
Formally Justifying User-Centred Design Rules:

a Case Study on Post-completion Errors

Paul Curzon1 and Ann Blandford2

1Middlesex University, Interaction Design Centre, Bramley Road, London N14 4YZ
2University College London Interaction Centre, Remax House, 31-32 Alfred Place,

London WC1E 7DP
p.curzon@mdx.ac.uk, a.blandford@ucl.ac.uk

Abstract. Interactive systems combine a human operator with a com-
puter. Either may be a source of error. The veri�cation processes used
must ensure both the correctness of the computer component, and also
minimize the risk of human error. Human-centred design aims to do this
by designing systems in a way that make allowance for human frailty.
One approach to such design is to adhere to design rules. Design rules,
however, are often ad hoc. We examine how a formal cognitive model,
encapsulating results from the cognitive sciences, can be used to justify
such design rules in a way that integrates their use with existing formal
hardware veri�cation techniques. We consider here the veri�cation of a
design rule intended to prevent a commonly occurring class of human
error know as the post-completion error.

Keywords

Cognitive architecture, user error, design rules, formal veri�cation.

1 Introduction

Interactive computer systems are systems that combine a human operator with
a computer system. Such a system needs to be both correct and usable. With the
increasing ubiquity of interactive computer systems, usability becomes increas-
ingly important. Minor usability problems can scale to having major economic
and social consequences. Usability has many aspects. We concentrate on one
aspect: user error. Humans are naturally prone to error. Such error is not pre-
dictable in the way the behaviour of a faulty computer may be. However, much
human error is systematic and as such can be modelled and reasoned about.

Design approaches to prevent usability problems often tend to be ad hoc: fol-
lowing lists of design rules, sometimes apparently contradictory, that are based
on the experience of HCI experts. Furthermore the considerations of usability
experts are often far removed from those of hardware veri�cation approaches,
where the emphasis is on correctness of the system against a functional speci�ca-
tion. In this paper we consider how the two worlds of formal hardware veri�cation



and human-centred usability veri�cation can be integrated. We propose a way in
which usability design rules can be both formalised and derived from formalised
principles of cognition within the same framework as hardware veri�cation. We
illustrate the approach by considering one well-studied and widely occurring
class of systematic human error: the post-completion error. A post-completion
error occurs when a user achieves their main goal but omits `clean up' actions;
examples include making copies on a photocopier but forgetting to retrieve the
original and forgetting to take change from a vending machine.

We �rst de�ne simple principles of cognition. These are principles that
generalise the way humans act in terms of the mental attributes of knowledge,
tasks and goals. The principles are not intended to be exhaustive, but to cover
a variety of classes of cognitive behaviour of interest, based on the motor sys-
tem, simple knowledge-based cognition, goal-based cognition, etc. They do not
describe a particular individual, but generalise across people as a class. They
are each backed up by evidence from HCI and/or psychology studies. Those pre-
sented are not intended to be complete but to demonstrate the approach. We
have developed a generic formal cognitive model of these principles in higher-
order logic. By \generic" we mean that it can be targeted to di�erent tasks and
interactive systems. Strictly this makes it a cognitive architecture [16]. In the re-
mainder of the paper we will refer to the generic model as a cognitive architecture

and use the term cognitive model for a version of it instantiated for a given task
and system. The underlying principles of cognition are formalised once in the
architecture, rather than having to be re-formalised for each new task or system
of interest. Whilst higher-order logic is not essential for this, its use makes the
formal speci�cations simpler than the use of a �rst-order logic would.

The principles, and more formally the cognitive architecture, specify cogni-
tively plausible behaviour (see [7]). That is, they specify possible traces of
user actions that can be justi�ed in terms of the speci�c principles. Of course
users might also act outside this behaviour, about which situations the model
says nothing. Its predictive power is bounded by the situations where people act
according to the principles speci�ed. All theorems in this paper are thus bounded
by that assumption. That does not preclude useful results from being obtained,
provided their scope is remembered. The architecture allows us to investigate
what happens if a person does act in such plausible ways. The behaviour de-
�ned is neither \correct" nor \incorrect". It could be either depending on the
environment and task in question. It is, rather, \likely" behaviour. We do not
model erroneous behaviour explicitly. It emerges from the description of cogni-
tively plausible behaviour. The focus of the description is on the internal goals
and knowledge of a user. This contrasts with a description of a user's actions as,
say, a �nite state machine that makes no mention of such cognitive attributes.

After describing the architecture, we next formalise a particular class of sys-
tematic user error, that is made in a wide range of situations, in terms of the
cognitive architecture. We also formalise a simple and well known usability de-
sign rule that, if followed, eliminates this class of error. We prove a theorem that
states that if the design rule is followed, then the erroneous behaviour cannot



occur due to the speci�ed cause as a result of a person behaving according to the
principles of cognition formalised.

The design rule is initially formalised in user-centred terms. To enable the in-
tegration with machine-centred veri�cation, we next reformulate it in a machine-
centred way, ultimately proving that a machine-centred version of the design rule
implies the absence of the class of error considered. Even though the cognitive
architecture is capable of making the error, the design rule ensures that the
user environments (as provided by the computer part of the system) in which it
would emerge do not occur. Other errors are, of course, still possible. The main
contribution of this paper is to demonstrate a way that formal reasoning about
design rules can be achieved based on a cognitive architecture but within the
same framework as veri�cation of other aspects.

We have used the HOL interactive proof system [15] so theorems are machine-
checked. Given the relative simplicity of the theorems this is not essential in that
hand proofs alone would have been possible. Machine-checked proof does give
an extra level of assurance over that of the informal proofs upon which they
are based. Furthermore our work sets out a framework in which these theorems
can be combined with complex machine-checked hardware veri�cation. Machine-
checking of the design rule proofs maintains a consistent treatment. Finally, this
work aims to demonstrate a general approach. For more complex design rules,
the proofs may be harder so machine-checking may be more directly useful.

2 Related Work

There are several approaches to formal reasoning about the usability of inter-
active systems. One approach is to focus on a formal speci�cation of the user
interface [9]. Most commonly it is used with model-checking-based veri�cation;
investigations include whether a given event can occur or whether properties
hold of all states. In contrast, Bumbulis et al [5] veri�ed properties of interfaces
based on a guarded command language embedded in the HOL system. Back et

al [1] illustrate how properties can be proved and data re�nement performed of
a speci�cation of an interactive system. However, techniques that focus on the
interface do not directly support reasoning about design problems that lead to
users making systematic errors; also, the usability properties checked are neces-
sarily device-speci�c and have to be reformulated for each system veri�ed.

An alternative is formal user modelling of the underlying system. It involves
writing both a formal speci�cation of the computer system and one of the user,
to support reasoning about their conjoint behaviour. Both system and user are
considered as central components of the system and modelled as part of the
analysis. Doing so provides a conceptually clean method of bringing usability
concerns into the domain of traditional veri�cation in a consistent way. Duke et

al [13] express constraints on the channels and resources within an interactive
system; this approach is particularly well suited to reasoning about interaction
that, for example, combines the use of speech and gesture. Moher and Dirda [21]
use Petri net modelling to reason about users' mental models and their changing



expectations over the course of an interaction; this approach supports reasoning
about learning to use a new computer system but focuses on changes in user belief
states rather than proof of desirable properties. Paterno' and Mezzanotte [22]
use LOTOS and ACTL to specify intended user behaviours and hence reason
about interactive behaviour.

Our work complements these uses of formal user modelling. None of the above
focus on reasoning about user errors. Models typically describe how users are
intended to behave: they do not address human fallibility. If veri�cation is to
detect user errors, a formal speci�cation of the user, unlike one of a computer
system, is not a speci�cation of the way a user should be; rather, it is a description
of the way they are [7]. Butterworth et al [6] do take this into account, using
TLA to reason about reachability conditions within an interaction. Rushby [25]
formalised plausible mental models of systems, looking for discrepancies between
these and actual system behaviour. However, like interface-oriented approaches,
each model is individually hand-crafted for each new device in this work.

An approach to interactive system veri�cation that focuses directly on errors
is exempli�ed by Fields [14]. He models erroneous actions explicitly, analysing
the consequences of each possible action. He thus models the e�ect of errors
rather than their underlying causes. A problem of this approach is the lack of
discrimination about which errors are the most important to consider. It does
not discriminate random errors from systematic errors which are likely to re-
occur and so be most problematic. It also implicitly assumes there is a \correct"
plan, from which deviations are errors.

The University of Queensland's safeHCI project [20] has similar aims and
approach to our overall project, combining the areas of cognitive psychology,
human-computer interaction and system safety engineering. The details di�er,
however. SafeHCI has had a focus on hazard analysis and system-speci�c mod-
elling, whereas our work has an emphasis on generic cognitive models.

Approaches that are based on a cognitive architecture (e.g. [19][17][23]) model
underlying cognitive causes of errors. However, the modelling exempli�ed by
these approaches is too detailed to be amenable to formal proof. Our previous
work [11] followed this approach but at a coarser level of detail, making formal
proof tractable. In this approach general mechanisms of cognition are modelled
and so need be speci�ed only once, independent of any given interactive system.
Furthermore, by explicitly doing the veri�cation at the level of underlying cause,
on failed veri�cation, a much greater understanding of the problem is obtained.
Rather than just knowing the manifestation of the error { the actions that lead to
the problem { the failed proof provides understanding of the underlying causes.

Blandford et al [4] have used a formal model of user behaviour to derive high
level guidance. There the emphasis is on a semi-formal basis underpinning the
craft skill in spotting when a design has usability problems. We are concerned
here with guidance for a designer rather than for a usability analyst. We focus
on the veri�cation of general purpose design rules rather than the interactive
systems themselves.



USER 
ag actions commitments commgoals init commgoals stimulus actions
possessions �nished �nishedpos goalachieved invariant
(ustate:'u) (mstate:'m) =

(USER CHOICE 
ag actions commitments commgoals stimulus actions
�nished �nishedpos goalachieved invariant ustate mstate) ^

(USER UNIVERSAL actions commgoals possessions �nished 
ag ustate mstate)

USER CHOICE 
ag actions commitments commgoals stimulus actions
�nished �nishedpos goalachieved invariant ustate mstate =

(8t.
:(
ag t) _
(IF (�nished ustate (t-1))
THEN (NEXT 
ag actions �nishedpos t)
ELSE IF ((CommitmentMade (CommitmentGuards commitments) t)
THEN (COMMITS 
ag actions commitments t)
ELSE IF TASK DONE (goalachieved ustate) (invariant ustate) t
THEN (NEXT 
ag actions �nishedpos t)
ELSE USER RULES 
ag actions commgoals stimulus actions �nishedpos

goalachieved mstate ustate t))))

USER RULES 
ag actions commgoals stimulus actions �nishedpos goalachieved
(mstate:'m) (ustate:'u) t =

COMPLETION 
ag actions �nishedpos goalachieved ustate t _
REACTS 
ag actions stimulus actions t _
COMMGOALER 
ag actions commgoals goalachieved ustate mstate t _
ABORTION 
ag actions �nishedpos goalachieved commgoals stimulus actions

ustate mstate t

Fig. 1. The USER relation

Providing precision to ensure di�erent people have the same understanding
of a concept has been suggested as the major bene�t of formal models in inter-
action design [3]. One approach would therefore be to just formalise the design
rules (see [3], [24]). In our approach, we not only formalise design rules, we also
prove theorems justifying them based on underlying principles about cognition
embodied in a formal cognitive architecture. In this way the design rules are
formally demonstrated to be correct, up to the assumptions of the principles of
cognition. This gives extra assurance to those applying the design rules. This
approach builds on our previous work where informal argument only was used
to justify the e�ectiveness of design rules [12]. We show here how this can be
formalised in the same framework as other forms of veri�cation.

3 Formalising Cognitively Plausible Behaviour

We �rst describe our cognitive architecture. It is speci�ed by a higher-order
logic relation USER, the top levels of which are given in Figure 1. It takes as



arguments information such as the user's goal, goalachieved, a tuple of actions
that the user may take, actions, etc. The �nal two arguments, ustate and
mstate, each of polymorphic type as speci�ed by the type variables 'u and 'm,
represent the user state and the machine state over time. The speci�c type is
only given when the architecture is instantiated for a given interaction. These
states record over time the series of mental and physical actions made by the
user, together with a record of the user's possessions. They are instantiated to a
tuple of history functions: functions of type time ! bool, from time instances
to a boolean indicating whether that signal is true at that time (i.e. the action is
taken, the goal is achieved, etc). The other arguments to USER specify accessor
functions to one of these states. For example, finished is of type 'u ! time

! bool. Given the user state it returns a history function that for each time
instance indicates whether the user model has terminated the interaction. The
other arguments of the model will be examined in more detail as needed in the
explanation of the model below.

The USER relation is split into two parts. The �rst, USER CHOICE, models
the user making a choice of actions. It formalises the action of the user at a
given time as a series of rules, one of which is followed at each time instance.
USER UNIVERSAL speci�es properties that are true at all time instances, whatever
the user does. For example, it speci�es properties of possessions such that if an
item is not given up then the user still has it. We focus here on the choice part
of the model as it is most relevant to the concerns of this paper. USER CHOICE is
therefore described in detail below. In outline, it states that the next user action
taken is determined as follows:

if the interaction is �nished
then it should remain �nished
else if a physical action was previously decided on
then the physical action should be taken
else if the whole task is completed
then the interaction should �nish
else an appropriate action should be chosen non-deterministically

The cognitive architecture is ultimately, in the �nal else case above, based
on a series of non-deterministic temporally guarded action rules, formalised in
relation USER RULES. Each describes an action that a user could plausibly make.
The rules are grouped (e.g. in de�nition REACTS in Figure 1) corresponding to a
user performing actions for speci�c cognitively related reasons. Each such group
then has a single generic description. Each rule combines a pre-condition such
as a particular message being displayed, with an action, such as a decision made
to press a given button at some later time.

rule 1 �res asserting its action is taken _
rule 2 �res asserting its action is taken _
...
rule n �res asserting its action is taken



Apart from those included in the if-then-else staircase of USER CHOICE, no
further priority ordering between rules is modelled. We are interested in whether
an action is cognitively plausible at all (so could be systematically taken), not
whether one is more likely than another. We are concerned with design rules that
prevent any systematic erroneous action being taken even if in a situation some
other action is more likely anyway. The architecture is a relation. It does not
assert that a rule will be followed, just that it may be followed. It asserts that
the behaviour of any rule whose guards are true at a point in time is cognitively
plausible at that time. It cannot be deduced that any speci�c rule will be the
one that the person will follow if several are cognitively plausible.

The architecture is based on a temporal primitive, NEXT that speci�es the
next user action taken after a given time. NEXT flag actions action t states
that the NEXT action performed after time t from a list of all possible user actions,
actions, is action. It asserts that the given action's history function is true at
some �rst point in the future, and that the history function of all other actions
is false up to that point. The action argument is of type integer and speci�es the
position of the action history function in the list actions. The flag argument to
NEXT and USER is a speci�cation artifact used to ensure that the time periods that
each �ring rule speci�es do not overlap. It is true at times when a new decision
must be made by the model. The �rst line of USER CHOICE in Figure 1 thus
ensures, based on the truth of the 
ag, that we do not re-specify contradictory
behaviour in future time instances to that already speci�ed. Consider the �rst
if-then-else statement of USER CHOICE in Figure 1 as an example of the use of
NEXT. The action argument of NEXT is instantiated to finishedpos. It states
that if the interaction was �nished then the next action remains �nished: once
the interaction has terminated the user takes no other action.

We model both physical and mental actions. A person decides (making
a mental action) to take a physical action before it is actually taken. Once a
signal has been sent from the brain to the motor system to take the physical
action, the signal cannot be revoked even if the person becomes aware that it
is wrong before the action is taken. Each physical action modelled is thus asso-
ciated with an internal mental action that commits to taking it. The argument
commitments to the relation USER is a list of pairs that links the mental and
physical actions. CommitmentGuards extracts a list of all the mental actions (the
�rst elements of the pairs). The recursively de�ned, CommitmentMade checks, for
a given time instance, t, if any mental action was taken in the previous time
instance (cmt(t-1)):

(CommitmentMade [] t = FALSE) ^
(CommitmentMade (cmt :: rest) t = (cmt(t-1)) _ (CommitmentMade rest t))

If a mental action, mact, made a commitment to a physical action pact on
the previous cycle (time, t-1) then that will be the next action taken. De�nition
COMMITS asserts this disjunctively for the whole list of commitments:

COMMIT 
ag actions mact pact t = (mact (t-1)) ^ NEXT 
ag actions pact t



(COMMITS 
ag actions [] t = FALSE) ^
(COMMITS 
ag actions (l :: commits actions) t =
((COMMITS 
ag actions commits actions t) _
(COMMIT 
ag actions (CommitmentGuard l) (CommitmentAction l) t)))

Based on these de�nitions the second if statement of USER CHOICE in Figure 1
states that if a mental action is taken on a cycle then the next action will be the
externally visible action it committed to. The physical action already committed
to by a mental action is thus given high priority as modelled by being in the
if-then-else staircase.

Task-based termination behaviour: In the third if statement of de�ni-
tion USER CHOICE it speci�es that a user will terminate an interaction when
their whole task is achieved. The user has a goal and the task is not com-
pleted until that goal is achieved. We must therefore supply a relation argument
goalachieved to the cognitive architecture that indicates over time whether
the goal is achieved or not. With a vending machine, for example, this may cor-
respond to the person's possessions including chocolate. Similar to finished,
goalachieved extracts from the state a history function that, given a time,
returns a boolean value indicating whether the goal is achieved at that time.
Note that goalachieved is a higher-order function and can as such represent
an arbitrarily complex condition. It might, for example, be that the user has a
particular object as above, that the count of some series of objects is greater
than some number or a combination of such atomic conditions.

