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Abstract. In many applications NP-complete problems need to be
solved exactly. One promising method to treat some intractable prob-
lems is by considering the so-called Parameterized Complexity that di-
vides the problem input into a main part and a parameter. The main
part of the input contributes polynomially on the total complexity of the
problem, while the parameter is responsible for the combinatorial explo-
sion. We consider the parallel FPT algorithm of Cheetham et al. to solve
the k-Vertex Cover problem, using the CGM model. Our contribution is
to present a refined and improved implementation. In our parallel exper-
iments, we obtained better results and obtained smaller cover sizes for
some input data. The key idea for these results was the choice of good
data structures and use of the backtracking technique. We used 5 graphs
that represent conflict graphs of amino acids, the same graphs used also
by Cheetham et al. in their experiments. For two of these graphs, the
times we obtained were approximately 115 times better, for one of them
16 times better, and, for the remaining graphs, the obtained times were
slightly better. We must also emphasize that we used a computational en-
vironment that is inferior than that used in the experiments of Cheetham
et al.. Furthermore, for three graphs, we obtained smaller sizes for the
cover.

1 Introduction

In many applications, we need to solve NP-complete problems exactly. This
means we need a new approach in addition to solutions such as approximating
algorithms, randomization or heuristics.

One promising method to treat some intractable problems is by considering
the so-called Parameterized Complexity [1]. The input problem is divided into
two parts: the main part containing the data set and a parameter. For example,
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in the parameterized version of the Vertex Cover problem for a graph G = (V, E),
also known as the k-Vertex Cover, we want to determine if there is a subset in V
of size smaller than k, whose edges are incident with the vertices of this subset.
In this problem, the input is a graph G (the main part) and a non-negative
integer k (the parameter). For simplicity, a problem whose input can be divided
like this is said to be parameterized.

A parameterized problem is said to be fixed-parameter tractable, or FPT

for short, if there is an algorithm that solves the problem in O(f(k)nα) time,
where α is a constant and f is an arbitrary function [1]. If we exchange the
multiplicative connective between these two contributions by an additive con-
nective (f(k) + nα), the definition of FPT problems remains unchanged. The
main part of the input contributes polynomially on the total complexity of the
problem, while the parameter is responsible for the combinatorial explosion. This
approach is feasible if the constant α is small and the parameter k is within a
tight interval. The k-Vertex Cover problem is one of the first problems proved to
be FPT and is the focus of this work. One of the well-known FPT algorithms for
this problem is the algorithm of Balasubramanian et al. [2], of time complexity
O(kn + 1.324718kk2), where n is the size of the graph and k is the maximum
size of the cover. This problem is very important from the practical point of
view. For example, in Bioinformatics we can use it in the analysis of multiple
sequences alignment.

Two techniques are usually applied in the FPT algorithms design: the reduc-
tion to problem kernel and the bounded search tree. These techniques can be
combined to solve the problem.

FPT algorithms have been implemented and they constitute a promising ap-
proach to solve problems to get the exact solution. Nevertheless, the exponential
complexity on the parameter can still result in a prohibitive cost. In this article,
we show how we can solve larger instances of the k-Vertex Cover, using the CGM
parallel model.

A CGM (Coarse-Grained Multicomputer) [3] consists of p processors con-
nected by some interconnection network. Each processor has local memory of
size O(N/p), where N is the problem size. A CGM algorithm alternates be-
tween computation and communication rounds. In a communication round each
processor can send and receive a total of O(N/p) data.

The CGM algorithm presented in this paper has been designed by Cheetham
et al. [4] and requires O(log p) communication rounds. It has two phases: in the
first phase a reduction to problem kernel is applied; the second phase consists
of building a bounded search tree that is distributed among the processors.

Cheetham et al. implemented the algorithm and the results are presented
in [4]. Our contribution is to present a refined and improved implementation. In
our parallel experiments, we obtained better results and obtained better cover
sizes for some input data. The key idea for these results was the choice of good
data structures and use of the backtracking technique. We used 5 graphs that
represent conflict graphs of amino acids, and these same graphs were used also
by Cheetham et al. [4] in their experiments. For two of these graphs, the times we
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obtained were approximately 115 times better, for one of them 16 times better,
and, for the remaining graphs, the obtained times were slightly better. We must
also emphasize that we used a computational environment that is inferior than
that used in the experiments of Cheetham et al. [4]. Furthermore, for three
graphs, we obtained smaller sizes for the cover.

In the next section we introduce some important concepts. In Section 3 we
present the main FPT sequential algorithms for the problem and the CGM ver-
sion. In Section 4 we present the data structures and discuss the implementation
and in Section 5 we show the experimental results. In Section 6 we present some
conclusions.

2 Parameterized Complexity and k-Vertex Cover
Problem

We present some fundamental concepts for sequential and CGM versions of the
FPT algorithm for the k-Vertex Cover problem.

Parameterized complexity [1, 5–8] is another way of dealing with the in-
tractability of some problems. This method has been successfully used to solve
problems of instance sizes that otherwise cannot be solved by other means [7].

The input of the problem is divided into two parts: the main part and the
parameter. There exist some computational problems that can be naturally spec-
ified in this manner [5].

In classical computational complexity, the entire input of the problems is
considered to be responsible for the combinatorial explosion of the intractable
problem. In parameterized complexity, we try to understand how the different
parts of the input contribute in the total complexity of the problem, and we
wish to identify those input parts that cause the apparently inevitable combi-
natorial explosion. The main input part contributes in a polynomial way in the
total complexity of the problem, while the parameter part probably contributes
exponentially in the total complexity. Thus, in cases where we manage to do
this, NP-complete problems can be solved by algorithms of exponential time
with respect to the parameter and polynomial time with respect to the main
input part. Even then we need to confine the parameter to a small, but useful,
interval. In many applications, the parameter can be considered “very small”
when compared to the main input part.

A parameterizable problem is a set L ⊆ Σ∗×Σ∗, where Σ is a fixed alphabet.
If the pair (x, y) ∈ L, we call x the main input part (or instance) and y the
parameter.

According to Downey and Fellows [1], a parameterizable problem L ⊆ Σ∗ ×
IN∗ is fixed parameter tractable if there exists an algorithm that, given an input
(x, y) ∈ L, solves it in O(f(k)nα) time, where n is the size of the main input
part x, |x| = n, k is the size of parameter y, |y| = k, α is a constant independent
of k, and f is an arbitrary function.

The arbitrary function f(k) of the definition is the contribution of the pa-
rameter y to the total complexity of the problem. Probably this contribution
is exponential. However, the main input part contributes polynomially to the
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total complexity of the problem. The basic assumption is that k ≪ n [8]. The
polynomial contribution is acceptable if the constant α is small. However, the
definition of fixed parameter tractable problem remains unchanged if we ex-
change the multiplicative connective between the two contributions, f(k)nα, by
an additive connective f(k) + nα [1].

The fixed parameter tractable problems form a class of problems called FPT

(Fixed-Parameter Tractability). There are NP-complete problems that has been
proven not to be in FPT class.

An important issue to compare the performance of FPT algorithms is the
maximum size for the parameter k, without affecting the desired efficiency of
the algorithm. This value is called klam and is defined as the largest value
of k such that f(k) ≤ U , where U is some absolute limit on the number of
computational steps. Downey and Fellows [1] suggest U = 1020. A challenge in
the fixed parameter tractable problems is the design of FPT algorithms with
increasingly larger values of klam.

Two elementary methods are used to design algorithms for fixed parameter
tractable problems: reduction to problem kernel and bounded search tree. The
application of these methods, in this order, as an algorithm of two phases, is
the basis of several FPT algorithms. In spite of being simple algorithmic strate-
gies, these techniques do not come into mind immediately, since they involve
exponential costs relative to the parameter [6].

– Reduction to problem kernel: The goal is to reduce, in polynomial time,
an instance I of the parameterizable problem into another equivalent in-
stance I ′, whose size is limited by a function of the parameter k. If a solu-
tion of I ′ is found, probably after an exhaustive analysis of the generated
instance, this solution can be transformed into a solution of I. The use of this
technique always results in an additive connective between the contributions
nα and f(k) on the total complexity.

– Bounded search tree: This technique attempts to solve the problem
through an exhaustive tree search, whose size is to be bounded by a function
of the parameter k. Therefore, we use the instance generated by the reduc-
tion to problem kernel method in the search tree, which must be traversed
until we find a node with the solution of the instance. In the worst case,
we have to traverse all the tree. However, it is important to emphasize that
the tree size depends only on the parameter, limiting the search space by a
function of k.

In the parameterized version of the Vertex Cover problem, also known as
k-Vertex Cover problem, we must have a graph G = (V, E) (the instance) and a
non-negative integer k (the parameter). We want to answer the following ques-
tion: “Is there a set V ′ ⊆ V of vertices, whose maximum size is k, so that for
every edge (u, v) ∈ E, u ∈ V ′ or v ∈ V ′?”. Many other graph problems can be
parameterized similarly.

The set V ′ is not unique. An application of the vertex cover problem is the
analysis of multiple sequences alignment [4]. A solution to resolve the conflicts
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among sequences is to exclude some of them from the sample. A conflict exists
when two sequences have a score below a certain threshold. We can construct
a graph, called the conflict graph, where each sequence is a vertex and an edge
links two conflict sequences. Our goal is to remove the least number of sequences
so that the conflict will be deleted. We thus want to find a minimum vertex cover
for the conflict graph.

A trivial exact algorithm for this problem is to use brute force. In this case
all the possible subsets whose size is smaller or equal to k are verified to be a
cover [1], where k is the maximum size desired for the cover and n is the number
of vertices in the graph (k ≤ n). The number of subsets with k elements is Cn,k,
so the algorithm to find all these subsets has time complexity of O(nk). The
costly brute force approach is usually not feasible in practice.

3 FPT Algorithms for the k-Vertex Cover Problem

In this section we present FPT algorithms that solve the vertex cover problem
and are used in our implementation. Initially we show the algorithm of Buss [9],
responsible for the phase of reduction to problem kernel. Then we show two
algorithms of Balasubramanian et al. [2] that present two forms to construct
the bounded search tree. Finally we present the CGM algorithm of Cheetham
et al. [4]. In all these algorithms, the input is formed by a graph G and the size
of the vertex cover desired (parameter k).

3.1 Algorithm of Buss

The algorithm of Buss [9] is based on the idea that all the vertices of degree
greater than k belong to any vertex cover for graph G of size smaller or equal
to k. Therefore, such vertices must be added to the partial cover and removed
from the graph. If there are more than k vertices in this situation, there is no
vertex cover of size smaller or equal to k for the graph G.

The edges incident with the vertices of degree greater than k can also be
removed since they are joined to at least one vertex of the cover, and the isolated
vertices are removed once there are no vertices to cover. The graph produced is
denominated G′.

From now on, our goal is to find a vertex cover of size smaller or equal to k′

for the graph G′, where k′ is the difference between k and the number of elements
of the partial vertex cover. This is only possible if there do no exist more than
kk′ edges in G′. This is because k′ vertices can cover at most kk′ edges in the
graph, since the vertices of G′ have degree bounded by k. Furthermore, if we do
not have more than kk′ edges in G′, nor isolated vertices, we can conclude that
there are at most 2kk′ vertices in G′. As k′ is at most k, the size of the graph
G′ is O(k2).

Given the adjacency list of the graph, the steps described until here spend
O(kn) time and form the basis for the reduction to problem kernel phase. Observe
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that graph G is reduced, in polynomial time, to an equivalent graph G′, whose
size is bounded by a function of the parameter k. The kernellization phase as
described is used in the algorithms presented in the next subsection.

To determine finally if there exists or not a vertex cover for G′ of size smaller
or equal to k′, the algorithm of Buss [9] executes a brute force algorithm. If a
vertex cover for G′ of size smaller or equal to k′ exists, these vertices and the
vertices of degree greater than k form a vertex cover for G of size smaller or
equal to k. The algorithm of Buss [9] spends a total time of O(kn + (2k2)kk2).

3.2 Algorithms of Balasubramanian et al.

The algorithms of Balasubramanian et al. [2] execute initially the phase of reduc-
tion to problem kernel based on the algorithm of Buss [9]. In the second phase,
a bounded search tree is generated. The two options to generate the bounded
search tree are shown in Balasubramanian et al. [2] and described below as Algo-
rithm B1 and Algorithm B2. In both cases, we search the tree nodes exhaustively
for a solution of the vertex cover problem, by depth first tree traversal. The dif-
ference between the two algorithms is the form we choose the vertices to be
added to the partial cover and, consequently, the format of such a tree.

Each node of the search tree stores a partial vertex cover and a reduced
instance of the graph. This partial cover is composed of the vertices that belong
to the cover. The reduced instance is formed by the graph resulting from the
removal of the vertices of G that are in the partial cover, as well as the edges
incident with them and any isolated vertex. We call this graph G′′ and an integer
k′′ that is the maximum desired size for the vertex cover of G′′. The root of the
search tree, for example, represents the situation after the method of reduction
to problem kernel. In other words, in the partial cover we have the vertices of
degree greater than k and the instance 〈G′, k′〉.

The edges of the search tree represents the several possibilities of adding
vertices to the existing partial cover. Notice that the son of a tree node has more
elements in the partial vertex cover and a graph with less nodes and edges than
its parent, since every time a vertex is added to the partial cover, we remove it
from the graph, together with the incident edges and any isolated vertices. We
actually do not generate all the nodes before the depth first tree traversal. We
only generate a node of the bounded search tree when this node is visited.

The search tree has the following property: for each existing vertex cover for
graph G of size smaller or equal to k, there exists a corresponding tree node with
a resulting empty graph and a vertex cover (not necessarily the same) of size
smaller or equal to k. However, if there is no vertex cover of size smaller or equal
to k for graph G, then no tree node possesses a resulting empty graph. Actually
the growth of the search tree is interrupted when the node has a partial vertex
cover of size smaller or equal to k or a resulting empty graph (case in which
we find a valid vertex cover for graph G). Notice that this bounds the size of
the tree in terms of the parameter k. Therefore, in the worst case, we have to
traverse all the search tree to determine if there exists or not a vertex cover of
size smaller or equal to k for graph G.
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Given the adjacency list of the graph, we spend O(m) time in each node,
where m is the number of vertices of the current graph. Therefore, if C(k) is the
number of nodes of the search tree, then the time spent to traverse all the tree is
O(mC(k)). Recall that the root node of the search tree, whose size is bounded
by O(k2), stores the resulting graph of the phase of reduction to problem kernel.

Algorithm B1 In this algorithm, the choice of the vertices of G′′ to be added
to the partial cover in any tree node is done according to a path generated from
any vertex v of G′′ that passes through at least three edges.

If this path has size one or two, then we add the neighbor of the node of
degree one to the partial cover, remove their incident edges and any isolated
vertices. This new graph instance with the new partial cover is kept in the same
node of the bounded search tree and the Algorithm B1 is applied again in this
node.

If this path is a simple path of size three, passing by vertices v, v1, v2 and
v3, any vertex cover must contain {v, v2} or {v1, v2} or {v1, v3}. If the path is a
simple cycle of size three, passing by vertices v, v1, v2 and v, any vertex cover
must contain {v, v1} or {v1, v2} or {v, v2}. In both cases, the tree node is ramified
into three three sons to add one of the three pairs of suggested vertices. We can
then go to the next node of the tree, recalling the depth first traversal.

Notice that this algorithm generates a tertiary search tree and that at each
tree level the partial cover increases by at least two vertices. The Algorithm B1
spends O(kn + (

√
3)kk2) time to solve the k-Vertex Cover problem.

Algorithm B2 In this algorithm, the choice of vertices of G′′ to be added to the
partial cover in any node of the tree is done according to five cases by considering
the degree of the vertices of the resulting graph. We deal first with the vertices
of degree 1 (Case 1), then with vertices of degree 2 (Case 2), then with vertices
of degree 5 or more (Case 3), then with vertices of degree 3 (Case 4) and, finally,
with vertices of degree 4 (Case 5).

We use the following notation. N(v) represents the set of vertices that are
neighbors of vertices v and N(S) represents the set

⋃
v∈S N(v).

In Case 1, if there exists a vertex v of degree 1 in the graph, then we create
a new son to add N(v) to the partial cover.

In Case 2, if there exists a vertex v of degree 2 in the graph, then we can have
three subcases, to be tested in the following order. Let x and y be the neighbors
of v. In Subcase 1, if there exists an edge between x and y, then we create a new
son to add N(v) to the partial cover. In Subcase 2, if x and y have at least two
neighbors different from v, then we ramify the node of the tree into two sons to
add N(v) and N({x, y}) to the partial cover. In Subcase 3, if x and y share an
only neighbor a different from v, then we create a new son to add {v, a}.

