Skip to main content

Radial Basis Function Network Pruning by Sensitivity Analysis

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3060))

Abstract

Radial basis function (RBF) neural networks have been extensively used for classification and regression due to the fact that they can provide fast linear algorithms to approximate any regular function. The most critical issue in the construction of an RBF network for a given task is to determine the total number of radial basis functions, their centers and widths. Conventional methods of training an RBF network are to specify the radial basis function centers by searching for the optimal cluster centers of the training examples. This paper proposes a novel learning algorithm for construction of radial basis function by sensitive vectors (SenV), to which the output is the most sensitive. Our experiments are conducted on four benchmark datasets, and the results show that our proposed SenV-RBF classifier outperforms conventional RBFs and achieves the same level of accuracy as support vector machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bianchini, M., Frasconi, P., Gori, M.: Learning without local minima in radial basis function networks. IEEE Transactions on Neural Networks 6(3), 749–756 (1995)

    Article  Google Scholar 

  2. Bishop, C.M.: Improving the generalization properties of radial basis function neural networks. Neural Computation 3(4), 579–581 (1991)

    Article  Google Scholar 

  3. Bishop, C.M.: Training with noise is equivalent to Tikhonov regularization. Neural Computation 7(1), 108–116 (1995)

    Article  MathSciNet  Google Scholar 

  4. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. School of Information and Computer Science, University of California, Irvine, CA (1998), [Online] Available http://www.ics.uci.edu/~mlearn/MLRepository.html

  5. Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal least squares learning algorithms for radial basis function networks. IEEE Transactions on Neural Networks 2(2), 302–309 (1991)

    Article  Google Scholar 

  6. Chen, S., Chng, E.S., Alkadhimi, K.: Regularized orthogonal least squares algorithm for constructing radial basis function networks. International Journal of Control 64(5), 829–837 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, S., Wu, Y., Luk, B.L.: Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Transactions on Neural Networks 10, 1239–1243 (1999)

    Article  Google Scholar 

  8. Choi, J.Y., Choi, C.H.: Sensitivity analysis of multilayer perceptron with differentiable activation functions. IEEE Transactions on Neural Networks 3(1), 101–107 (1992)

    Article  Google Scholar 

  9. Kadirkamanathan, V., Niranjan, M.: A function estimation approach to sequential learning with neural networks. Neural Computation 5(6), 954–975 (1993)

    Article  Google Scholar 

  10. Hwang, Y.S., Bang, S.Y.: An efficient method to construct a radial basis function neural network classifier. Neural Networks 10(8), 1495–1503 (1997)

    Article  Google Scholar 

  11. Hsu, W., Lin, C.J.: A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)

    Article  Google Scholar 

  12. Mao, K.Z.: RBF neural network center selection based on fisher ratio class separability measure. IEEE Transactions on Neural Networks 13(5), 1211–1217 (2002)

    Article  Google Scholar 

  13. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and statistical classification (1994), [Online] Available http://www.liacc.up.pt/ML/statlog/datasets.html

  14. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Computation 1, 281–294 (1989)

    Article  Google Scholar 

  15. Orr, M.J.L.: Regularization in the selection of radial basis function centers. Neural Computation 7, 606–623 (1995)

    Article  Google Scholar 

  16. Park, J., Sandberg, I.W.: Approximation and radial basis function networks. Neural Computation 5, 305–316 (1993)

    Article  Google Scholar 

  17. Panchapakesan, C., Palaniswami, M., Ralph, D., Manzie, C.: Effects of moving the centers in an RBF network. IEEE Transactions on Neural Networks 13(6), 1299–1307 (2002)

    Article  Google Scholar 

  18. Piche, S.W.: The selction of Weight Accuracies for Madalines. IEEE Transactions on Neural Networks 6(2), 432–445 (1995)

    Article  Google Scholar 

  19. Poggio, T., Girosi, F.: Networks for approximation and learning. Proceedings of the IEEE 78, 1481–1497 (1990)

    Article  Google Scholar 

  20. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  21. Scholkopf, B., Sung, K.K., Burges, C.J.C., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.: Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing 45(11), 2758–2765 (1997)

    Article  Google Scholar 

  22. Stevenson, M., Winter, R., Widrow, B.: Sensitivity of feedforward neural networks to weight errors. IEEE Transactions on Neural Networks 1(1), 71–80 (1990)

    Article  Google Scholar 

  23. Wang, Z., Zhu, T.: An efficient learning algorithm for improving generalization performance of radial basis function neural networks. Neural Networks 13(4), 545–553 (2000)

    Article  Google Scholar 

  24. Wright, W.: Bayesian approach to neural network modeling with input uncertainty. IEEE Transactions on Neural Networks 10(6), 1261–1270 (1999)

    Article  Google Scholar 

  25. Yeung, D.S., Sun, X.: Using function approximation to analyze the sensitivity of MLP with antisymmetric squashing activation function. IEEE Transactions on Neural Networks 13(1), 34–44 (2002)

    Article  Google Scholar 

  26. Zeng, X., Yeung, D.S.: Sensitivity analysis of multilayer perceptron to input and weight perturbation. IEEE Transactions on Neural Network 12(6), 1358–1366 (2001)

    Article  Google Scholar 

  27. Zeng, X., Yeung, D.S.: A quantified sensitivity measure for multilayer perceptron to input perturbation. Neural Computation 15, 183–212 (2003)

    Article  MATH  Google Scholar 

  28. Zurada, J.M., Malinowski, A., Usui, S.: Perturbation method for deleting redundant inputs of perceptron networks. Neurocomputing 14(2), 177–193 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, D., Gao, J., Yeung, D.S., Chen, F. (2004). Radial Basis Function Network Pruning by Sensitivity Analysis. In: Tawfik, A.Y., Goodwin, S.D. (eds) Advances in Artificial Intelligence. Canadian AI 2004. Lecture Notes in Computer Science(), vol 3060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24840-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24840-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22004-6

  • Online ISBN: 978-3-540-24840-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics