Springer-Verlag Berlin Heidelberg GmbH

Hans Kellerer • Ulrich Pferschy David Pisinger

Knapsack Problems

With 105 Figures
and 33 Tables

Prof. Hans Kellerer
University of Graz
Department of Statistics and Operations Research
Universitätsstr. 15
A-8010 Graz, Austria
hans.kellerer@uni-graz.at

Prof. Ulrich Pferschy
University of Graz
Department of Statistics and Operations Research
Universitätsstr. 15
A-8010 Graz, Austria
pferschy@uni-graz.at
Prof. David Pisinger
University of Copenhagen
DIKU, Department of Computer Science
Universitetsparken 1
DK-2100 Copenhagen, Denmark
pisinger@diku.dk

ISBN 978-3-642-07311-3 ISBN 978-3-540-24777-7 (eBook)
DOI 10.1007/978-3-540-24777-7
Cataloging-in-Publication Data applied for
A catalog record for this book is available from the Library of Congress.
Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.
springeronline.com
© Springer-Verlag Berlin Heidelberg 2004
Originally published by Springer-Verlag Berlin Heidelberg New York in 2004
Softcover reprint of the hardcover 1st edition 2004
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Erich Kirchner, Heidelberg

Preface

Thirteen years have passed since the seminal book on knapsack problems by Martello and Toth appeared. On this occasion a former colleague exclaimed back in 1990: "How can you write 250 pages on the knapsack problem?" Indeed, the definition of the knapsack problem is easily understood even by a non-expert who will not suspect the presence of challenging research topics in this area at the first glance.

However, in the last decade a large number of research publications contributed new results for the knapsack problem in all areas of interest such as exact algorithms, heuristics and approximation schemes. Moreover, the extension of the knapsack problem to higher dimensions both in the number of constraints and in the number of knapsacks, as well as the modification of the problem structure concerning the available item set and the objective function, leads to a number of interesting variations of practical relevance which were the subject of intensive research during the last few years.

Hence, two years ago the idea arose to produce a new monograph covering not only the most recent developments of the standard knapsack problem, but also giving a comprehensive treatment of the whole knapsack family including the siblings such as the subset sum problem and the bounded and unbounded knapsack problem, and also more distant relatives such as multidimensional, multiple, multiple-choice and quadratic knapsack problems in dedicated chapters.

Furthermore, attention is paid to a number of less frequently considered variants of the knapsack problem and to the study of stochastic aspects of the problem. To illustrate the high practical relevance of the knapsack family for many industrial and economic problems, a number of applications are described in more detail. They are selected subjectively from the innumerable occurrences of knapsack problems reported in the literature.

Our above-mentioned colleague will be surprised to notice that even on the more than 500 pages of this book not all relevant topics could be treated in equal depth but decisions had to be made on where to go into details of constructions and proofs and where to concentrate on stating results and refer to the appropriate publications. Moreover, an editorial deadline had to be drawn at some point. In our case, we stopped looking for new publications at the end of June 2003.

The audience we envision for this book is threefold: The first two chapters offer a very basic introduction to the knapsack problem and the main algorithmic concepts to derive optimal and approximate solution. Chapter 3 presents a number of advanced algorithmic techniques which are used throughout the later chapters of the book. The style of presentation in these three chapters is kept rather simple and assumes only minimal prerequisites. They should be accessible to students and graduates of business administration, economics and engineering as well as practitioners with little knowledge of algorithms and optimization.

This first part of the book is also well suited to introduce classical concepts of optimization in a classroom, since the knapsack problem is easy to understand and is probably the least difficult but most illustrative problem where dynamic programming, branch-and-bound, relaxations and approximation schemes can be applied.

In these chapters no knowledge of linear or integer programming and only a minimal familiarity with basic elements of graph theory is assumed. The issue of $\mathcal{N} \mathcal{P}$ completeness is dealt with by an intuitive introduction in Section 1.5 , whereas a thorough and rigorous treatment is deferred to the Appendix.

The remaining chapters of the book address two different audiences. On one hand, a student or graduate of mathematics or computer science, or a successful reader of the first three chapters willing to go into more depth, can use this book to study advanced algorithms for the knapsack problem and its relatives. On the other hand, we hope scientific researchers or expert practitioners will find the book a valuable source of reference for a quick update on the state of the art and on the most efficient algorithms currently available. In particular, a collection of computational experiments, many of them published for the first time in this book, should serve as a valuable tool to pick the algorithm best suited for a given problem instance. To facilitate the use of the book as a reference we tried to keep these chapters selfcontained as far as possible.

For these advanced audiences we assume familiarity with the basic theory of linear programming, elementary elements of graph theory, and concepts of algorithms and data structures as far as they are generally taught in basic courses on these subjects.

Chapters 4 to 12 give detailed presentations of the knapsack problem and its variants in increasing order of structural difficulty. Hence, we start with the subset sum problem in Chapter 4, move on to the standard knapsack problem which is discussed extensively in two chapters, one for exact and one for approximate algorithms, and finish this second part of the book with the bounded and unbounded knapsack problem in Chapters 7 and 8.

The third part of the book contains more complicated generalizations of the knapsack problems. It starts with the multidimensional knapsack problem (a knapsack problem with d constraints) in Chapter 9, then considers the multiple knapsack problem (m knapsacks are available for packing) in Chapter 10, goes on to the multiple-choice knapsack problem (the items are partitioned into classes and exactly one item of each class must be packed), and extends the linear objective func-
tion to a quadratic one yielding the quadratic knapsack problem in Chapter 12. This chapter also contains an excursion to semidefinite programming giving a mostly self-contained short introduction to this topic.

A collection of other variants of the knapsack problem is put together in Chapter 13. Detailed expositions are devoted to the multiobjective and the precedence constraint knapsack problem, whereas other subjectively selected variants are treated in a more cursory way. The solitary Chapter 14 gives a survey on stochastic results for the knapsack problem. It also contains a section on the on-line version of the problem.

All these six chapters can be seen as survey articles, most of them being the first survey on their subject, containing many pointers to the literature and some examples of application.

Particular effort was put into the description of interesting applications of knapsack type problems. We decided to avoid a boring listing of umpteen papers with a two-line description of the occurrence of a knapsack problem for each of them, but selected a smaller number of application areas where knapsack models play a prominent role. These areas are discussed in more detail in Chapter 15 to give the reader a full understanding of the situations presented. They should be particularly useful for teaching purposes.

The Appendix gives a short presentation of $\mathcal{N} \mathcal{P}$-completeness with the focus on knapsack problems. Without venturing into the depths of theoretical computer science and avoiding topics such as Turing machines and unary encoding, a rather informal introduction to $\mathcal{N} \mathcal{P}$-completeness is given, however with formal proofs for the $\mathcal{N} \mathbb{P}$-hardness of the subset sum and the knapsack problem.

Some assumptions and conventions concerning notation and style are kept throughout the book. Most algorithms are stated in a flexible pseudocode style putting emphasis on readability instead of formal uniformity. This means that simpler algorithms are given in the style of an unknown but easily understandable programming language, whereas more complex algorithms are introduced by a structured, but verbal description. Commands and verbal instructions are given in Sans Serif font, whereas comments follow in Italic letters. As a general reference and guideline to algorithms we used the book by Cormen, Leiserson, Rivest and Stein [92].

For the sake of readability and personal taste we follow the non-standard convention of using the term increasing instead of the mathematically correct nondecreasing and in the same way decreasing instead of nonincreasing. Whereever we use the \log function we always refer to the base 2 logarithm unless stated otherwise. After the Preface we give a short list of notations containing only those terms which are used throughout the book. Many more naming conventions will be introduced on a local level during the individual chapters and sections.

As mentioned above a number of computational experiments were performed for exact algorithms. These were performed on the following machines:

$$
\begin{array}{lll}
\text { AMD Athlon, } 1.2 \mathrm{GHz} & \text { SPECint2000=496 } & \text { SPECfp2000=417 } \\
\text { Intel Pentium } 4,1.5 \mathrm{GHz} & \text { SPECint2000=558 } & \text { SPECfp2000=615 } \\
\text { Intel Pentium III, } 933 \mathrm{MHz} & \text { SPECint2000=403 } & \text { SPECfp2000=328 }
\end{array}
$$

The performance index was obtained from SPEC (www. specbench.org). As can be seen the three machines have reasonably similar performance, making it possible to compare running times across chapters. The codes have been compiled using the GNU project C and $\mathrm{C}++$ Compiler gcc-2.96, which also compiles Fortran77 code, thus preventing differences in computation times due to alternative compilers.

Acknowledgements

The authors strongly believe in the necessity to do research not with an island mentality but in an open exchange of knowledge, opinions and ideas within an international research community. Clearly, none of us would have been able to contribute to this book without the innumerable personal exchanges with colleagues on conferences and workshops, in person, by e-mail or even by surface mail. Therefore, we would like to start our acknowledgements by thanking the global research community for providing the spirit necessary for joint projects of collection and presentation.

The classic book by Silvano Martello and Paolo Toth on knapsack problems was frequently used as a reference during the writing of this text. Comments by both authors were greatly appreciated.
To our personal friends Alberto Caprara and Eranda Cela we owe special thanks for many discussions and helpful suggestions. John M. Bergstrom brought to our attention the importance of solving knapsack problems for all values of the capacity. Jarl Friis gave valuable comments on the chapter on the quadratic knapsack problem. Klaus Ladner gave valuable technical support, in particular in the preparation of figures.

In the computational experiments and comparisons, codes were used which were made available by Martin E. Dyer, Silvano Martello, Nei Y. Soma, Paolo Toth and John Walker. We thank them for their cooperation. Anders Bo Rasmussen and Rune Sandvik deserve special thanks for having implemented the upper bounds for the quadratic knapsack problem in Chapter 12 and for having run the computational experiments with these bounds. In this context the authors would also like to acknowledge DIKU Copenhagen for having provided the computational facilities for the computational experiments.

Finally, we would like to thank the Austrian and Danish tax payer for enabling us to devote most of our concentration on the writing of this book during the last two years. We would also like to apologize to the colleagues of our departments, our friends and our families for having neglected them during this time. Further apologies go to the reader of this book for any errors and mistakes it contains. These will be collected at the web-site of this book at www. diku. $\mathrm{dk} / \mathrm{knapsack}$.

