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Abstract. In this paper, we will examine how a model-based tutor can
automatically generate demand feedback. We will propose a two-stage
feedback generation algorithm that maintains the principle of modu-
larity characteristic of model-based representation, while automatically
generating detailed demand feedback. We will evaluate model-based pro-
gramming tutors to demonstrate that the feedback generated using this
algorithm is coherent and effective at improving learning.

1 Introduction

We have been developing intelligent tutors to help students learn specific con-
structs in programming languages, such as loops, pointers, and expression eval-
uation. The tutors present a code segment involving a construct, ask the learner
to solve problems based on the code, and provide demand feedback to facili-
tate learning. The tutors generate the problems as parameterized instances of
problem templates (as in [6]).

Various technologies have been used to model the domain in an intelligent
tutor, including rule-based reasoning (e.g., production rules used in ACT-R the-
ory [1]), constraint-based reasoning (e.g., [10]), and case-based reasoning (e.g.,
[13]). Earlier, we had proposed using model-based reasoning for programming
tutors [7] because of its relative advantages over the other technologies [5]. In
this paper, we will briefly examine how demand feedback can be generated in a
tutor that uses model-based reasoning for domain modeling.

One of the advantages of using model-based reasoning for modeling the do-
main in an intelligent tutor is that the domain model doubles as the runnable
expert module [7]. Therefore, the tutor is capable of solving problems on its own.
Can the tutor also automatically generate feedback on its own?

The representation used in model-based reasoning is modular - each com-
ponent is responsible for only its behavior. A device derives its behavior by
composing the behaviors of its components. Such a modular design promotes
scalability. Can such a modular scheme be used to generate feedback? If so,
would the resulting feedback be coherent? Would it be effective enough for
the user to learn from? In this paper, we will briefly examine these questions.
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2 Feedback Generation

Currently, our tutors provide demand feedback [2], i.e., they provide feedback
only when the learner demands. Research shows that students who practice with
demand feedback are significantly better at far-transfer tasks than those who
receive immediate feedback [4][9]. Therefore, demand feedback is appropriate
for our tutors on programming.

Our tutors generate demand feedback using simulation and reflection. Re-
flection is the process of providing explanation by reflecting on the state and the
knowledge of the tutor [11]. During simulation, each tutor executes the model of
the program. By way of reflection, it examines the state of the components, and
generates explanation based on its observations. The resulting feedback can not
only explain the behavior of the program, but also justify the correct answer.

We use a two-stage algorithm to generate feedback about a program, by
composing the feedback generated by its components:

– Process Explanation: The interpreter that executes the code generates
this explanation in a fashion similar to program tracing. For each line of
code, the interpreter identifies the components participating in the line of
code, and any state transitions that they undergo as a result of executing
the line of code. This includes identifying any side-effect that results from
executing the line, i.e., any input, output, or change in the values of variables.
Since the lines of code are executed in the order specified by the program,
the resulting feedback narrative is coherent.

– Component Explanation: This explanation is generated by the compo-
nents participating in the line of code that is currently being executed. If an
action is applied to a component that is not supported by the current state
of the component, the component explains why the attempt to apply the
action is an error. Furthermore, the component steps through and generates
explanation for each of the previous states of the component. It presents the
generated lines of explanation in one of two forms:
• Detailed form: It explains all the prior states in order, and how they

culminate in an error when the current action is applied.
• Abbreviated form: It explains only the current state, and how applying

the current action results in an error.

Component explanation is coordinated with process explanation as follows:
during the generation of process explanation, at each line of code, component
explanation is obtained from all the components participating in that line of
code. Only the explanations from the components that are in an error state
are inserted into the process explanation. The abbreviated form of component
explanation is used during the generation of demand feedback. The algorithm
may be summarized as follows:

Execute the code line by line:
For each line of code

Generate process explanation
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For each component involved in the line
If the component reached an error state on this line

Generate abbreviated component explanation for the component
Insert it after the process explanation for the line

The tutor post-processes the feedback generated by process and component
explanations to address the needs of the user:

– Detailed Feedback: Since the feedback includes a complete explanation of
the behavior of the program, it is used for novices, for the first few problems
in a tutoring session, and in instructional (as opposed to problem-solving)
mode.

– Diagnostic Feedback: The feedback is post-processed to include only the
following:
• Process explanation generated by input and output statements;
• The abbreviated version of component explanation generated by compo-

nents with observed errors.
Diagnostic feedback is used once the student starts making progress towards
the educational objectives of the tutor.

The algorithm can be applied to any domain wherein the composition of
behavior reflects the composition of structure, i.e., those and only those compo-
nents that constitute a device contribute to the behavior of the device.

2.1 Example

The following is a typical program that the learner is asked to debug when using
a tutor on pointers:

void main()
{

long *indirectPointer;
{

long count = 1313;
indirectPointer = &count;

}
cout << *indirectPointer;

}

The demand feedback generated by the tutor for the above code is:
When the program is executed:
The program always starts executing from main().
When the function main() is executed:
Pointer indirectPointer is declared on line 4.
But, it has not been assigned a value yet
When the nested block starting at line 5 is executed:
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Variable count is declared on line 6.
It is initialized during declaration to 1313
Pointer indirectPointer is assigned to point to count on line 7
The nested block is exited on line 8
Variable count goes out of scope and is deallocated on line 8
An attempt is made to print the value of the variable pointed to by
indirectPointer on line 9
But, variable count has already gone out of the scope of its declaration.
Therefore, indirectPointer is a dangling pointer.
The function main() is exited on line 10
Pointer indirectPointer goes out of scope and is deallocated on line
10

All except the italicized lines of feedback are generated during process expla-
nation. The italicized lines are an abbreviated version of component explanation.
Note that it is important for component explanation to include the complete con-
text so that its feedback can be understood independent of any other feedback
generated by process explanation.

3 Evaluation of the Tutor

We have evaluated several of our tutors to check if demand feedback generated
automatically by the tutor is effective enough to promote learning. In each case,
we used a pre-test, practice, post-test protocol. The pretest and post-test were of
comparable hardness, with similar problems, listed in the same order. We used
controlled tests - during the practice, the control group was provided minimal
feedback and the experimental group was provided detailed demand feedback.
Minimal feedback listed whether the learner’s answer was correct or wrong, but
not why. Detailed demand feedback also explained why, and was automatically
generated by the tutor.

Where possible, in order to eliminate practice effect, we considered student
score per attempted question or percentage of attempted questions correctly
answered, instead of raw scores. We calculated effect size as (post-test score -
pretest-score) / standard-deviation on the pre-test. Note that an effect size of
two is the holy grail for tutors - one-on-one human tutoring is known to improve
learning by two standard deviations over traditional classroom instruction [3].
We used 2-tailed p-value to verify the statistical significance of our results.

When we evaluated our tutor on expression evaluation tutor in Fall 2002,
we found that the effect size was 1.35 for the test group (N=24) that received
detailed feedback versus 0.84 for the control group (N=24) that received minimal
feedback. Similarly, when we evaluated our tutor on parameter passing in Spring
and Fall 2002, we found that the effect size was 0.99 for the test group (N=14)
that received detailed feedback versus 0.07 for the control group (N=15) that
received minimal feedback. These and other similar results (e.g., [8]) indicate
that the demand feedback automatically generated by our tutors using the two-
stage algorithm described in Section 2 is coherent and effective in promoting
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learning. We plan to continue to evaluate our tutors for the quality and quantity
of feedback they provide.
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