In achieving a goal, subsidiary tasks are often generated. For the user to
complete the task associated with their goal they must also complete all sub-
sidiary tasks. The underlying reason for these tasks being performed is that in
interacting with the system some part of the state must be temporarily per-
turbed in order to achieve the desired task. Before the interaction is completed
such perturbations must be undone. Examples of such tasks with respect to a
vending machine include taking change. One way to specify these tasks would
be to explicitly describe each such task. Instead we use the more general concept
of an interaction invariant [11]: a higher-order argument to the cognitive archi-
tecture. The interaction invariant is an invariant at the level of abstraction of
whole interactions in a similar sense to a loop invariant in program veri�cation.
For example, the invariant for a simple vending machine might be true when the
total value of the user's possessions (coins and chocolate) have been restored to
their original value, the user having exchanged coins for chocolate of the same
value. Task completion involves not only completing the user's goal, but also
restoring the invariant.

TASK DONE goalachieved invariant t = (goalachieved t ^ invariant t)

We assume that on completing the task in this sense, the interaction will
be considered terminated by the user unless there are physical actions already
committed to. It is therefore modelled in the if-then-else staircase of USER CHOICE

to give it priority over other rules apart from committed actions.



We next examine the non-deterministic rules in the �nal else case of de�nition
USER CHOICE that form the core of the model and are de�ned in USER RULES.

COMPLETION: Cognitive psychology studies have shown that users in-
termittently, but persistently, terminate interactions as soon as their goal has
been achieved [8]. This behaviour is formalised as a guarded rule. If the goal is
achieved at a time then the next action of the cognitive architecture can be to
terminate the interaction:

COMPLETION 
ag actions �nished goalachieved (ustate:'u) t =
(goalachieved ustate t) ^ NEXT 
ag actions �nished t

REACTS: A user may react to a stimulus from a device, doing the action
suggested by it. For example, if a 
ashing light comes on next to the coin slot of
a vending machine, a user might, if the light is noticed, react by inserting coins.
In a given interaction there may be many di�erent stimuli to react to. Rather
than specify this behaviour for each, we de�ne it generically. Relation REACT

gives the rule de�ning what it means to react to a given stimulus. If at time t,
the stimulus stim is active, the next action taken by the user out of possible
actions, actions, at an unspeci�ed later time, may be the associated action.

REACT 
ag actions stim action t = stim t ^ NEXT 
ag actions action t

As there may be many reactive signals, the user model is supplied with a list
of stimulus-action pairs: [(s1, a1); . . . (sn, an)]. REACTS, given a list of such pairs,
recursively extracts the components and asserts the above rule about them. The
clauses are combined using disjunction, so are non-deterministic choices, and this
de�nition is combined with other non-deterministic rules. Grd and Act extract
a pair's components.

(REACTS 
ag actions [] t = FALSE) ^
(REACTS 
ag actions (s :: st) t =

((REACTS 
ag actions st t) _ (REACT 
ag actions (Grd s) (Act s) t)))

COMMGOALER: A user often enters an interaction with knowledge of
the task, if not the device used to achieve it. They may, as a result, start with
sub-goals that they know must be discharged to achieve their main goal. This
kind of preconceived sub-goal is known as a communication goal [2]. For example,
when the user has the goal of purchasing a ticket, they are likely to know that in
some way the destination and ticket type must be speci�ed as well as payment
made. Communication goals are distinct from device dependent sub-goals that
result from the person reacting to stimulus from the device or \tidying" sub-
goals that restore a perturbation made to the device from the initial state. The
precise nature of the action associated with a communication goal may not be
known in advance. A communication goal speci�cation is not a fully speci�ed
plan, in that no order of the corresponding actions may be speci�ed. The way
that these must be done and their order may not be known in advance. If the
person sees an apparent opportunity to discharge a communication goal they



may do so. Once they have done so they will not expect to need to do so again.
No �xed order is assumed over how communication goals will be discharged if
their discharge is apparently possible. Communication goals are a reason why
people do not just follow instructions.

We model communication goals as guard-action pairs as for reactive signals.
The guard describes the situation under which the discharge of the commu-
nication goal appears possible, such as when a virtual button actually is on
the screen. As for reactive behaviour, the architecture is supplied with a list of
(guard, action) pairs one for each communication goal. Unlike the reactive sig-
nal list that does not change through an interaction, communication goals are
discharged. This corresponds to them disappearing from the user's mental list
of intentions. We model this by removing them from the communication goal
list when done. We do not go into detail of the formalisation of communication
goals here as it is not directly relevant. The interested reader should see [11].

ABORTION: A user may terminate an interaction when there is no ap-
parent action they can take that would help complete the task. For example, if
on a touch screen ticket machine, the user wishes to buy a weekly season ticket,
but the options presented include nothing about season tickets, then the person
might give up, assuming their goal is not achievable. The model includes a �nal
default non-deterministic rule, ABORTION, that models this case by just forming
the negation of the guards of all other rules.

The features of the cognitive architecture discussed above concern aspects
of cognition. An extension of the architecture for this paper over that of our
previous work [11] as given in Figure 1 involves the addition of probes. Probes
are extra signals that do not alter the cognitive behaviour of the architecture,
but instead make internal aspects of its action visible. This allows speci�cations
to be written in terms of hidden internal cognitive behaviour, rather than just
externally visible behaviour. This is important for this work as our aim is to
formally reason about whether design rules address underlying cognitive causes
of errors not just their physical manifestation. The form of probe we consider
here records for each time instance whether a particular rule �res at that in-
stance. We require a single probe that �res when the goal-based termination
rule described above �res. We formalise this using a function, Goalcompletion
that extracts the goal completion probe from the collection of probes passed as
an additional argument to the cognitive architecture. To make the probe record
goal completion rule events, we add a clause specifying the probe is true to the
rule concerning goal completion, COMPLETION given above:

(Goalcompletion probes t) ^ goalachieved t ^ NEXT 
ag actions �nished t

Each other rule in the architecture has a clause added asserting the probe is
false at the time it �res. For example the REACT rule becomes:

(Goalcompletion probes t = FALSE) ^ stim t ^ NEXT 
ag actions action t

A similar clause is also added to the part of the architecture that describes the
behaviour when no rule is �ring.



4 Verifying a User Error Design Rule

Erroneous actions are the immediate, obvious cause of failure attributed to hu-
man error, as it was a particular action (or inaction) that caused the problem:
users pressing a button at the wrong time, for example. However, to understand
the problem, and so minimize re-occurrence, approaches that consider the im-
mediate causes alone are insu�cient. It is important to consider why the person
took that action. The ultimate causes can have many sources. Here we consider
situations where the ultimate causes of an error are that limitations of human
cognition have not been addressed in the design. An example might be that
the person pressed the button at that moment because their knowledge of the
task suggested it would be sensible. Hollnagel [18] distinguishes between human
error phenotypes (classes of erroneous actions) and genotypes (the underlying
psychological cause). He identi�es a range of simple phenotypes such as repe-
tition of an action, omission of actions, etc. In this paper, to demonstrate the
feasibility of formally reasoning about design rules based on cognitively plausible
behaviour, we consider one particular error genotype: the class of errors known
as post-completion errors introduced in Section 1. A similar e�ect (i.e. pheno-
type) to a post completion error can occur for other reasons. However that would
be considered a di�erent class of error (genotype). Other design rules might be
required to prevent it.

4.1 Formalising Post-completion Error Occurrence

In our cognitive architecture post completion error behaviour is modelled by the
goal termination rule �ring. Probe signal Goalcompletion records whether that
particular rule has �red at any given time. Note that the rule can �re when the
goal is achieved but does not have to. Note also that it �ring is necessary but not
su�cient for the cognitive architecture to make a post-completion error. In some
situations it is perfectly correct for the rule to �re. In particular if the interaction
invariant has been re-established at the point when it �res then an error has not
occurred. Thus whilst the error occurring is a direct consequence of the existence
of this rule in the model, the rule is not directly modelling erroneous actions,
just cognitively plausible behaviour that leads to an erroneous action in some
situations.

De�nition PCE OCCURS speci�es that a post-completion error occurs if there
is a time, t, before the end time of the interaction te, such that the probe
Goalcompletion is true at that time but invariant has not been re-established.

PCE OCCURS probes invariant te =
(9t. t � te ^ Goalcompletion probes t ^ :(invariant t))

This takes two higher order arguments, representing the collection of probes
indicating which rules �re and the relation indicating when the interaction in-
variant is established. A �nal argument indicates the end time of interest. It
bounds the interaction under consideration corresponding to the point when the



user has left and the machine has reset. The start time of the interaction is
assumed to be time zero.

4.2 Formalising a Design Rule

We next formalise a well-known user-centred design rule intended to prevent a
user having the opportunity to make a post-completion error. It is based on the
observation that the error occurs because it is possible for the goal to be achieved
before the task as a whole has been completed. If the design is altered so that
all user actions have been completed before the goal then a post-completion
error will not be possible. In particular any tidying up actions associated with
restoring the interaction invariant must be either done by the user before the
goal can possibly be achieved, or done automatically by the system. This is the
design approach taken for British cash machines where, unlike in the original
versions, cards are always returned before cash is dispensed. This prevents the
post-completion error where the person takes the cash (achieving their goal) but
departs without the card (a tidying task).

The formal version of the design rule states that for all times less than the
end time, te, it is not the case that both the goal is achieved at that time and
the task is not done. Here, goalachieved and invariant are the same as in the
cognitive architecture.

PCE DR goalachieved invariant te =
(8t. t � te � :(goalachieved t ^ :(TASK DONE goalachieved invariant t)))

Thus when following this design approach, the designer must ensure that at all
times prior to the end of the interaction it is not the case that the goal is achieved
when the task as a whole is incomplete. The design rule was formulated in this
way to match a natural way to think about it informally according to the above
observation.

4.3 Justifying the Design Rule

We now prove a theorem that justi�es the correctness of this design rule (up
to assumptions in the cognitive architecture). If the design rule works, at least
for users obeying the principles of cognition, then the cognitive architecture's
behaviour when interacting with a machine satisfying the design rule should
never lead to a post-completion error occurring. We have proved using HOL the
following theorem stating this:

` USER . . . goalachieved invariant probes ustate mstate ^
PCE DR (goalachieved ustate) (invariant ustate) te �

:(PCE OCCURS probes (invariant ustate) te)

We have simpli�ed, for the purposes of presentation the list of arguments to
the relation USER which is the speci�cation of the cognitive architecture, omit-
ting those arguments that are not directly relevant to the discussion. One way



to interpret this theorem is as a traditional correctness speci�cation against
a requirement. The requirement (conclusion of the theorem) is that a post-
completion error does not occur. The conjunction of the user and design rule
is a system implementation. The system is implemented by placing an operator
(as speci�ed by the cognitive architecture USER) with the machine (as minimally
speci�ed by the design rule). The de�nitions and theorem proved are generic.
They do not specify any particular interaction or even task. A general, task
independent design rule has thus been veri�ed.

The proof of the above theorem is simple. It involves case splits on the goal
being achieved and the invariant being established. The only case that does not
follow immediately is when the goal is not achieved and the invariant does not
hold. However, this is inconsistent with the goal completion rule having �red so
still follows fairly easily.

4.4 Machine-Centred Rules

The above design rule is in terms of user concerns { an invariant of the form
suitable for the cognitive model and a user-centred goal. Machine designers are
not directly concerned with the user and this design rule is not in a form that is
directly of use. The designer cannot manipulate the user directly, only machine
events. Thus whilst the above rule and theorem are in a form of convenience to
a usability specialist, they are less convenient to a machine designer. We need a
more machine-centred design rule as below.