Table of Contents

Preface V
Table of Contents IX
List of Notations XIX

1. Introduction 1
1.1 Introducing the Knapsack Problem 1
1.2 Variants and Extensions of the Knapsack Problem 5
1.3 Single-Capacity Versus All-Capacities Problem 9
1.4 Assumptions on the Input Data 9
1.5 Performance of Algorithms 11
2. Basic Algorithmic Concepts 15
2.1 The Greedy Algorithm 15
2.2 Linear Programming Relaxation 17
2.3 Dynamic Programming 20
2.4 Branch-and-Bound 27
2.5 Approximation Algorithms 29
2.6 Approximation Schemes 37
3. Advanced Algorithmic Concepts 43
3.1 Finding the Split Item in Linear Time 43
3.2 Variable Reduction 44
3.3 Storage Reduction in Dynamic Programming 46
3.4 Dynamic Programming with Lists 50
3.5 Combining Dynamic Programming and Upper Bounds 53
3.6 Balancing 54
3.7 Word RAM Algorithms 60
3.8 Relaxations 62
3.9 Lagrangian Decomposition 65
3.10 The Knapsack Polytope 67
4. The Subset Sum Problem 73
4.1 Dynamic Programming 75
4.1.1 Word RAM Algorithm 76
4.1.2 Primal-Dual Dynamic Programming Algorithms 79
4.1.3 Primal-Dual Word-RAM Algorithm 80
4.1.4 Horowitz and Sahni Decomposition 81
4.1.5 Balancing 82
4.1.6 Bellman Recursion in Decision Form 85
4.2 Branch-and-Bound 85
4.2.1 Upper Bounds 86
4.2.2 Hybrid Algorithms 87
4.3 Core Algorithms 88
4.3.1 Fixed Size Core 89
4.3.2 Expanding Core 89
4.3.3 Fixed Size Core and Decomposition 90
4.4 Computational Results: Exact Algorithms 90
4.4.1 Solution of All-Capacities Problems 93
4.5 Polynomial Time Approximation Schemes for Subset Sum 94
4.6 A Fully Polynomial Time Approximation Scheme for Subset Sum 97
4.7 Computational Results: FPTAS 112
5. Exact Solution of the Knapsack Problem 117
5.1 Branch-and-Bound 119
5.1.1 Upper Bounds for (KP) 119
5.1.2 Lower Bounds for (KP) 124
5.1.3 Variable Reduction 125
5.1.4 Branch-and-Bound Implementations 127
5.2 Primal Dynamic Programming Algorithms 130
5.2.1 Word RAM Algorithm 131
5.2.2 Horowitz and Sahni Decomposition 136
5.3 Primal-Dual Dynamic Programming Algorithms 136
5.3.1 Balanced Dynamic Programming 138
5.4 The Core Concept 140
5.4.1 Finding a Core 142
5.4.2 Core Algorithms 144
5.4.3 Combining Dynamic Programming with Tight Bounds 147
5.5 Computational Experiments 150
5.5.1 Difficult Instances 154
5.5.2 Difficult Instances with Large Coefficients 155
5.5.3 Difficult Instances With Small Coefficients 156
6. Approximation Algorithms for the Knapsack Problem 161
6.1 Polynomial Time Approximation Schemes 161
6.1.1 Improving the PTAS for (KP) 161
6.2 Fully Polynomial Time Approximation Schemes 166
6.2.1 Scaling and Reduction of the Item Set 169
6.2.2 An Auxiliary Vector Merging Problem 171
6.2.3 Solving the Reduced Problem 175
6.2.4 Putting the Pieces Together 177
7. The Bounded Knapsack Problem 185
7.1 Introduction 185
7.1.1 Transformation of (BKP) into (KP) 187
7.2 Dynamic Programming 190
7.2.1 A Minimal Algorithm for (BKP) 191
7.2.2 Improved Dynamic Programming: Reaching (KP) Complexity for (BKP) 194
7.2.3 Word RAM Algorithm 200
7.2.4 Balancing 200
7.3 Branch-and-Bound 201
7.3.1 Upper Bounds 201
7.3.2 Branch-and Bound Algorithms 202
7.3.3 Computational Experiments 204
7.4 Approximation Algorithms 205
8. The Unbounded Knapsack Problem 211
8.1 Introduction 211
8.2 Periodicity and Dominance 214
8.2.1 Periodicity 215
8.2.2 Dominance 216
8.3 Dynamic Programming 219
8.3.1 Some Basic Algorithms 220
8.3.2 An Advanced Algorithm 223
8.3.3 Word RAM Algorithm 227
8.4 Branch-and-Bound 228
8.5 Approximation Algorithms 232
9. Multidimensional Knapsack Problems 235
9.1 Introduction 235
9.2 Relaxations and Reductions 238
9.3 Exact Algorithms 246
9.3.1 Branch-and-Bound Algorithms 246
9.3.2 Dynamic Programming 248
9.4 Approximation 252
9.4.1 Negative Approximation Results 252
9.4.2 Polynomial Time Approximation Schemes 254
9.5 Heuristic Algorithms 255
9.5.1 Greedy-Type Heuristics 256
9.5.2 Relaxation-Based Heuristics 261
9.5.3 Advanced Heuristics 264
9.5.4 Approximate Dynamic Programming 266
9.5.5 Metaheuristics 268
9.6 The Two-Dimensional Knapsack Problem 269
9.7 The Cardinality Constrained Knapsack Problem 271
9.7.1 Related Problems 272
9.7.2 Branch-and-Bound 273
9.7.3 Dynamic Programming 273
9.7.4 Approximation Algorithms 276
9.8 The Multidimensional Multiple-Choice Knapsack Problem 280
10. Multiple Knapsack Problems 285
10.1 Introduction 285
10.2 Upper Bounds 288
10.2.1 Variable Reduction and Tightening of Constraints 291
10.3 Branch-and-Bound 292
10.3.1 The MTM Algorithm 293
10.3.2 The Mulknap Algorithm 294
10.3.3 Computational Results 296
10.4 Approximation Algorithms 298
10.4.1 Greedy-Type Algorithms and Further Approximation Algorithms 299