In Case 3, if there exists a vertex of degree 5 or more in the graph, then we
ramify the node of the tree into two sons to add v and N(v) to the partial cover.

If none of the three previous cases occurs, then we have a 3 or 4-regular
graph. In case 4, if there exists a vertex v of degree 3, then we can have four
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subcases, to be treated in the following order. Let x, y and z be the neighbors
of v. In Subcase 1, if there exists an edge between two neighbors of v, say x and
y, the we ramify the node of the tree into two sons to add N(v) and N(z) to
the partial cover. In Subcase 2, if a pair of neighbors of v, say x and y, share
another common neighbor a (but different from v), then we ramify the node of
the tree into two sons to add N(v) and {v, a} to the partial cover. In Subcase 3,
if a neighbor of v, say x, has at least three neighbors different from v, then we
ramify the node of the tree into three sons to add N(v), N(x) and x

⋃
N({y, z})

to the partial cover. In Subcase 4, the neighbors of v have exactly two private
neighbors, not considering vertex v proper. Let x be a neighbor of v and let a
and b be the neighbors of x, then we ramify the node of the tree into three sons
to add N(v), {v, a, b} and N({y, z, a, b}) to the partial cover.

In Case 5, we have a 4-regular graph and we can have three subcases, to be
tested in the following order. Let v be a vertex of the graph and x, y, z and w its
neighbor vertices. In Subcase 1, if there exists an edge between two neighbors of
v, say x and y, then we ramify the node of the tree into three sons to add N(v),
N(z) and z

⋃
N(w) to the partial cover. In Subcase 2, if three neighbors of v,

say x, y and z, share common neighbor a, then we ramify the node of the tree
into two sons to add N(v) and (v, a) to the partial cover. In Subcase 3, if each of
the neighbors of v has three neighbors different from v, then we ramify the node
of the tree into four sons to add N(v), N(y), y

⋃
N(w) and {y, w}

⋃
N({x, z})

to the partial cover.

Contrary to Algorithm B1, a node in the search tree can be ramified into two,
three or four sons, and the partial cover can increase up to 8 vertices, depending
on the selected case. Algorithm B2 spends O(kn + 1.324718kk2) time to solve
the k-Vertex Cover problem.

3.3 Algorithm of Cheetham et al.

The CGM algorithm proposed by Cheetham et al. [4] to solve the k-Vertex Cover
problem parallelizes both phases of an FPT algorithm, reduction to problem
kernel and bounded search tree. Previous works designed for the PRAM model
parallelize only the method of reduction to problem kernel [4]. However, as the
implementations of FPT algorithms usually spends minutes in the reduction to
problem kernel and hours, or maybe even days in the bounded search tree, the
parallelization of the bounded search tree designed in the CGM algorithm is an
important contribution.

The CGM algorithm of Cheetham et al. [4] solves even larger instances of
the k-Vertex Cover problem than those solved by sequential FPT algorithms.
The implementation of this algorithm can solve instances with k ≥ 400 in less
than 75 minutes of processing time. It is important to emphasize that the k-
Vertex Cover is considered well solved for instances of k ≤ 200 (sequential FPT
algorithms) [7]. Not only there is a considerable increase in the parameter k, it
is important to recall that the time of a FPT algorithm grows exponentially in
relation to k.
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The phase of reduction to problem kernel is parallelized through a parallel
integer sorting. The p processors that participate in the parallel sort are identified
as Pi, 0 ≤ i ≤ p − 1. To identify vertices of the graph with degree larger than
k, the edges are sorted by the label of the vertex they are incident with through
deterministic sample sort [10], that require O(1) parallel integer sorts, i.e. in
constant time. The partial vertex cover (vertices with degree larger than k) and
the instance 〈G′, k′〉 is sent to all the processors.

The basic idea of the parallelization of the phase of bounded search tree
is to generate a complete tertiary tree T with O(log

3
p) tree levels and p leaf

nodes (γ0...γp−1). Each one of these p leaf nodes is then assigned to one of the
p processors, that search locally for a solution in the subtree generated from the
leaf node γi, as shown in Fig. 1. A detailed description of this phase is presented
in the following.

log  p
3

10 p−1

<G´,k´>

k´

i

Algorithm B1

Algorithm B2

Fig. 1. A processor Pi computes the unique path in T from the root to leaf γi, using
the Algorithm B1. Then, Pi computes the entire subtree below γi, using the Algorithm
B2.

– Consider the tertiary search tree T . Each processor Pi, 0 ≤ i < p, starts this
phase with the instance obtained at the previous phase (〈G′, k′〉), and uses
Algorithm B1 to compute the unique path in T from the tree root to the
leaf node γi. Let 〈G′′

i , k′′

i 〉, be the instance computed at the leaf node γi.
– Each processor Pi, 0 ≤ i < p, searches locally for a solution in the subtree

generated from 〈G′′

i , k′′

i 〉, based on Algorithm B2. Processor Pi chooses a son
of the node at random and expands it until a solution is found or the partial
cover is larger than k. If a solution is not found, return to the subtree to
get a still not explored son, until all the subtree is traversed. If a solution is
encountered, the other processors are notified to interrupt.

In the algorithm of Cheetham et al. [4], the major part of the computational
work occurs when each processor Pi, 0 ≤ i < p, computes locally the search tree
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from 〈G′′

i , k′′

i 〉, where Algorithm B2 is used. As all the p subtrees are traversed
simultaneously, it is possible that the parallel algorithm visits nodes that the
sequential algorithm would not visit.

4 Implementation Details

In this section we present some implementation details of the parallel FPT al-
gorithm and discuss the data structures utilized in our implementation. We use
C/C++ and the MPI communication library.

The program receives as input a text file describing a graph G by its adjacency
list and an integer k that determines the maximum size for the vertex cover
desired. Let n be the number of vertices and m the number of edges of graph G
and p the number of processors to run the program.

At the beginning of the reduction to problem kernel phase, the input ad-
jacency list of graph G is transformed into a list of corresponding edges and
distributed among the p processors. Each processor Pi, 0 ≤ i < p, receives m/p
edges and is responsible for controlling the degrees of n/p vertices.

Each processor sorts the edges received by the identifier of the first vertex
they are incident with, and obtains the degree of such vertices. Notice it is possi-
ble for a processor to compute the degree of the vertices that are of responsibility
for another processor. In this case, the results are sent to the corresponding pro-
cessor.

After this communication, the p processors can identify the local vertices
with degree larger than k and send this information to the others, so that each
processor can remove the local edges incident with these vertices. All the re-
maining edges after the removal, that form the new graph G′, are sent to all the
processors. In this way, at the end of this phase, each processor has the instance
generated by the method of reduction to problem kernel and the partial cover
(vertices of degree smaller than k), that is, the root of the bounded search tree.
The p processors transform the list of edges corresponding to graph G′ again
into an adjacency list, that will be used in the next phase.

The resulting adjacency list from the reduction to problem kernel is imple-
mented as a doubly linked list of vertices. Each node x of this list of vertices
contains a pointer to a doubly linked list of pointers, whose elements represent
all the edges incident with x, that we denote, for simplicity, by the list of edges
of x. Each node of the list of edges of x points to the node of the list of vertices
that contains the other extreme of the edge. In spite of the fact that graph is not
a directed graph, each edge is represented twice in distinct lists of edges. Thus
each node of the list of edges contains also a pointer to its other representation.
In Fig. 2 we present an example of a graph and the data structure to store it.

The insertion of a new element in the list of vertices takes O(n) time, since
it is necessary to check if such elements already exist. In the list of edges, the
insertion of a new element, in case it does not yet exist, results in the insertion
of elements in the two lists of edges incident with its two extremes and also takes
O(n) time.
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v

w

Fig. 2. The data structure used to store the graph G.

The removal of a vertex or an edge is a rearrangement of the pointers of
previous and next elements of the list. They are not effectively deallocated from
memory, they are only removed from the list. Notice that the edges incident with
it are removed automatically with the vertex. However, we still have to remove
the other representation. As each edge has a pointer to its other representation,
we spend O(1) time to remove it from the list of edges of the other vertex.
Therefore, we spend O(k) time to remove a vertex from the list, since the vertices
of the graph have degree bounded by k. In our implementation, we store in
memory only the data relative to the node of the bounded search tree being
worked on.

Since we use depth first traversal in the bounded search tree, we need to
store some information that enables us to go up the tree and recover a previous
instance of the graph. Thus our program uses the backtracking technique. Such
information is stored in a stack of pointers to removed vertices and edges. Adding
an element in the stack takes O(1) time. Removing an element from the stack
and put it back in the graph also takes O(1) time, since the removed vertex or
edge has pointers to the previous and next elements in the list.

The partial vertex cover is also a stack of pointers to vertices known to be
part of the cover. To add or remove an element from the cover takes O(1) time.

At the beginning of the bounded search tree phase, all the p processors con-
tain the instance (〈G′, k′〉) and the partial vertex cover resulting from the phase
of reduction to problem kernel. As seen in Section 3.3, there exists a bounded
tertiary complete search tree T with p leaf nodes. Each processor Pi, 0 ≤ i < p,
uses Algorithm B1, generates the unique path in tree T from the root to the leaf
node γi of tree T . Then, each processor Pi applies Algorithm B2 in the subtree
whose root is the leaf node γi, until finding a solution or finishing the traversal.

In Algorithm B1, we search a path that starts at a vertex and passes through
at most three edges. In our implementation, this initial vertex is always the first
vertex of the list and, therefore, the same tree T is generated in all the executions
of the program.

In the implementation of Algorithm B2, to obtain constant time for the
selection of a vertex for the cases of this algorithm, we use 6 auxiliary lists of
pointers to organize the vertices of the graph according to its degree (0, 1, 2, 3,
4 and 5 or more). Furthermore, each vertex of the graph also has a pointer to
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its representative in the list of degrees, therefore in any change of degree of a
vertex implies O(1) time to change it in the list of degrees.

5 Experimental Results

We present the experimental results by implementing the CGM algorithm of
Cheetham et al. [4], using the data structures and the description of the previous
section. Our parallel implementation will be called Par-Impl. Furthermore, we
also implemented Algorithm B2 in C/C++, to be called Seq-Impl.

The computational environment is a Beowulf cluster of 64 Pentium III pro-
cessors, with 500 MHz and 256 MB RAM memory each processor. All the nodes
are interconnected by a Gigabit Ethernet switch. We used Linux Red Hat 7.3
with g++ 2.96 and MPI/LAM 6.5.6.

The sequential times were measured as wall clock times in seconds, including
reading input data, data structures deallocation and writing output data. The
parallel times were also measured as wall clock time between the start of the
first processor and termination of the last process, including I/O operations and
data structures deallocation.

In our experiments we used conflict graphs that were kindly provided by
Professor Frank Dehne (Carleton University). These graphs represent sequences
of amino acid collected from the NCBI database. They are Somatostatin, WW,
Kinase, SH2 (src-homology domain 2) and PHD (pleckstrin homology domain).
The Table 1 shows a summary of the characteristics of these graphs (name,
number of vertices, number of edges, size of desired cover and size of the cover
to search for after the reduction to problem kernel).

Graph |V | |E| k k’

Kinase 647 113122 495 391
PHD 670 147054 601 600
SH2 730 95463 461 397
Somatostatin 559 33652 272 254
WW 425 40182 322 318

Table 1. Sequences and corresponding graphs and cover sizes used in experiments.

In Fig. 3 we compare the times obtained by executing Seq-Impl and Par-
Impl in a single processor (3 virtual processors) and Par-Impl in 27 processors.
To run Par-Impl in a single processor we used MPI/LAM simulation mode, that
simulates p virtual processors as independent processes on the same physical
processor. The time obtained by Par-Impl in a single processor is the sum of the
wall clock times of the individual processes plus the overhead created by their
communication. The tests were carried out for the graphs PHD, Somatostatin
and WW. These input data were chosen because their sequential times are rea-
sonable. To obtain the averages, we ran Seq-Impl 10 times for each data set and
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Par-Impl 30 times for each data set. In spite of the fact we are using a single
processor to run the parallel implementation, the time was significantly much
smaller. This is justified by the fact of having more initial distinct points in the
bounded search tree, such that from one of them we can find a path that takes
to the cover more quickly.
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Fig. 3. Comparison of sequential and parallel times.

In Fig. 4 we show the average of the parallel times obtained in 27 processors.
Our parallel implementation can solve problem instances of size k ≥ 400 in
less than 3 minutes. For example, graph PHD (k = 601) can be solved in less
than 1 minute. Notice that k-Vertex Cover problem is considered well solved
for instances of k ≤ 200 by sequential FPT algorithms [7]. It is important to
emphasize that the time of FPT algorithm grows exponentially in relation to
k. Again we use 30 time samples to get the average time. Observe the times
obtained and the Table 1. We see that the parallel wall clock times do not
strictly increase with either k or k′. This makes us conclude that the graph
structure is the responsible for the running time.

The parallel times, using 3, 9 and 27 processors for the graphs PHD, So-
matostatin and WW are shown in Fig. 5. Notice the increase in the number
of processors does not necessarily imply a greater improvement on the aver-
age time, in spite of the always observed time reduction. Nevertheless, the use
of more processors increases the chance of determining the cover more quickly,
since we start the tree search in more points. Furthermore, it seems that the
number of tree nodes with a solution also has some influence on the running
times. As we do the depth first traversal in the bounded search tree, a wrong
choice of a son to visit means that we have to traverse all the subtree of the son
before choosing another son to visit.

For the graphs PHD, SH2, Somatostatin and WW we could guarantee, in
less than 75 minutes, the non existence of covers smaller than that determined
by the parallel algorithm, confirming the minimality of the values obtained. For
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WW.

this, all the possible nodes of the bounded search tree were generated. For the
graph Kinase this was not possible in an acceptable time.

Our results were compared with those presented in Cheetham et al. [4], who
used a Beowulf Cluster of 32 Xeon nodes of 1.8 GHz and 512 MB of RAM. All
the nodes were interconnected by a Gigabit Ethernet switch. Every node was
running Linux Red Hat 7.2 with gcc 2.95.3 and MPI/LAM 6.5.6.

Our experiments are very relevant, since we used a computational platform
that is much inferior than that used in Cheetham et al. [4]. The parallel times
obtained in our experiments were better. We considered that the choice of good
data structures and use of the backtracking technique were essential to obtain
our relevant results. For the graphs Kinase and SH2 we obtained parallel times
that are much better, a reduction by a factor of approximately 115. The time
for the graph PHD was around 16 times better. For the graphs Somatostatin
and WW the times are slightly better. As we did not have access to the im-
plementation of Cheetham et al. [4], we tested several data structures in our
implementation. In the final version we used that implementation that gave the
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best performance, together with the backtracking technique. More details can
be found in Hanashiro [11].

Furthermore, the size of the covers obtained were smaller for the following
graphs: Kinase (from 497 to 495), PHD (from 603 to 601) and Somatostatin
(from 273 to 272). It is important to emphasize that the reduction in the size
of the cover implies the reduction on the universe of existing solutions in the
bounded search tree, which in turn gives rise to an increase in the running time.

6 Conclusion

FPT algorithms constitute an alternative approach to solve NP-complete prob-
lems for which it is possible to fix a parameter that is responsible for the combi-
natorial explosion. The use of parallelism improve significantly the running time
of the FPT algorithms, as in the case of the k-Vertex Cover problem.

In the implementation of the presented CGM algorithm, the choice of the
data structures and the use of the backtracking technique were essential to ob-
tain the relevant experimental results. During the program design, we utilized
several alternative data structures and their results were compared with those
of Cheetham et al. [4]. Then we chose the design that obtained the best perfor-
mance. Unfortunately we did not have access to the implementation of Cheetham
et al. to compare it with our code.

We obtained great improvements on the running times as compared to those
of Cheetham et al. [4]. This is more significant if we take into account the fact
that we used an inferior computational environment. Furthermore, we improved
the values for the minimum cover and guaranteed the minimality for some of
the graphs.

The speedups of our implementation with that of Cheetham et al. [4] vary
very much. The probable cause of this may lie in the structures of the input
graphs, and also in the number of solutions and how these solutions are dis-
tributed among the nodes of the bounded search tree.

For the input used, only for the Thrombin graph we did not obtain better
average times, as compared to those of Cheetham et al. [4]. To improve the
results, we experimented two other implementations, by introducing randomness
in some of the choices. With these modifications, in more experiments we get
lower times for the Thrombin graph, though we did not improve the average.
For some of the graphs, the modification increases the times obtained, and does
not justify its usage.
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