MACHINE PCE DR goalevent minvariant te =
(8t. goalevent t � (8t1. t � t1 ^ t1 � te � minvariant t1))

This design rule is similar to the user-centred version, but di�ers in several
key ways. Firstly, the arguments no longer represent user based relations. The
goalevent signal represents a machine event. Furthermore this is potentially
an instantaneous event, rather than a predicate that holds from that point on.
Similarly, the machine invariant concerns machine events rather than user events.
Thus, for example with a vending machine, the goal as speci�ed in a user-centred
way is that the user has chocolate. Once this �rst becomes true it will continue to
hold until the end of the interaction, since for the purposes of analysis we assume
that the user does not give up the chocolate again until after the interaction is
over. The machine event however, is that the machine �res a signal that releases
chocolate. This is a relation on the machine state rather than on the user state:
GiveChoc mstate. It is also an event that occurs at a single time instance (up to
the granularity of the time abstraction modelled). The machine invariant is also
similar to the user one but specifying that the value of the machine's possessions
are the same as at the start of the interaction { it having exchanged chocolate
for an equal amount of money. It is also a relation on the machine's state rather
than on the user's state.

The rami�cation of the goal now being an instantaneous event is that we
need to assert more than that the invariant holds whenever the goal achieved



Cognitive

PCE

Combined Design Rule Correctness Theorem

Assumptions

Linking

Architecture

User-centric

Design Rule

Machine
centric

PCE

Design Rule

Post-completion

Free from

Errors

Fig. 2. Verifying the Design Rule in Stages

event holds. The invariant must hold from that point up to the end of the
interaction. That is the reason a new universally quanti�ed variable t1 appears
in the de�nition, constrained between the time the goal event occurs and the
end of the interaction.

We prove that this new design rule implies the original, provided assumptions
are met about the relationship between the two forms of goal statements and
invariants. It is these assumptions that form the basis of the integration between
the user and machine-centred worlds.

` (8t. minvariant t � invariant t) ^
(8t. (goalachieved t) � 9t2. t2 � t ^ (goalevent t2)) �

MACHINE PCE DR goalevent minvariant te �
PCE DR goalachieved invariant te

This asserts that the machine based design rule MACHINE PCE DR does indeed im-
ply the user-centred one PCE DR, under two assumptions. The �rst assumption is
that at all times the machine invariant being true implies that the user invariant
is true at that time. The second assumption asserts a connection between the
two forms of goal statement. If the user has achieved their goal at some time t
then there must have existed an earlier time t2 at which the machine goal event
occurred. The user cannot achieve the goal without the machine enabling it.

4.5 Combining the Theorems

At this point we have proved two theorems. Firstly we have proved that a
machine-centred statement of a design rule implies a user-centred one, and sec-
ondly that the user-centred design rule implies that post-completion errors are
not made by the cognitive architecture. These two theorems can be combined
giving us a theorem that justi�es the correctness of the machine-centred design
rule with respect to the occurrence of post-completion errors as illustrated in
Figure 2. The theorem proved in HOL is:



` (8t. minvariant t � invariant ustate t) ^
(8t. (goalachieved t) � 9t2. t2 � t ^ (goalevent t2)) �

MACHINE PCE DR goalevent minvariant te ^
USER . . . goalachieved invariant probes ustate mstate �

:(PCE OCCURS probes (invariant ustate) te)

This is a generic correctness theorem that is independent of the task or any
particular machine. It states that under the assumptions that link the machine
invariant to the user interaction invariant and the user goal to the machine goal
action, the machine speci�c design rule is \correct". By correct in this context we
mean that if any device whose behaviour satis�es the device speci�cation is used
as part of an interactive system with a user behaving according to the principles
of cognition as formalised, then no post-completion errors will be made. This is
despite the fact that the principles of cognition themselves do not exclude the
possibility of post-completion errors.

5 Integration with Full System Veri�cation

Our aim has been to verify a usability design rule in a way that integrates
with formal hardware veri�cation. The veri�cation of the design rule needs to
consider user behaviour. However, hardware designers and veri�ers do not want
to be concerned with cognitive models. Our aim has been therefore to separate
these distinct interests so that they can be dealt with independently, but within
a common framework.

There are several ways the design rule correctness theorem could be used. The
most lightweight is to treat the veri�cation of the design rule as a justi�cation
of its use in a variety of situations with no further formal reasoning, just an
informal argument that any particular device design does match the design rule
as speci�ed. Its formal statement then would give a precise statement, including
assumptions in the theorem, of what was meant by the design rule. Slightly
more formally, the formal statement of the design rule could be instantiated
with the details of a particular device. This would give a precise statement
about that device. The instantiated design rule correctness theorem then is a
speci�c statement about the absence of user error.

Instantiation involves specifying a user and machine state with entries for
each action, the user's goal, interaction invariant, etc. For example, for a vending
machine, the goal might simply be speci�ed as UserHasChoc, an accessor to the
�rst entry in the user state, say. The goal event from the machine perspective
would be a machine state accessor GiveChoc. A further part of the instantiation
would be to specify that the invariant was that the value of the user's possessions
(money and chocolate) was at least as high as at the start. The number, and value
of each possession is recorded in the user state. A relation POSS VAL calculates
the total value. If possessions is an accessor function into ustate, the invariant
for a vending machine is then

(POSS VAL possessions ustate t � POSS VAL possessions ustate 1)



Taking this approach, the �nal instantiated design rule theorem refers to the
speci�c goals, actions and invariant of the case in point.

A more heavyweight use of the design rule correctness theorem would be to
formally verify that the device speci�cation of interest implies such an instanti-
ated design rule. Suppose the device speci�cation for a given vending machine
is VENDING SPEC mstate, the goal is given by GiveChoc and machine-based in-
variant by VND MINV then we would prove a theorem of the form:

VENDING SPEC mstate �
MACHINE PCE DR (GiveChoc mstate) (VND MINV mstate) te

This theorem and its proof only needs to refer to the device speci�cation not
the user speci�cation precisely because of the use of a machine-centred version
of the design rule. It is independent of the user model and user state.

This theorem can be trivially combined with the design rule correctness state-
ment. This gives a formal result not just that the speci�cation meets the design
rule but that in interacting with it a user would not make post-completion errors.
For example, if VND INV is the user-centred version of the invariant, HasChoc the
user-centred version of the goal and Prbs accesses the probes from the user state
we get an instantiated theorem:

(8t. VND MINV mstate t � VND INV ustate t) ^
(8t. (HasChoc ustate t) � 9t2. t2 � t ^ (GiveChoc mstate t2)) ^
USER . . . (HasChoc ustate) (VND INV ustate) (Prbs ustate) ustate mstate ^
VENDING SPEC mstate �

:(PCE OCCURS (Prbs ustate) (VND INV ustate) te)

Ideally the two assumptions linking the two formalisations of the invariant
and the two formalisations of the goal would be discharged. This is the only
part of the proof that requires reasoning about the user model. We have iso-
lated it from the veri�cation of the speci�cation meeting its requirements. We
obtain a theorem that the user model, using a vending machine that meets the
speci�cation, will not make post-completion errors.

USER . . . (HasChoc ustate) (VND INV ustate) (Prbs ustate) ustate mstate ^
VENDING SPEC mstate �

:(PCE OCCURS (Prbs ustate) (VND INV ustate) te)

As the veri�cation framework we have used was originally developed for hard-
ware veri�cation, it would then be simple to combine this result with a hardware
veri�cation result stating that the implementation of the device implied its be-
havioural speci�cation. Suppose we had proved the hardware veri�cation result:

8mstate. VENDING IMPL mstate � VENDING SPEC mstate

where VENDING IMPL is a structural speci�cation giving an implementation of
the vending machine. We obtain immediately a theorem stating that the im-

plementation of the vending machine does not lead to post-completion errors
occurring:



Device

user error

Combined Correctness Theorem

Hardware
Correctness

Theorem

Device
Behaviour Theorem

Correctness
Requirements

Design Rule

Design Rule

User

Model

Spec. of

Impl.

Correctness
Theorem

freedom from

Fig. 3. Combining separate system correctness statements

USER . . . (HasChoc ustate) (VND INV ustate) (Prbs ustate) ustate mstate ^
VENDING IMPL mstate �

:(PCE OCCURS (Prbs ustate) (VND INV ustate) te)

The design rule correctness theorem can thus be combined with a result that a
particular device speci�cation meets the design rule. By further combining it with
a result that a particular implementation of the device meets the speci�cation
we obtain a theorem that the implementation does not result in post-completion
errors occurring as is illustrated in Figure 3.

The hardware veri�cation is done independently of the cognitive model and
explicit usability concerns but then combined with theorems that use them. In
previous work [10] [26] we demonstrated how hardware veri�cation correctness
theorems could be similarly chained with a full usability task completion cor-
rectness theorem stating that when the cognitive model was placed with the
behavioural speci�cation of the device, the combined behaviour of the resulting
system was such that the task was guaranteed to be completed. The di�erence
here is that the end usability statement being chained to is about the absence
of a class of errors rather than task completion; however, the general approach
is similar.

6 Conclusions

We have shown how a usability design rule can be veri�ed and the result com-
bined with analysis of other aspects of a design. We started by outlining a set of
principles of cognition specifying cognitively plausible behaviour. These princi-
ples are based on results from the cognitive science and human-computer inter-
action literature. From these principles we developed a formal cognitive architec-
ture. This architecture does not directly model erroneous behaviour. Erroneous
behaviour emerges if it is placed in an environment (i.e. with a computer system)
that allows it.

We then formally speci�ed a class of errors known as post-completion errors.
We also speci�ed two versions of a design rule claimed to prevent post-completion



errors. The �rst is speci�ed in terms of user goals and invariant. The second
is in terms of machine events, and so of more direct use to a designer. We
proved a theorem that the user-centred design rule is su�cient to prevent the
cognitive architecture from committing post-completion errors. This theorem is
used to derive a theorem that the machine-based formulation is also su�cient.
The resulting theorem is a correctness theorem justifying the design rule. It
says that users behaving according to the principles of cognition will not make
post-completion errors interacting with a device that satis�es the design rule.

The de�nitions and theorems are generic and do not commit to any speci�c
task or machine. They are a justi�cation of the design rule in general rather than
in any speci�c case. They can be instantiated to obtain theorems about speci�c
scenarios and then further with speci�c computer systems.

This work demonstrates an approach that integrates machine-centred veri-
�cation (hardware veri�cation) with user-centred veri�cation (that user errors
are eliminated). The higher-order logic framework adopted is that developed for
hardware veri�cation. Speci�cations, whether of implementations, behaviours or
design rules, are higher-order logic relations over signals specifying input or out-
put traces. The theorems developed therefore integrate directly with hardware
veri�cation theorems about the computer component of the system. The user
based parts of the proof have been isolated from the machine based parts. The
theorem developed here, once instantiated for a particular device can be com-
bined with correctness theorems about that device to obtain a theorem stating
that the machine implementation implies that no post-completion errors can
occur. This requires a proof of a linking theorem that the device speci�cation
satis�ed the machine-centred design rule.

The work presented here builds on our previous work on fully formal proofs
that an interactive system completes a task [11]. A problem with that approach is
that with complex systems, guarantees of task completion may be unobtainable.
The current approach allows the most important errors for a given application
to be focussed on.

7 Further Work

We have only considered one class of error and a simple design rule that prevents
it occurring. In doing so we have shown the feasibility of the approach. There
are many other classes of error. Others that are potential consequences of our
principles of cognition are discussed in [12]. Further work is needed to formally
model those error classes and design rules, and verify them formally following
the approach developed here. This will also allow us to reason about the scope
of di�erent design rules especially those that apparently contradict.

In this paper we have been concerned with the veri�cation of design rules in
general, rather than their use in speci�c cases. We have argued, however that,
since the framework used is that developed for hardware veri�cation, integration
of instantiated versions of the design rule correctness theorem is straightforward.
Major case studies are needed to demonstrate the utility of this approach.