10.4.2 Approximability Results for (B-MSSP) 301
10.5 Polynomial Time Approximation Schemes 304
10.5.1 A PTAS for the Multiple Subset Problem 304
10.5.2 A PTAS for the Multiple Knapsack Problem 311
10.6 Variants of the Multiple Knapsack Problem 315
10.6.1 The Multiple Knapsack Problem with Assignment Restrictions 315
10.6.2 The Class-Constrained Multiple Knapsack Problem 315
11. The Multiple-Choice Knapsack Problem 317
11.1 Introduction 317
11.2 Dominance and Upper Bounds 319
11.2.1 Linear Time Algorithms for the LP-Relaxed Problem 322
11.2.2 Bounds from Lagrangian Relaxation 325
11.2.3 Other Bounds 327
11.3 Class Reduction 327
11.4 Branch-and-Bound 328
11.5 Dynamic Programming 329
11.6 Reduction of States 331
11.7 Hybrid Algorithms and Expanding Core Algorithms 332
11.8 Computational Experiments 335
11.9 Heuristics and Approximation Algorithms 338
11.10 Variants of the Multiple-Choice Knapsack Problem 339
11.10.1 Multiple-Choice Subset Sum Problem 339
11.10.2 Generalized Multiple-Choice Knapsack Problem 340
11.10.3 The Knapsack Sharing Problem 342
12. The Quadratic Knapsack Problem 349
12.1 Introduction 349
12.2 Upper Bounds 351
12.2.1 Continuous Relaxation 352
12.2.2 Bounds from Lagrangian Relaxation of the Capacity Constraint 352
12.2.3 Bounds from Upper Planes 355
12.2.4 Bounds from Linearisation 356
12.2.5 Bounds from Reformulation 359
12.2.6 Bounds from Lagrangian Decomposition 362
12.2.7 Bounds from Semidefinite Relaxation 367
12.3 Variable Reduction 373
12.4 Branch-and-Bound 374
12.5 The Algorithm by Caprara, Pisinger and Toth 375
12.6 Heuristics 379
12.7 Approximation Algorithms 380
12.8 Computational Experiments - Exact Algorithms 382
12.9 Computational Experiments - Upper Bounds 384
13. Other Knapsack Problems 389
13.1 Multiobjective Knapsack Problems 389
13.1.1 Introduction 389
13.1.2 Exact Algorithms for (MOKP) 391
13.1.3 Approximation of the Multiobjective Knapsack Problem 393
13.1.4 An FPTAS for the Multiobjective Knapsack Problem 395
13.1.5 A PTAS for (MOd-KP) 397
13.1.6 Metaheuristics 401
13.2 The Precedence Constraint Knapsack Problem (PCKP) 402
13.2.1 Dynamic Programming Algorithms for Trees 404
13.2.2 Other Results for (PCKP) 407
13.3 Further Variants 408
13.3.1 Nonlinear Knapsack Problems 409
13.3.2 The Max-Min Knapsack Problem 411
13.3.3 The Minimization Knapsack Problem 412
13.3.4 The Equality Knapsack Problem 413
13.3.5 The Strongly Correlated Knapsack Problem 414
13.3.6 The Change-Making Problem 415
13.3.7 The Collapsing Knapsack Problem 416
13.3.8 The Parametric Knapsack Problem 419
13.3.9 The Fractional Knapsack Problem 421
13.3.10 The Set-Union Knapsack Problem 423
13.3.11 The Multiperiod Knapsack Problem 424
14. Stochastic Aspects of Knapsack Problems 425
14.1 The Probabilistic Model 426
14.2 Structural Results 427
14.3 Algorithms with Expected Performance Guarantee 430
14.3.1 Related Models and Algorithms 431
14.4 Expected Performance of Greedy-Type Algorithms 433
14.5 Algorithms with Expected Running Time 436
14.6 Results for the Subset Sum Problem 437
14.7 Results for the Multidimensional Knapsack Problem 440
14.8 The On-Line Knapsack Problem 442
14.8.1 Time Dependent On-Line Knapsack Problems 445
15. Some Selected Applications 449
15.1 Two-Dimensional Two-Stage Cutting Problems 449
15.1.1 Cutting a Given Demand from a Minimal Number of Sheets 450
15.1.2 Optimal Utilization of a Single Sheet 452
15.2 Column Generation in Cutting Stock Problems 455
15.3 Separation of Cover Inequalities 459
15.4 Financial Decision Problems 461
15.4.1 Capital Budgeting 461
15.4.2 Portfolio Selection 462
15.4.3 Interbank Clearing Systems 464
15.5 Asset-Backed Securitization 465
15.5.1 Introducing Securitization and Amortization Variants 466
15.5.2 Formal Problem Definition 468
15.5.3 Approximation Algorithms 469
15.6 Knapsack Cryptosystems 472
15.6.1 The Merkle-Hellman Cryptosystem 473
15.6.2 Breaking the Merkle-Hellman Cryptosystem 475
15.6.3 Further Results on Knapsack Cryptosystems 477
15.7 Combinatorial Auctions 478
15.7.1 Multi-Unit Combinatorial Auctions and Multi-Dimensional Knapsacks 479
15.7.2 A Multi-Unit Combinatorial Auction Problem with Decreasing Costs per Unit 481
A. Introduction to $\mathcal{N} \mathcal{P}$-Completeness of Knapsack Problems 483
A. 1 Definitions 483
A. $2 \mathcal{N} \mathcal{P}$-Completeness of the Subset Sum Problem 487
A.2.1 Merging of Constraints 488
A.2.2 $\mathcal{N} \mathscr{P}$-Completeness 490
A. $3 \mathcal{N} \mathcal{P}$-Completeness of the Knapsack Problem 491
A. $4 \mathcal{N} \mathcal{P}$-Completeness of Other Knapsack Problems 491
References 495
Author Index 527
Subject Index 535

