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Abstract. Real world problems usually have to deal with some un-
certainties. This is particularly true for the planning of services whose
requests are unknown a priori.
Several approaches for solving stochastic problems are reported in the
literature. Metaheuristics seem to be a powerful tool for computing good
and robust solutions. However, the efficiency of algorithms based on Lo-
cal Search, such as Tabu Search, suffers from the complexity of evaluating
the objective function after each move.
In this paper, we propose alternative methods of dealing with uncertain-
ties which are suitable to be implemented within a Tabu Search frame-
work.

1 Introduction

Consider the following deterministic linear program:

LP : min
∑

j

cjxj

s.t.
∑

j

aijxj ≤ bi , i = 1, . . . ,m (1a)

xj ≥ 0, j = 1, . . . , n. (1b)

The cost coefficients cj , the technological coefficients aij , and the right-hand
side values bi are the problem parameters. In practical applications, any or all of
these parameters may not be precisely defined. When some of these parameters
are modelled as random variables, a stochastic problem arises.

When cj , aij or bi are random variables having a known joint probability
distribution, z is also a random variable. When only the coefficients cj are ran-
dom, the problem can be formulated as the minimization of the expected value
of z. Otherwise, a stochastic programming approach must be used. Two main
variants of stochastic programming (see e.g. [1]) are the stochastic programming
with recourse and the chance-constrained programming.

Charnes and Cooper [2] proposed to replace constraints (1a) with a number
of probabilistic constraints. Denoting with P(.), the probability of an event, we



consider the probability that constraint i is satisfied, i.e. :

P


∑

j

aijxj ≤ bi


 .

Let αi be the maximum allowable probability that constraint i is violated, a
chance-constrained programming formulation of LP, say CCP, can be
obtained by replacing (1a) with the following chance constraints:

P


∑

j

aijxj ≤ bi


 ≥ 1 − αi , i = 1, . . . ,m. (2)

When all cj ’s are known, this formulation minimizes z while forbidding the
constraints to exceed certain threshold values αi.

Moving constraints (2) to the objective function via Lagrangean multipliers,
we obtain the following stochastic program:

SPR : min
∑

j

cjxj +
∑

i

λi P


∑

j

aijxj > bi


 (3)

s.t. xj ≥ 0, j = 1, . . . , n.

Using the Lagrangean multipliers, SPR directly considers the cost of recourse,
i.e. the cost of bringing a violated constraint to feasibility.

When the deterministic mathematical model involves also binary and/or in-
teger variables, as in many real applications, the complexity of the associated
stochastic program increases. To this purpose, several solution approaches are
reported in literature such as the Integer L-Shaped Method [3], heuristics (see
e.g. those for Stochastic Vehicle Routing Problem [4, 5]), methods based on a
priori optimization [6] or sample-average approximation [7].

In this paper we propose a new algorithmic approach which combines Tabu
Search and simulation for Chance-Constrained Programming. Glover and Kelly
have described the benefits of applying Simulation to the solution of NP-hard
problems [8]. Tabu Search [9] is a well-known metaheuristic algorithm which has
proved effective in a great number of applications.

The paper is organized as follows. The motivations and the basic idea of
combining Tabu Search and Simulation are presented and discussed in section 2.
In section 3 we introduce two optimization problems which are used to evaluate
the efficiency of the proposed algorithms. Section 4 describes the two problems.
Section 5 reports about the planning and the results of the computational ex-
periments. Finally, ongoing work is discussed in section 6.

2 Motivations and Basic Ideas

In the following, we refer to the general model IP derived from LP setting the
xj ’s to be integer.



Tabu Search (TS) explores the solution space by moving at each iteration to
the best neighbor of the current solution, even if the objective function is not
improved. In order to avoid cycling, each move is stored in a list of tabu moves
for a number of iterations: a tabu move is avoided until it is deleted from the
list. A basic scheme of TS algorithm, say bts, is depicted in Algorithm 1.

Algorithm 1 bts

k := 1;
x := InitialSol();
while (not stop) do

N(x) := NeighborhoodOf(x);
N (k)(x) := N(x) \ T (k)(x) ∪ A(k)(x);
x′ := BestOf(N (k)(x));
x := x′;
k := k + 1;

end while

Note that: T (k)(x) is the set of tabu solutions generated by x using tabu
moves at iteration k; A(k)(x) is the set of tabu solution which are evaluated
since they respect some aspiration criteria (e.g. their objective function value
improves that of current best solution). The algorithm usually stops after a given
number of iterations or after a number of not improving iterations.

From a computational point of view, the computation of N(x) and its eval-
uation (the choice of the best move) are the most time consuming components.
For instance, a linear running time to evaluate the objective function of a single
move is usually considered acceptable for a deterministic problem.

Unfortunately, this is not always true for stochastic programs. If we consider
both SPR and CCP models, we observe that a move evaluation requires to
compute a quite complex probability function. For instance, in [5], the authors
proposed a SPR formulation for Vehicle Routing Problem with Stochastic De-
mands and Customers: the proposed TS algorithm, tabustoch, requires at least
O(n3) to evaluate a single move, where n is the number of demand locations.
More generally, the evaluation of a new move involves probability and, at least,
two stages of computation [1].

Our main concern is to reduce the computational complexity required for
neighborhood exploration by introducing simulation methods within TS frame-
work for solving a CCP programs.

The idea is based on a different way of dealing with random parameters:
instead of computing directly the probability function, which is computationally
expensive, we use simulation to evaluate random parameters. Then, we use these
simulated random parameters, within the TS framework, in order to avoid moves
which lead to unfeasible solutions, i.e. moves which make unfeasible the chance-
constraints (2).



For the sake of simplicity, we assume that only the bi’s are random. Clearly,
the following remarks can be extended straightforwardly to the other problem
parameters. In order to simulate random parameters, we introduce the following
notation:

x(k) = the variable x at k-th iteration,

b̃
(t)
i = the t-th simulated value of bi (t = 1, . . . , T ),

δ
(k,t)
i = b̃

(t)
i −

∑

j

aijx
(k)
j (t = 1, . . . , T ).

Let S
(k)
i be given as follows:

S
(k)
i =

T∑

t=1

S
(k,t)
i , where S

(k,t)
i =

{
1 if δ

(k,t)
i > 0

0 otherwise
. (4)

The value of S
(k)
i counts the number of successes for the i-th constraint (i.e.

the constraint is satisfied) The value S̄
(k)
i =

S
(k)
i

T
estimates the probability of

constraint i to be satisfied at iteration k
Taking into account CCP models, we are interested in computing solutions

such that the chance-constraints (2) are satisfied for a given probability.
In this case, we can introduce a concept similar to that of a tabu move. The

idea is to avoid all the moves leading to solutions which make unfeasible the
respective chance-constraint. More formally, a move is probably tabu at iteration
k if

S̄
(k)
i < 1 − αi , i = 1, . . . ,m. (5)

Let P (k)(x) be the set of probably tabu solutions generated by x at iteration
k. Then, the corresponding TS algorithm, say simts-ccp, can be obtained from
Algorithm 1 by modifying the computation of N (k)(x) as

N̄ (k)(x) := N(x) \ T (k)(x) \ P (k)(x) ∪ A(k)(x). (6)

The simts-ccp procedure is sketched in Algorithm 2.
Finally, TS offers to the researchers a great flexibility. For instance, a common

practice is to use a simple neighborhood structure and a penalized objective
function to take into account the unfeasibility when some constraints are violated
(see e.g. [10]). A general form of penalized function can be the following:

z +
∑

i

βipi(x) (7)

where βi > 0 is usually a self-adjusting penalty coefficient and pi(x) ≥ 0 is a
measure of how much the i-th constraint is unfeasible.

In the same way, we can adapt the function in (7) to take into account the
unfeasibility of chance-constraints. For instance, the pi(x) function for the i-th



Algorithm 2 simts-ccp

k := 1;
x := InitialSol();
while (not stop) do

N(x) := NeighborhoodOf(x);
N̄ (k)(x) := N(x) \ T (k)(x) \ P (k)(x) ∪ A(k)(x);
x′ := BestOf(N (k)(x));
x := x′;
k := k + 1;

end while

constraint (2) can have the following general form:

pi(x) = 1 − αi − P


∑

j

aijxj ≤ bi


 , i = 1, . . . ,m. (8)

3 Test Problems

In order to test the simts-ccp algorithm,we will consider two NP-hard opti-
mization problems arising in the design of telecommunication networks based
on SONET technology. For this class of problems, extensive computational ex-
periences have been made and efficient tabu search algorithms are available [11].

local

ring

ADM

local

ring

local

ring

Customers

federal
ring

DXC

Fig. 1. A SONET network with DXC

The SONET network is a collection of rings connecting a set of customer
sites. Each customer needs to transmit, receive and relay a given traffic with
a subset of the other customers. Add-Drop Multiplexers (ADM) and Digital



Cross Connectors (DXC) are the technologies allowing the connection between
customers and rings. Since they are very expensive, the main concern is to reduce
the number of DXCs used.

Two main topologies for the design of a SONET network are available. The
first topology consists in the assignment of each customer to exactly one ring
by using one ADM and allowing connection between different rings through a
unique federal ring composed by one DXC for each connected ring. The objective
of this problem, say srap and depicted in Figure 1, is to minimize the number
of DXCs.

Under some distance requirements, a second topology is possible: the use of
a federal ring is avoided assigning each traffic between two different customers
to only one ring. In this case, each customer can belong to different rings. The
objective of this problem, say idp and depicted in Figure 2, is to minimize the
number of ADMs. For further details see e.g. [12, 11, 13].

local

ring

ADM

local

ring

local

ring

Customers

Fig. 2. A SONET network without DXC

In order to formulate these problems, we consider the undirected graph G =
(V,E): the node set V (|V | = n) contains one node for each customer; the edge
set E has an edge [u, v] for each pair of customers u, v such that the amount of
traffic duv between u and v is greater than 0 and duv = dvu, ∀u, v ∈ V, u 6= v.
Given a subset of edges Ei ⊂ E, let V (Ei) ⊆ V be the subset of nodes induced
by Ei, i.e. V (Ei) = {u, v ∈ V : [u, v] ∈ Ei}.

SRAP formulation

Given a partition of V into r subsets V1, V2, . . . Vr, the corresponding srap net-
work is obtained by defining r local rings, connecting each customer of subset Vi



to the i-th local ring, and one federal ring, connecting the r local rings by using
r DXCs. The resulting network uses n ADMs and r DXCs.

Solving srap corresponds to finding the partition V1, . . . Vr minimizing r,
and such that

∑

u∈Vi

∑

v∈V
v 6=u

duv ≤ B, i = 1, . . . , r (9a)

r−1∑

i=1

r∑

j=i+1

∑

u∈Vi

∑

v∈Vj

duv ≤ B (9b)

Constraints (9a) and (9b) impose, respectively, that the capacity bound B is
satisfied for each local ring and for the federal ring.

IDP formulation

Given a partition of E into r subsets E1, E2, . . . Er, the corresponding idp
network can be obtained by defining r rings and connecting each customer
of V (Ei) to the i-th ring by means of one ADM. The resulting network uses
ϕ =

∑r
i=1 |V (Ei)| ADMs and no DXC.

Solving idp corresponds to finding the partition E1, . . . Er minimizing ϕ and
such that ∑

[u,v]∈Ei

duv ≤ B, i = 1, . . . , r (10)

Constraints (10) assure that the traffic capacity bound B for each ring is not
exceeded. we finally remark that idp has always a feasible solution, e.g. the one
with |E| rings composed by a single edge.

Stochastic formulations

The stochastic version of srap and idp considers the demand duv as random
parameters. The corresponding chance-constrained programs are obtained by
replacing constraints (9a) and (9b) with

P




∑

u∈Vi

∑

v∈V
v 6=u

duv ≤ B


 ≥ 1 − αi, i = 1, . . . , r (11a)

P




r−1∑

i=1

r∑

j=i+1

∑

u∈Vi

∑

v∈Vj

duv ≤ B


 ≥ 1 − α0 (11b)

for srap, and constraints (10) with

P


 ∑

[u,v]∈Ei

duv ≤ B


 ≥ 1 − αi, i = 1, . . . , r (12)



for idp.

4 The Algorithms for SRAP and IDP

In [11] the authors proposed a short-term memory TS guided by a variable
objective function: the main idea of the variable objective function zv is to lead
the search within the solution space from unfeasible solutions to feasible ones,
as in Table 1.

Table 1. Variable objective function zv

srap idp

feas. sol not feas. sol feas. sol not feas. sol

feas. sol k B + BN (k + 1)B̃N feas. sol ϕ B + M 2ϕ M̃

not feas. sol k B n B̃N not feas. sol ϕ B 2ϕ M̃

where BN is the maximum value between maximum ring and federal ring capacities

B̃N is the value of BN associated to an unfeasible solution

M is the maximum ring capacity value

M̃ is the value of M associated to an unfeasible solution

A diversification strategy is implemented by varying multiple neighborhoods
during the search. More specifically, dmn uses mainly a neighborhood based on
moving one customer or demand at a time in such a way that the receiving ring
does not exceed the bound B. Otherwise, if B is exceeded, we consider also the
option of switching two customers or demands belonging to two different rings.
After ∆ consecutive non improving iterations, a second neighborhood is used for
few moves. During this phase, dmn empties a ring by moving its elements (cus-
tomers or demands respectively for srap and idp) to the other rings disregarding
the capacity constraint while locally minimizing the objective function.

To turn the computation of each move efficient, some data structures, repre-
senting the traffic within and outside a ring, are maintained along the computa-
tion.

The whole algorithm is called Diversification by Multiple Neighborhoods,
say dmn. For a more detailed description of the whole algorithm, refer to the
description given in [11].

The simts-ccp Algorithms

In order to devise the simts-ccp algorithms for our problems, we need to im-
plement the evaluation of chance-constraints through the generation of random
parameters duv.



As described in section 2, we need T observations of S
(k,t)
i to evaluate the

value of S̄
(k)
i defined in (4). Moreover, each S

(k,t)
i needs the generation of all duv

traffic demands values according to their probability distribution function.

Algorithm 3 Computation of S̄
(k)
i

for all t = 1, . . . , T do
generate random duv, ∀u, v ∈ V, u 6= v;
for i = 1, . . . , r do compute δ

(k,t)
i ;

end for
for i = 1, . . . , r do compute S̄

(k)
i ;

Algorithm 3 describes, with more details, the evaluation of S̄
(k)
i . Since the

number of traffic demands duv is O(n2), the complexity of the computation of

S̄
(k)
i values is O(T × n2). Note that the complexity of δ

(k,t)
i can be reduced

employing the current traffic values available in the traffic data structures.

Here we propose two simts-ccp algorithms derived from dmn. The basic

idea is to add the computation of S̄
(k)
i to the original framework of dmn at

the end of neighborhood exploration: starting from solution x, the algorithms
generate each possible move x′ as in dmn using the mean value of duv; then, the
stochastic feasibility (respecting to the chance-constraints) is tested through the

computation of S̄
(k)
i . The algorithms differ in how the test is used to reject, or

not, solution x′.

The first one, called dmn-stoch-1, is the simplest one: each move not belong-
ing to N̄ (k)(x), defined in (6), is avoided. In other words, dmn-stoch-1 allows
only moves which satisfy the chance-constraints. Note that the objective function
remains the one in Table 1.

Table 2. Penalized variable objective function z̄v

srap idp

feas. sol not feas. sol feas. sol not feas. sol

feas. sol zv + Bs(x) zv + B̃Ns(x) feas. sol zv + Bs(x) zv + M̃s(x)

not feas. sol zv + Bs(x) zv + B̃Ns(x) not feas. sol zv + Bs(x) zv + M̃s(x)

On the contrary, the second one, say dmn-stoch-2, allows moves in P (k)(x)
but penalizes them using an objective function which also measures how unfea-
sible the chance-constraints are. Referring to the general form reported in (7)
and (8), our penalized objective function z̄v is depicted in Table 2 where s(x) =



∑
i pi(x) and

pi(x) =

{
100(1 − αi − S̄

(k)
i ) if S̄

(k)
i < 1 − αi

0 otherwise
.

5 Preliminary Computational Results

In this section, we report the planning of computational experiments and the
preliminary results.

In our computational experiments, we used the well-known Marsaglia-Zaman
generator [14, 15], say ranmar. This algorithm is the best known random num-
ber generator available since it passes all of the tests for random number gener-
ators. The algorithm is a combination of a Fibonacci sequence (with lags of 97
and 33, and operation “subtraction plus one, modulo one”) and an “arithmetic
sequence” (using subtraction), which gives a period of 2144. It is completely
portable and gives an identical sequence on all machines having at least 24 bit
mantissas in the floating point representation.

Results of the deterministic version

Table 3. dmn: best computational results.

gaps avg. time in ms

z # opt # 1 # 2 # 3 # >3 optimal all

srap zv 118 0 0 0 0 60.4 60.4
idp zv 129 23 2 0 0 808.9 846.4

Considering the set of 160 benchmark instances generated by Goldschmidt
et al . [13], dmn solves to optimality all the 118 instances, which are known to be
feasible for srap, with an average computing time of 60 mseconds. On the same
benchmark but considering idp, for which the optimal solution value is known
only for 154 instances, dmn solves 129 instances to optimality, 23 instances with a
gap of 1 and the remaining two instances with a gap of 2. The average computing
time is 850 mseconds. The overall results are reported in Table 3.

Results of the stochastic version

We have tested our algorithms on the same benchmark varying the parameters in
the following ranges: T ∈ {50, 75, 100}, αi = α ∈ {0.3, 0.2, 0.1} and maintaining
unaltered those giving the best result for the deterministic version (see [11]).



Table 4. dmn-stoch-1: best and worst computational results.

type of gaps avg. time in ms

results # opt # 1 # 2 # 3 # >3 optimal all

srap best 103 3 3 4 5 341.4 397.1
srap worst 99 3 8 1 7 412.3 441.3

idp best 105 27 8 4 10 3127.3 3301.5
idp worst 101 25 10 3 15 3108.2 3309.9

The comparisons are made with the optimal value of the deterministic ver-
sion, that is the values obtained using the mean value of traffic demands. Our
tests try to investigate how far the solution computed by the simts-ccp is from
the one computed by its deterministic version.

Table 5. dmn-stoch-2: best and worst computational results.

type of gaps avg. time in ms

results # opt # 1 # 2 # 3 # >3 optimal all

srap best 106 4 5 2 1 394.1 432.7
srap worst 104 5 4 2 3 443.5 457.9

idp best 118 22 6 5 3 3212.3 3287.2
idp worst 108 25 8 4 9 3459.1 3501.4

The results, reported in Table 4 and 5, show the impact of S̄
(k)
i computa-

tion: although the increase in the average computation time is quite remarkable
with respect the deterministic version, we observe that the quality of solutions
computed by both algorithms is acceptable.

6 Conclusions and further works

The paper addresses the problem of solving chance-constrained optimization
problems combining Tabu Search and Simulation. After a brief introduction to
stochastic programming, the class of simts-cpp algorithms is proposed. The
reported computational results show that the solutions computed have a quality
comparable to those computed by the deterministic version. Also the increase in
the average running time is acceptable.

Further work will be mainly concerned with two topics. The first one is the
extension of computational experiments regarding simts-ccp. The second one
concerns the study of a similar algorithm for SPR problems.
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