Our architecture is intended to demonstrate the principles of the approach
and covers only a small subset of cognitively plausible behaviour. As we develop
it, it will give a more accurate description of what is cognitively plausible. We in-
tend to extend it in a variety of ways. As this is done, more erroneous behaviour
will be possible. We have essentially made predictions about the e�ects of fol-
lowing design rules. In broad scope these are well known and based on usability
experiments. However, one of our arguments is that more detailed predictions
can be made about the scope of the design rules. The predictions resulting from
the model could be used as the basis for designing further experiments to vali-
date the model and the correctness theorems proved, or further re�ne it. We also
suggested there are tasks where it might be impossible to produce a design that
satis�es all the underlying principles, so that some may need to be sacri�ced in
particular situations. We intend to explore this issue further.

Acknowledgements We are grateful to Kirsten Winter and the anonymous
referees whose comments have helped greatly improve this paper.

References

1. R. Back, A. Mikhajlova, and J. vonWright. Modeling component environments and
interactive programs using iterative choice. Technical Report 200, Turku Centre
for Computer Science, sep 1998.

2. A. E. Blandford and R.M. Young. The role of communication goals in interaction.
In Adjunct Proceedings of HCI'98, pages 14{15, 1998.

3. A.E. Blandford, P.J. Barnard, and M.D. Harrison. Using interaction framework to
guide the design of interactive systems. International Journal of Human Computer
Studies, 43:101{130, 1995.

4. A.E. Blandford, R. Butterworth, and P. Curzon. PUMA footprints: linking theory
and craftskill in usability evaluation. In Proc. of Interact, pages 577{584, 2001.

5. P. Bumbulis, P.S.C. Alencar, D.D. Cowen, and C.J.P. Lucena. Validating properties
of component-based graphical user interfaces. In F. Bodart and J. van der Donckt,
editors, Proc. Design, Speci�cation and Veri�cation of Interactive Systems '96,
pages 347{365. Springer, 1996.

6. R. Butterworth, A.E. Blandford, and D. Duke. Using formal models to explore
display based usability issues. Journal of Visual Languages and Computing, 10:455{
479, 1999.

7. R. Butterworth, A.E. Blandford, and D. Duke. Demonstrating the cognitive plau-
sibility of interactive systems. Formal Aspects of Computing, 12:237{259, 2000.

8. M. Byrne and S. Bovair. A working memory model of a common procedural error.
Cognitive Science, 21(1):31{61, 1997.

9. J.C. Campos and M.D. Harrison. Formally verifying interactive systems: a review.
In M.D. Harrison and J.C. Torres, editors, Design, Speci�cation and Veri�cation
of Interactive Systems '97, pages 109{124. Wien : Springer, 1997.

10. P. Curzon and A.E. Blandford. Using a veri�cation system to reason about post-
completion errors. Presented at Design, Speci�cation and Veri�cation of Interactive
Systems 2000. Available from http://www.cs.mdx.ac.uk/puma/ as WP31.



11. P. Curzon and A.E. Blandford. Detecting multiple classes of user errors. In Reed
Little and Laurence Nigay, editors, Proceedings of the 8th IFIP Working Confer-
ence on Engineering for Human-Computer Interaction (EHCI'01), volume 2254 of
Lecture Notes in Computer Science, pages 57{71. Springer-Verlag, 2001.

12. P. Curzon and A.E. Blandford. From a formal user model to design rules. In
P. Forbrig, B. Urban, J. Vanderdonckt, and Q. Limbourg, editors, Interactive Sys-
tems. Design, Speci�cation and Veri�cation, 9th International Workshop, volume
2545 of Lecture Notes in Computer Science, pages 19{33. Springer, 2002.

13. D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Syndetic modelling. Human-
Computer Interaction, 13(4):337{394, 1998.

14. R.E. Fields. Analysis of erroneous actions in the design of critical systems. Techni-
cal Report YCST 20001/09, University of York, Department of Computer Science,
2001. D.Phil Thesis.

15. M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

16. W. Gray, R.M. Young, and S. Kirschenbaum. Introduction to this special issue
on cognitive architectures and human-computer interaction. Human-Computer
Interaction, 12:301{309, 1997.

17. W.D. Gray. The nature and processing of errors in interactive behavior. Cognitive
Science, 24(2):205{248, 2000.

18. E. Hollnagel. Cognitive Reliability and Error Analysis Method. Elsevier, 1998.
19. D.E. Kieras, S.D. Wood, and D.E. Meyer. Predictive engineering models based

on the EPIC architecture for a multimodal high-performance human-computer
interaction task. ACM Trans. Computer-Human Interaction, 4(3):230{275, 1997.

20. D. Leadbetter, P. Lindsey, A. Hussey, A. Neal, and M. Humphreys. Towards model
based prediction of human error rates in interactive systems. In Australian Comp.
Sci. Communications: Australasian User Interface Conf., volume 23(5), pages 42{
49, 2001.

21. T.G. Moher and V. Dirda. Revising mental models to accommodate expectation
failures in human-computer dialogues. In Design, Speci�cation and Veri�cation of
Interactive Systems '95, pages 76{92. Wien : Springer, 1995.

22. F. Paterno' and M. Mezzanotte. Formal analysis of user and system interactions
in the CERD case study. In Proceedings of EHCI'95: IFIP Working Conference on
Engineering for Human-Computer Interaction, pages 213{226. Chapman and Hall
Publisher, 1995.

23. F.E. Ritter and R.M. Young. Embodied models as simulated users: introduction
to this special issue on using cognitive models to improve interface design. Int. J.
Human-Computer Studies, 55:1{14, 2001.

24. C. R. Roast. Modelling unwarranted commitment in information artifacts. In
S. Chatty and P. Dewan, editors, Engineering for Human-Computer Interaction,
pages 77{90. Kluwer Academic Press, 1998.

25. J. Rushby. Using model checking to help discover mode confusions and other
automation suprises. In 3rd Workshop on Human Error, Safety and System De-
velopment (HESSD'99), 1999.

26. H. Xiong, P. Curzon, S. Tahar, and A. Blandford. Formally linking MDG and HOL
based on a veri�ed MDG system. In M. Butler, L. Petre, and K. Sere, editors, Proc.
of the 3rd International Conference on Integrated Formal Methods, volume 2335 of
Lecture Notes in Computer Science, pages 205{224, 2002.