List of Notations

n
$N=\{1, \ldots, n\}$
I
p_{j}
$p_{i j}$
w_{j}
$w_{i j}$
b_{j}
c
m
c_{i}
$w(S)$
$p(S)$
$c(M):=\sum_{i \in M} c_{i}$
$p_{\text {max }}$
$p_{\text {min }}$
$w_{\text {max }}$
$w_{\text {min }}$
$b_{\text {max }}$
$c_{\text {max }}$
$c_{\text {min }}$
$x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$
z^{*}
z^{H}
X^{*}
X^{H}
$z^{*}(I), z^{H}(I)$
z_{S}^{*}
S
\hat{x}
$z^{L P}, x^{L P}$
$e_{j}:=\frac{p_{j}}{w_{j}}$
U
z^{ℓ}
number of items (jobs)
set of items
instance
profit of item j
profit of item j in knapsack i
weight of item j
weight of item j in knapsack i
upper bound on the number of copies of item type j
capacity of a single knapsack
number of knapsacks
capacity of knapsack i
weight of item set S
profit of item set S
total capacity of knapsacks in set M
$\max \left\{p_{j} \mid j=1, \ldots, n\right\}$
$\min \left\{p_{j} \mid j=1, \ldots, n\right\}$
$\max \left\{w_{j} \mid j=1, \ldots, n\right\}$
$\min \left\{w_{j} \mid j=1, \ldots, n\right\}$
$\max \left\{b_{j} \mid j=1, \ldots, n\right\}$
$\max \left\{c_{i} \mid i=1, \ldots, m\right\}$
$\min \left\{c_{i} \mid i=1, \ldots, m\right\}$
optimal solution vector
optimal solution value
solution value for heuristic H
optimal solution set
solution set for heuristic H
optimal (resp. heuristic) solution value for instance I
optimal solution to subproblem S
split item
split solution
solution value (solution vector) of the LP relaxation
efficiency of item j
upper bound
lower bound

$K P_{j}(d)$	knapsack problem with items $\{1, \ldots, j\}$ and capacity d
$z_{j}(d)$	optimal solution value for $K P_{j}(d)$
$X_{j}(d)$	optimal solution set for $K P_{j}(d)$
$z(d)$	optimal solution value for $K P_{n}(d)$
$X(d)$	optimal solution set for $K P_{n}(d)$
$P T A S$	polynomial time approximation scheme
$F P T A S$	fully polynomial time approximation scheme
(\bar{w}, \bar{p})	state with weight \bar{w} and profit \bar{p}
\oplus	componentwise addition of lists
W	word size
$C(P)$	linear programming relaxation of problem P
$\lambda=\left(\lambda, \ldots, \lambda_{m}\right)$	vector of Lagrangian multipliers
$L(P, \lambda)$	Lagrangian relaxation of problem P
$L D(P)$	Lagrangian dual problem
$\mu=\left(\mu_{1}, \ldots, \mu_{m}\right)$	vector of surrogate multipliers
$S(P, \mu)$	surrogate relaxation of problem P
$S D(P)$	surrogate dual problem
$\operatorname{conv}(S)$	convex hull of set S
$\operatorname{dim}(S)$	dimension of set S
$C:=\{a, \ldots, b\}$	core of a problem
z_{C}^{*}	optimal solution of the core problem
\mathbb{N}	the natural numbers $1,2,3, \ldots$
\mathbb{N}	the numbers $0,1,2,3, \ldots$
\mathbb{R}	the real numbers
$\log a$	base 2 logarithm of a
$a \mid b$	a is a divisor of b
$\operatorname{gcd}(a, b)$	greatest common divisor of a and b
$\operatorname{lcm}(a, b)$	least common multiple of a and b
$a \equiv b(\bmod m)$	\exists integer λ such that $a=\lambda m+b$
$O(f)$	$\left\{g(x) \mid \exists c, x_{0}>0\right.$ s.t. $\left.0 \leq g(x) \leq c f(x) \forall x \geq x_{0}\right\}$
$\Theta(f)$	$\left\{g(x) \mid \exists c_{1}, c_{2}, x_{0}>0\right.$ s.t. $\left.0 \leq c_{1} f(x) \leq g(x) \leq c_{2} f(x) \forall x \geq x_{0}\right\}$

