goals to be run in par-
allel, and as a result, on distinguishing between the different shared variables
represented by the abstractions in the domain. Thus, elimination of redundant
sets can render the method incorrect. One possible solution is to always assume
that redundant sets containing free variables are present when combining S.S*
with freeness information. However, as shown in Example 9, this might be im-
precise. Another, more accurate solution, is to only eliminate redundant sets
which do not contain variables known to be free.



7 Conclusion

We have shown that the power of set-sharing does not come from representing
sets of variables that share, but from representing different variable occurrences.
As a result, eliminating from Sharing information which is considered “redun-
dant” w.r.t. the pair-sharing property as performed in S5 can have unexpected
consequences. In particular, when Sharing is combined with some other kinds of
information capable of distinguishing among variable occurrences in a way that
can make a redundant set no longer redundant, it can yield results not obtainable
with SS?, including better pair-sharing. Furthermore, there exist applications
which use Sharing analysis (combined with freeness) to infer properties other
than sharing between pairs of variables and which cannot be inferred if SS” is
used instead. We have proposed some possible solutions to this problem.
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