Skip to main content

Implementation of the Voronoi-Delaunay Method for Analysis of Intermolecular Voids

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3045))

Abstract

Voronoi diagram and Delaunay tessellation have been used for a long time for structural analysis of computer simulation of simple liquids and glasses. However the method needs a generalization to be applicable to molecular and biological systems. Crucial points of implementation of the method for analysis of intermolecular voids in 3D are discussed in this paper. The main geometrical constructions – the Voronoi S-network and Delaunay S-simplexes, are discussed. The Voronoi network “lies” in the empty spaces between molecules and represents a “navigation map” for intermolecular voids. The Delaunay S-simplexes determine the simplest interatomic cavities and serve as building blocks for composing complex voids. An algorithm for the Voronoi S-network calculation is illustrated on example of lipid bilayer model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alinchenko, M.G., Anikeenko, A.V., Medvedev, N.N., Voloshin, V.P., Jedlovszky, P.: Morphology of voids in molecular system. J. Chem. Phys. (2004) (in prep.)

    Google Scholar 

  2. Allen, M.P., Tidesley, D.J.: Computer simulation of liquids Claredon Press. Claredon Press (1987)

    Google Scholar 

  3. Angelov, B., Sadoc, J.F., Jullien, R., SoyerA, M.J.P., Chomilier, J.: Nonatomic solventdriven Voronoi tessellation of proteins: An open tool to analyze protein folds. Proteins-Structure Function and Genetics 49(4), 446–456 (2002)

    Article  Google Scholar 

  4. Anishchik, S.V., Medvedev, N.N.: Three dimensional Apollonian packing as a model for dense granular systems. Phys. Rev. Lett. 75(23), 4314–4317

    Google Scholar 

  5. Aurenhammer, F.: Voronoi Diagrams: A survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 345–405 (1991)

    Article  Google Scholar 

  6. Bryant, S., Blunt, M.: Prediction of relative permeability in simple pore media. Phys. Rev. A 46(6), 2004–2011 (1992)

    Article  Google Scholar 

  7. Delaunay simplexes in the structure analysis of molecular-dynamics-simulated materials. Phys. Rev. B 57(21), 13448–13458 (1998)

    Google Scholar 

  8. Delaunay B.N., Sur la sphere vide. In: Math. Congress, August 11-16, pp. 695–700 (1924)

    Google Scholar 

  9. Gavrilova, M.: Proximity and Applications in General Metrics, Ph. D. Thesis, The University of Calgary, Dept. of Computer Science, Calgary, AB, Canada (1998)

    Google Scholar 

  10. Goede, A., Preissner, R., Froemmel: Voronoi Cell: New method for allocation of space among atoms: elimination of avoidable errors in calculation of atomic volume and density. J. Comp. Chem. 18, 1113 (1997)

    Article  Google Scholar 

  11. Kim, D.-S., Kim, D., Sugihara, K.: Voronoi diagram of a circle set from Voronoi diagram of a point set: I. Topology. CAGD 18(6), 541 (2001)

    MATH  MathSciNet  Google Scholar 

  12. Karavelas, M., Yvinec, M.: Dynamic Additively Weighted Voronoi Diagrams in 2D. In: Proc. 10th European Symposium on Algorithms, pp. 586–598 (2002)

    Google Scholar 

  13. Liao, Y.C., Lee, D.J., He, P.J.: Microstructural description of packed bed using Voronoi polyhedra. Powder technology 123(1), 1–8 (2002)

    Article  Google Scholar 

  14. Luchnikov, V.A., Medvedev, N.N., Oger, L., Troadec, J.-P.: The Voronoi-Delaunay analysis of voids in system of non-spherical particles. Phys. Rev. E 59(6), 7205 (1999)

    Article  Google Scholar 

  15. Medvedev, N.N.: Algorithm for three-dimensional Voronoi polyhedra. J. Comput. Physics 67, 223–229 (1986)

    Article  MATH  Google Scholar 

  16. Medvedev, N.N., Naberukhin, Y.I.: J. Phys. A: Math. Gen. 21, L247 (1988)

    Google Scholar 

  17. Medvedev, N.N.: Computational porosimetry. In: Engel, P., Syta, H. (eds.) The book Voronoi’s impact onmodern science. Inst. Math., Kiev., pp. 164–175 (1998)

    Google Scholar 

  18. Medvedev, N.N.: Voronoi-Delaunay method for non-crystalline structures. SB Russian Academy of Science, Novosibirsk, 209 (2000) (in Russian)

    Google Scholar 

  19. Oger, L., Gervois, A., Troadec, J.-P., Rivier, N.: Voronoi tessellation of packing of spheres: topological correlation and statistic. Philosoph. l Mag. 74, 177–197 (1996)

    Google Scholar 

  20. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and applications of Voronoi diagrams. John Wiley, Chichester (2000)

    MATH  Google Scholar 

  21. Richards, F.M.: Calculation of molecular volumes and areas for structures of known geometry. Methods in Enzymology 115, 440–464 (1985)

    Article  MathSciNet  Google Scholar 

  22. Richard, P., Oger, L., Troadec, J.P., Gervois, A.: A model of binary assemblies of spheres. Eur. Phys. E. 6, 295–303 (2001)

    Article  Google Scholar 

  23. Sastry, S., Corti, D.S., Debenedetti, P.G., Stillinger, F.H.: Statistical geometry of particle packings. Phys. Rev. E. 56(5), 5524–5532 (1997)

    Article  MathSciNet  Google Scholar 

  24. Tanemura, M., Ogawa, T., Ogita, N.: A new algorithm for three-dimensional Voronoi tessellation. J. Comput. Phys. 51, 191–207 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Thompson, K.E., Fogler, H.S.: Modelling flow in disordered packed bed from pore-scale fluid mechanics. AIChE Journal 43, 1377 (1997)

    Article  Google Scholar 

  26. Voloshin, V.P., Naberukhin, Y.I.: Empty interatomic space in computer models of simple liquis and amorphous solids. J. Phys: Condens. Matter 5, 5685 (1993)

    Article  Google Scholar 

  27. Voloshin, V.P., Beaufils, S., Medvedev, N.N.: Void space analysis of the structure of liquids. J. of Mol. Liq. 96-97, 101–112 (2002)

    Article  Google Scholar 

  28. Voronoi, G.F.: Nouvelles applications des paremetres continus a la theorie des formes quadratiques. J. Reine Andew. Math 134, 198–287 (1908)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anikeenko, A.V., Alinchenko, M.G., Voloshin, V.P., Medvedev, N.N., Gavrilova, M.L., Jedlovszky, P. (2004). Implementation of the Voronoi-Delaunay Method for Analysis of Intermolecular Voids. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24767-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22057-2

  • Online ISBN: 978-3-540-24767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics