Skip to main content

Complete Axiomatization of an Algebraic Construction of Graphs

  • Conference paper
Book cover Functional and Logic Programming (FLOPS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2998))

Included in the following conference series:

  • 327 Accesses

Abstract

This paper presents a complete (infinite) axiomatization for an algebraic construction of graphs, in which a finite fragment denotes the class of graphs with bounded tree width.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariola, Z.M., Arvind: Properties of a first-order functional language with sharing. Theoretical Computer Science 146(1-2), 69–108 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnborg, S., Courcelle, B., Proskurowski, A., Seese, D.: An algebraic theory of graph reduction. Journal of the Association for Computing Machinery 40(5), 1134–1164 (1993)

    MATH  MathSciNet  Google Scholar 

  3. Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Mathematical System Theory 20, 83–127 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of lineartime algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 555–581 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, ch. 5, pp. 194–242. Elsevier Science Publishers, Amsterdam (1990)

    Google Scholar 

  6. Căzănescu, V.-E., Stefănescu, G.: A general result on abstract flowchart schemes with applications to study of accessibility, reduction and minimization. Theoretical Computer Science 99, 1–63 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Erwig, M.: Functional programming with graphs. In: Proc. 1997 ACM SIGPLAN International Conference on Functional Programming, ICFP 1997, SIGPLAN Notices, vol. 32(8), pp. 52–65. ACM Press, New York (1997)

    Chapter  Google Scholar 

  8. Fegaras, L., Sheard, T.: Revisiting catamorphisms over datatypes with embedded functions (or, programs from outer space). In: Proc. 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1996, pp. 284–294. ACM Press, New York (1996)

    Chapter  Google Scholar 

  9. Gibbons, J.: An initial-algebra approach to directed acyclic graphs. In: Möller, B. (ed.) MPC 1995. LNCS, vol. 947, pp. 282–303. Springer, Heidelberg (1995)

    Google Scholar 

  10. Gustedt, J., Mæhle, O.A., Telle, A.: The treewidth of Java programs. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 86–97. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Hasegawa, M.: Models of sharing graphs, PhD thesis, University of Edinburgh (1997)

    Google Scholar 

  12. Plasmeijer, M.J., Sleep, M.R., van Eekelen, M.C.J.D. (eds.): Term Graph Rewriting, Theory and Practice. Wiley, Chichester (1994)

    Google Scholar 

  13. Ogawa, M., Hu, Z., Sasano, I.: Iterative-free program analysis. In: Proc. 8th ACM SIGPLAN International Conference on Functional Programming, ICFP 2003, Uppsala, Sweden, pp. 111–123. ACM Press, New York (2003)

    Chapter  Google Scholar 

  14. Robertson, N., Seymour, P.D.: Graph minors II. algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sasano, I., Hu, Z., Takeichi, M., Ogawa, M.: Make it practical: A generic linear-time algorithms for solving maximum-weightsum problems. In: Proc. 5th ACM SIGPLAN International Conference on Functional Programming, ICFP 2000, Montreal, Canada, pp. 137–149. ACM Press, New York (2000)

    Chapter  Google Scholar 

  16. Thomas, R.: A Menger-like property of tree-width: The finite case. Journal of Combinatorial Theory, Series B 48, 67–76 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Thorup, M.: All structured programs have small tree width and good register allocation. Information and Computation 142, 159–181 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Weyl, H.: Classical groups. Princeton University Press, Princeton (1939)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ogawa, M. (2004). Complete Axiomatization of an Algebraic Construction of Graphs. In: Kameyama, Y., Stuckey, P.J. (eds) Functional and Logic Programming. FLOPS 2004. Lecture Notes in Computer Science, vol 2998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24754-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24754-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21402-1

  • Online ISBN: 978-3-540-24754-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics