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Abstract 

The Constraint Satisfaction Problem (CSP:I is NP-hard. Finding solutions requires searching 

in an exponential space of possible variable assignments. Good value ordering heuristics are 

essential for finding solutions to CSPs. Such heuristics estimate the probability that any 

particular variable assignment will appear in a globally consistent solution. Unfortunately, 

computing solution probabilities exactly is; also NP-hard. Thus estimation algorithms are 

required. Previous results have been very encouraging but computationally expensive. 

In this thesis, we present two new algorithms, called Histogram Arc Consistency (HAC) 

and p Arc Consistency (PAC), which generate fast estimates of marginal solution counts 

during constraint propagation. This inform.ation is used as value ordering heuristics to guide 

backtrack search. 

We conducted experiments using randomly generated CSPs. Our experimental results 

on random CSPs show that these methods indeed provide significant heuristic guidance 

compared to previous methods while remaining efficient to compute. 
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Chapter 1 

Introduction 

1.1 Motivations 

The Constraint Satisfaction Problem (CSP) has been applied in different application areas 

to solve real life problems. Basically, a CSP problem consists of a set of variables and a set of 

constraints. Each variable is associated with a set of domain values. The objective of solving 

a CSP is to assign each variable with a domain value such that all constraints are satisfied. 

Problems such as workshop scheduling, resource allocation and visual image interpretation, 

etc., can be formulated as constraint satisfaction problems and different constraint solving 

techniques can be applied to solve them. 

One of the traditional algorithms to solve CSP problems is called the chronological 

backtrack search algorithm. In this algorithm, variables are assigned one at a time, such that 

the new assignment is compatible with all previous assignments. When no value can be found 

in a variable domain that is consistent with all previous variable assignments, the algorithm 

backtracks to the last assigned variable and a new value is chosen. The chronological 

backtrack search algorithm stops when either a solution is found or a conclusion is made 

that no solution exists. The worst-case complexity of this algorithm is exponential in terms 

of the number of variables, because in th~e worst case this algorithm has to generate all 

possible combinations of domain values to find a solution (or stop without a solution). 

Value ordering heuristic has been used to guide the search algorithm towards areas of 

search space that are likely to contain ~olut~ions. An efficient value ordering heuristic would 

be to choose a value which appears in the most solutions. In this thesis, we use the marginal 

solution count to represent the number of times that a domain value appears in all solutions. 
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However, this information is only available after all solutions have been found. Thus we need 

to estimate these counts. 

Various researches have been done on generating approximations of marginal solution 

counts. For tree-structured CSPs, Meisels et al. [16], Pearl [21], and Neopolitan [19] have 

shown that the exact marginal solution counts can be found in polynomial time. For general 

structured CSPs, Detcher and Pearl [5] suggested to first reduce the complete constraint 

network to single spanning tree and use the exact marginal solution counts obtained in 

the simplified problem as an approximation to the original problem. Vernooy and Havens 

[24] converted the original problem to multiple spanning trees. The approximated marginal 

solution counts for the whole problem are obtained by combining the marginal solution 

counts of each subproblems. Meisel et al. [16] suggested converting the constraint network to 

a Bayesian network such that the marginal solution counts are proportional to the marginal 

probabilities in the network. The solution probability is then obtained through probability 

updating in the network. 

In these algorithms, loops in general CSP networks can cause gross over counting prob- 

lems. They are ignored either by deleting the constraints that form a loop from the network 

[5] or by assuming independence among subproblems [24, 161. These assumptions introduce 

errors to the estimations. Thus, the heuristic information obtained by these algorithms may 

not correspond to the ordering in the original problem. 

The Probability Arc Consistency (PAC) algorithm introduced by Horsch and Havens 

[14] maintains the structure of the original CSP problem and deals with the over counting 

problem directly. In this algorithm, using: local consistency technique, the approximated 

solution probabilities are obtained by iteratively propagating the number of constraints that 

are satisfiable. The program stops when the estimating process converges, i e . ,  changes in 

the solution probabilities are less than a threshold, c. Otherwise, the program halts without 

convergence when the total number of iterations has exceeded the predefined maximum 

number of iterations. 

Experimental results showed that the ordering of domain values provided by the PAC 

algorithm is highly correlated with the ordering implied by the exact solution probabilities. 

The use of this value ordering as a heuristic to guide the search algorithm has been found to 

reduce the number of backtracks in random CSPs by as many as two orders of magnitude 

[12]. However the convergence of the a1gorit:hm can be very slow for moderate sized problems. 

For larger problems, pAC7s runtime is competitive or superior to previous algorithms. When 
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the problem is small, the cost of computing the PAC outweighs the benefit of reducing search 

cost. 

In this thesis, we present two new algorithms, called Histogram Arc Consistency(HAC) 

and ,u Arc Consistency (PAC). The HAC algorithm approximates marginal solution counts 

by propagating the number of constraints that are satisfiable. Local information is used to 

estimate these global properties. A major difference between HAC and PAC is that while 

the PAC algorithm propagates values of solution probabilities until they do not change, the 

HAC algorithm stops when no value is deleted from variable live domains thus guaranteeing 

convergence. We are aware that the marginal solution counts obtained by our algorithms 

are also not exact, but we argue that the exact marginal solution counts are not necessary 

when they are used as value ordering heuristics[l2]. Our very coarse approximation is good 

enough to guide the search algorithm effectively. 

The HAC algorithm is similar to Geelen's value ordering heuristic. [6] Geelen's algorithm 

calculates products of the remaining domain sizes of the future variables. It represents 

an upper bound on the number of possible solutions resulting from the assignment. The 

value with the highest valuation is chosen. The PAC algorithm takes one step further from 

the HAC algorithm. It assumes accuracy of marginal solution counts generated by the 

HAC algorithm. It removes all domain values with small HAC valuations from variable live 

domains and these forced domain reductions are propagated through the constraint network. 

Hopefully, by aggressively reducing the size of the search tree we can find a solution quickly 

and with less backtracks. 

1.2 Objective of the Research 

This thesis presents two new algorithms, Histogram Arc Consistency (HAC) and ,u Arc 

Consistency (PAC). These algorithms are simplified versions of the PAC algorithm intro- 

duced by Horsch and Havens [12]. They generate rough estimations of the marginal solution 

counts for constraint satisfaction problems. This information is used as a value ordering 

heuristic to guide the search algorithm. 

We want to show that, when used as value ordering heuristics, the estimated marginal 

solution counts generated by our algorithms, although not as accurate as those generated 

by the PAC algorithm, are good enough to guide the search algorithm and take less CPU 

time to compute. 
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These proposed algorithms are tested using randomly generated CSPs. Numbers of 

backtracks used to find first solutions and CPU times are collected. Performances of these 

two new algorithms are compared with the traditional arc consistency algorithm and with 

the PAC algorithm. 

1.3 Organization of the Thesis 

The rest of the thesis is organized as follows: 

Chapter 2 introduces the background information of constraint satisfaction problems. 

In this chapter, we first give definitions of some preliminary concepts and then we introduce 

the traditional algorithm to solve CSPs. In Chapter 3, we review previous works on approx- 

imating the marginal solution counts. In Chapter 4, we present our proposed algorithms, 

HAC and PAC. We also discuss how to combine HAC and PAC algorithms with the search 

algorithm to solve CSPs. In Chapter 5 ,  we show some experimental results. And finally, 

Chapter 6 concludes this thesis and points out the possible future work. 



Chapter 2 

Background Informat ion 

2.1 Constraint Satisfaction Problems 

2.1.1 Definitions 

In this section, we review some preliminary concepts of the constraint satisfaction problem 

as presented in [23]. 

A Constraint Satisfaction Problem (CSF') is a triple < Z, D l  C >, where Z = {xl,  X Z ,  ..., x,) 

is a finite set of variables; D = {D,,, D,:,, ..., D,,,) is a finite set of domains, in which 

Dxi E D consists of all the possible values that can be assigned to variable xi; C is a finite 

set of constraints on an arbitrary subset of variables in Z. For example, C,l,x,,...,x, is a 

k-ary constraint which restricts values that; X I ,  x2, .. ., and xk can take sin~ultaneously. For 

convenience but without loss of generality, we restrict constraints in this thesis to be unary 

and binary constraints [20]. 

A label is a variable-value pair < x, v > representing the assignment of the value v E D, 

to the variable x. 

A compound label is the simultaneous assignments of values to a set of variables. We 

use the compound label (< X I ,  vl > < x2, us! >, .. . , < xk, vk >) to represent the simultaneous 

assignments: xl  = vl, x2 = 712, ..., xk = vk. 

A solution of a CSP is a compound label for all variables in Z which satisfies all con- 

straints. 

A marginal solution of a CSP is the projection of the set of solutions to a CSP onto 

the combined domain of a subset of the variables. [14]. A marginal solution count is the 
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number of times that the marginal solution appears in all the solutions. 

2.1.2 CSP Formalization 

To formalize a problem as a CSP, we need to identify the set of variables, 2, the set of 

domains, D, and the set of constraints, C .  

Consider the n-queens problem as an example. The objective of this problem is to 

arrange n queens on an n x n chest-board such that no queens are attacking each other, 

i.e., be arranged on the same row, or same column or same diagonal. A solution for the 

8-queens problem is shown in Figure 2.1. 

Figure 2.1: 8-queen Problem 

To formulate the &queen problem, we can make each row a variable, that is, Z = 

{Q1, Q2, ..., Q8). Each of these eight variables can take one of the eight columns as its 

value, i.e., DQ, = DQ, = ... = DQ, = {1,4!, 3 ,4,5,6,7,8) .  Constraints in this problem are 

represented using equations and inequalities. The constraint that no two queens are on the 

same column can be represented as : V i ,  j, Qi # Q j .  To make sure that no two queens are 

on the same diagonal, we can use the following constraint: V i, j, if Qi = a, QJ = b, then 

l ( i  - j ) l  # l(a - b)l. 
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Another CSP example is called the map coloring problem, as shown in Figure 2.2. Given 

a map and a number of colors, can we color all regions with given colors such that neighboring 

regions are in different colors? 

Figure 2.2: A M:ap Coloring Problem 

To formalize this problem, we can make each of the regions a variable. So for the problem 

shown in Figure 2.2, there are 4 variables, Z = {XI, ~ 2 ~ x 3 ,  x4). Each region is given three 

colors to choose from, {R-Red, G-Green, B-Blue), that is, D,, = D,, = Dx3 = Dx4 = 

{R, G, B).  There is a "not-equal" constraint between every pair of adjacent regions, that 

is: = {CX1,Z21 C X l r X 4 r  C X 1 j 2 3 1  CX2,Z31 CX3,X4). 

Sometimes, when constraints are too arbitrary to be formulated using equations or 

inequalities, we can use boolean matrix to represent them. In these matrices, tuples that 

are allowed are represented using 1's and tuples that are forbidden are represented using 

0's. 

To demonstrate, Figure 2.3 shows a boolean matrix representing the constraint C,,,,, 

of the above map coloring problem. 

jRom this constraint table we can see that for constraint C,,,,,, allowed tuples are: 

(< xi ,  R >< x2,G >), (< X I ,  R >< 2 2 ,  B >), (< x l , G  >< 2 2 ,  R >), (< x l , G  >< 2 2 ,  B > 
), (< X I ,  B >< 2 2 ,  R >), (< 21, B >< 2 2 ,  G >). 

A CSP can also be represented using constraint graphs in which each node represents 
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Figure 2.3: Constraint 01-table for the map coloring problem shown in Figure 2.2 

a variable in 2, and each edge represents a constraint in C. The constraint graph for the 

above map coloring problem is shown in Figure 2.4. 

Figure 2.4: Constraint graph for the map coloring problem shown in Figure 2.2 

2.2 The Chronological Backtrack Search Algorithm 

A traditional algorithm to solve constraint satisfaction problems is called the chronological 

backtrack search algorithm [4]. In this algorithm, variables are assigned to their domain 

values one at a time in a predefined order. Assigning a value to a variable from its domain 

is called the instantiation of the variable. After a variable is instantiated, all constraints 

involving this variable are checked to make sure that this new assignment is compatible with 

all previous assignments. If no constraint violation is found, the algorithm goes ahead to 
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instantiate the next variable in the order. Otherwise, the algorithm chooses a different value 

for the variable from its domain. If no such value can be found, the algorithm backtracks, 

which means that the last instantiated variable is revisited and another value, if available, 

is chosen. The algorithm ends when either a solution is found or a conclusion is made that 

no such solution exits. 

The pseudo-code for the chronological backtrack search (BT) algorithm is shown in 

Figure 2.5. The ChronologicalBacktraclcing(Z, D, C )  procedure calls the BT procedure 

at  line 2 with arguments U, P, D and C'. U is a vector containing the set of variables 

waiting to be assigned to a value. Initially, U equals to Z. P is a vector containing the 

set of variable-value pairs which satisfy all constraints. Initially, P is empty. D is the set 

of domains for variables in Z and C is the set of constraints. The BT procedure starts 

with picking a variable x from the set of unassigned variables at  line 5, and at  line 7, it 

picks a value v from the domain of variable x. Line 9 checks if assigning the value v to the 

variable x violates any constraints. If no constraint violation is found, line 12 adds the label 

< x, v > to the compound label P; deletes variable x from the set U and recursively calls 

the BT algorithm to instantiate another vilriable from the set U. If no value can be found 

in the variable domain that satisfies all co:nstraints, the BT procedure returns NIL at  line 

16. The previous assignment is discarded and a new value is chosen. The procedure either 

stops at  line 2 with a solution or it stops without a solution after exhausts all combinations 

of domain values. 

In the worst case, the chronological backtrack algorithm has to try all possible combina- 

tions of domain values and all constraints have to be checked. The worst case complexity of 

the chronological backtrack algorithm is O(dne), where n represents the number of variables, 

d represents the size of the variable d0mai.n and e is the number of constraints. When the 

size of the problem becomes larger, this algorithm becomes extremely slow. 

2.3 Improving the Backtrack Search Algorithm 

A number of algorithms have been developed to improve the efficiency of the chronological 

backtrack search algorithm. In this section, we first introduce the arc consistency algorithm, 

and then, we show you how to use heuristics to guide the search algorithm. 
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procedure ChronologicalBacktracking (2, Dl  C) 
1. begin 
2. BT(Z, 0, D, C); 
3. end 

procedure BT(U, P, D, C) 
1. begin 
2. if U = {) then return (P) 
3. else 
4. begin 
5. Pick a variable x from U 
6. repeat 
7. pick a value v from D, 
8. delete v from D, 
9. if P + {< x, v >) violates no constraints then 
10. begin 
11. Result e 
12. BT(U - {x), P + {< x ,v  >), Dl C) 
13. if Result # NIL then return (Result) 
14. end 
15. until (Dx = {)) 
16. return NIL /*no solution*/ 
17. end /*of else*/ 
18. end /*of BT*/ 

Figure 2.5: Psuedo code for the chronological backtrack search algorithm 



CHAPTER 2. BACKGROUND INFORMATION 11 

2.3.1 Enforcing Arc Consistency 

An arc (xi ,xj) ,  which corresponds to a binary constraint CXt,,, in the constraint graph of 

a CSP, is arc-consistent(AC) if and only if for every value vi in the domain of x,, there is 

a value in the domain of x j  which is compatible with < ai ,  vi >. A CSP is arc consistent 

if and only if every arc in its constraint graph is arc-consistent.[23] There is also a lighter 

version of arc consistency in a CSP, called directional arc consistency (DAC) [5]. A CSP 

is directional arc consistent if and only if for every value vi in the domain of xi, there is a 

compatible label < xj,  vj >, such that i < j 
The subset Dk. Dxt is called the live domain of variable xi which represents those 

values in its domain Dxt which are consistent with the current compound label. 1101 

By achieving arc consistency, we can remove values that can not be part of any solutions 

from variable domains, thus reduce the search space without ruling out any solutions. The 

REVISE(xi, xj)  procedure, as shown in Figure 2.6, revises the live domain of variable xi 

based on the live domain of variable X j  1151. In this procedure, for each value vi in the live 

domain of xi, line 4 checks if it is supported by a value in the domain of its neighboring 

variable xj. If it is not, line 6 removes the value vi from the live domain of xi. 

precedure REVISE(xi, xj)  
1. begin 
2. changed c false 
3. for each vi E Di do 
4. if no vj E Dj  such that Cxi,xi (vi, vj ) then 
5 .  begin 
6. Di + Di - {vi) 
7. changed + true 
8. end 
9. return changed 
10. end 

Figure 2.6: The REVISE procedure 

Deleting a value from a variable domain may cause other values in its neighboring 

variables become inconsistent, thus should lbe deleted as well. To achieve arc consistency for 

the whole problem, the above REVISE procedure needs to be performed repeatedly until 

no value is deleted from any variable doma.in. 

One of the AC achievement algorithms, AC-1, is shown in Figure 2.7. In this algorithm, 
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procedure ACl(Z, D, C) 
1. begin 
2. changed t true 
3. while (changed) 
4. changed t false 
5 .  for each constraint C,,,,, E C do 
6. changed +- changed v REVISE(xi, xj) 
7. end 

Figure 2.7: The AC-1 algorithm 

arc consistency is checked for every pair of constraints in C. If any variable domain is 

changed during the REVISE procedure, all constraints will be reexamined. 

The traditional arc consistency algorithm can also be represented using mathematical 

form as: 

where 

m(ai) is the membership value associated with the domain value ai 

n represents the boolean product, which is the logical AND operation, A .  

C represents the boolean sum, which is the logical OR operation, V 

N(xi) represents neighboring variables of xi. 

In the above function, m(ai) is a boolean value associated with the domain value ai 

of variable xi. It represents the membership of value ai in the live domain of variable x,. 

Initially, all membership values are set to 1, meaning all values are in the live domain. 

CXt,,, represents the constraint between variable xi and xj. CXz,,,(ai, aj)  returns true if 

the tuple {xi = ai, x j  = aj) is allowed, and false otherwise. The logical OR operation 

tells us if there is ANY value in the neighboring variable x j  supporting the value ai of the 

variable xi. If the disjunction operation OF1 comes out to be false for any of the neighboring 

variables of xi, then the conjunction operation AND will be false, which means that the 

value ai is not supported, thus should be removed. To achieve arc consistency for the whole 
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problem, these membership values are upd,ated repeatedly until no values are deleted from 

any variable domains. 

The arc consistency algorithm only checks for local consistency. It does not guarantee 

to find solutions. An efficient way to solve CSPs is to combine arc consistency with the 

search algorithm. The arc consistency algorithm can be used in the preprocessing to reduce 

the search space before search techniques a.re applied. It can also be used during search to 

prune off search space after each assignment is made. 

There are different ways to combine arc consistency with the backtrack search algorithm 

[8, 181. These algorithms differ from the degrees by which arc consistencies are achieved. 

In this thesis, we introduce the Full Look-a.head algorithm. This algorithm is also the base 

operation in our proposed algorithms. 

In the Full Look-ahead algorithm, when a variable is labeled, all related constraints 

are checked for consistency. Domain values that are not compatible with committed labels 

are removed. The removal of values from, variable domains are propagated through the 

constraint network. Full look-ahead a1gorith.m ensures that for every value in every unlabeled 

variable, there is a compatible value in each of its neighboring variables. The pseudo code 

for the Full-Lookahead algorithm is shown in Figure 2.8. The Full-Lookahead algorithm 

searches for solutions through recursively calling the FL(U, P, D,  C) procedure. In the F L  

procedure, line 3 performs arc consistency for every constraint. If none of the variable 

domains becomes empty after arc consistency is achieved, line 8 picks a value vi from the 

live domain of variable xi and assigns it to variable xi. After this assignment, the live domain 

of variable xi is updated using the UPDATE procedure, ie., Dk, = {vi). The updated live 

domain is propagated through the constraint network. This is done by the recursive call to 

the F L  procedure at line 12 . If, after arc consistency propagation, any variable domain 

becomes empty, the program backtracks, which means that formerly deleted domain values 

are restored and the last assigned variable is re-assigned to a different value. The program 

either stops after every variable is assigned a value or exhausts the whole search space and 

concludes that no solution exists. 

Experimental results show that [18], in most cases, the arc consistency algorithm is very 

efficient in reducing the search space. When combined with search algorithms, fewer number 

of backtracks are required to find solutions than using the chronological backtrack search 

algorithm alone. However, one disadvantage with the traditional arc consistency algorithm 

is that it only distinquishes domain values that are in variables' live domains from those 
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precedure Full-Lookahead(2, D ,  C )  
1. begin 
2. FL(2 ,  0,  D ,  C )  
3. end 

precedure FL(U, P, D,  C )  
1. begin 
2. if (U = {)) then return (P)  
3. AC-x(Z, D, C) 
4. if no domain in D is empty then 
5. begin 
6. pick a variable xi from U 
7. repeat 
8. pick a value vi from D,, 
9. delete value vi from D,% 
10. D' + UPDATE(D, < xi,vi >); 
11. Result + 

12. FL(U - {xi), P + {<: xi, vi >), D', C )  
13. if (Result # NIL) then return (Result) 
14. until DXz = {} 
15. end /*of if*/ 
16. return NIL 
17. end /*of FL*/ 

precedure UPDATE(D, < x,  v >) 
1. begin 
2. D' + D 
3. DL, + {vi) 
4. return D' 
5. end 

Figure 2.8: The Full Look-ahead algorithm 
AC-x() represents any arc consistency algorithm 
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that are not, it does not provide any heuristic ordering for these domain values. 

A CSP example is shown in figure 2.9. The problem has three variables Z = {xo, XI, x2}. 

Each variable has domain size three and val.ues a ,  b and c. So, D,, = D,, = D,, = {a, b, c). 

There are three constraints, C = {Cx0,,, , Cx0,,, , C,,,,,}. These constraints are represented 

using 0-1 tables as shown in figure 2.10. In these tables, allowed tuples are represented by 

1's and not-allowed tuples are represented by 0's. 

Figure 2.9: A csp example 

Cxqx, c*,x2 Cx,, * 
Figure 2.10: Constraint tables 
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Figure 2.11 shows an example of revising the live domain of variable xo base on live do- 

mains of it's neighbouring variables xl and xz. As we can see, membership values associated 

with domain elements of xo are first projected from constraints C,,,,, and C,,,,, respec- 

tively using the logical OR operation. And then, these membership values are combined 

using the logical AND operation. To achieve arc consistency for the whole problem, these 

projection and combination operations need to be performed on every constraint repeatedly 

until no domain is changed. 

The CSP that is arc consistent is shown in figure 2.12. From these membership valuations 

we can see that, after arc consistency propagation, all domain values are in their variable's 

live domains. Since the traditional arc consistency algorithm does not give these domain 

values any priority, to instantiate a variable, the search algorithm has to arbitrarily choose 

a value from the variable's live domain. For the above CSP, there are 3 solutions and they 

are: (xo = c, XI  = b, 2 2  = a ) ,  (50 = C, x1 = C, x2 = a ) ,  and (xo = c, xl = c,x2 = c). To find 

a solution, the search algorithm first assigns x l  = a. This assignment leads to a dead-end. 

The search algorithm backtracks. Next, the search algorithm assigns x l  = b and backtracks 

again. Finally, the search algorithm assigns xl  = c and finds a solution after 2 backtracks. 

2.3.2 Using Heuristics During Search 

There are two major decision points in the chronological backtrack search algorithm: [23] 

1. choose which variable to instantiate next? 

2. choose which value to assign to? 

The ordering in which variables are labeled and values are chosen can affect the efficiency 

of the search algorithm significantly. Especi.ally when the search algorithm is combined with 

consistency enforcing techniques. This is because different assignments may cause different 

amounts of search space to be pruned off. 

A popular variable ordering heuristic is to choose the variable which is most likely to 

cause backtracks, or the first-fail principle [8]. The reason behind this heuristic is that 

if the current partial solution can not lead to a solution, the earlier we stop searching in 

this direction and backtrack the better. When combined with the consistency enforcing 

technique, the variable that is most likely to fail is identified as the one with the smallest 
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%, XI CWI m(a,) xo, x l  CXO,X~ m(ai) 

a, a 
a ... O v l v O =  1 a, b 

a, c 

I b, a 
b ... l v O v O =  1 b, b 

b, c 

I C ,  a 
c . . O v l v l = l  C, b 

c, c 
--Y- 

Logical OR operation is used 
to project memebership 
values for x, tom C,,, 

Logical OR operation is used to 
project memebership values for 

xOfrom C,,, 

a , . .  1 A 1  = 1  
b . . . l A 1  = 1  
c . . .  l A 1  = 1  
u 

1-ogical AND operation is used to 
combine different membership 

-values from different constraints 

Figure 2.11: Boolean operations in the arc consistency algorithm 
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I I a . . .  1 

Figure 2.12: Membership values after arc consistency 

live domain. For variables with the same number of elements in their live domains, the 

variable participated in the most constraints is considered most likely to fail. 

The value ordering heuristic is a little inore complicated. If the objective of the search 

algorithm is to find all solutions, then all possible combinations of domain values need 

to be examined. The ordering by which domain values are chosen has no impact on the 

efficiency of the search algorithm. However, in most cases, we are more interested in finding 

a solution quickly than the completeness of the algorithm. If this is the case, we can choose 

the value which is most likely to lead to a solution. However, how to identify such value is 

not an easy task. One suggestion is to choose the value that appears in the most solutions. 

However, this information is only available after all solutions are found. Although finding 

the exact marginal solution counts without a complete search is theoretically impossible, 

several algorithms have been developed to approximate the marginal solution counts. 

In the next Chapter, we introduce some previous algorithms that estimate the marginal 

solution counts. In Chapter 4 we present our proposed algorithms to approximate marginal 

solution counts. 
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Related Work 

3.1 Counting the marginal solution counts 

3.1.1 Single Spanning Tree Algorithm 

Various research has been done on genemting approximations of the marginal solution 

counts. For tree-structured CSPs, Meisels et al. [16], Pearl [21], and Neopolitan [19] have 

shown that the exact marginal solution counts can be found in polynomial time. For general 

structured CSPs, Detcher and Pearl [5] suggested to first reduce the complete constraint net- 

work to a single spanning tree of the tightest constraints and use the exact marginal solution 

counts obtained in the simplified problem a s  an approximation to the original problem. 

Let xj be the next variable to instantiate. To estimate the number of consistent solutions 

for each domain value of x j ,  a single spanning tree rooted at xj  is formed. Consider a tree 

rooted at xj as in Figure 3.1. X, is a set of child nodes of xj .  The algorithm starts at leaves 

and progresses toward the root. 

The marginal solution counts for leaf nodes are initialized to 1's. The number of solutions 

with variable xj  assigned to value vj is calculated recursively as: 

where 

0 N ( x j  = v j )  is the number of solutions with the variable xj  assigned to the value v j .  

0 S = {s(x, is the child node of x j )  
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Figure 3.1: Computing the number of solutions for value a j  in variable xj.  

In the above formula, CZJ,,,(vj, us) is a function which returns true if the tuple (< 

xj, vj > < x,, v, >) is allowed, and false oth~erwise. 

This algorithm is embedded within the directional arc consistency algorithm(DAC): a 

value that gets the count of 0 means that there is no support from its child nodes, thus can 

be eliminated. The algorithm stops when al.1 values in the root variable are assigned counts. 

One disadvantage of this algorithm is that when constraints of the original CSP are 

equally tight, the simplified tree-structure CSP may not correspond to the original CSP, 

thus affect the accuracy of the estimated mlarginal solution counts.[24]. 

3.1.2 Multiple Spanning Tree Algorithm 

While Dechter and Pearl's algorithm reduc'es the original problem to Single Spanning Tree 

(SST), Vernooy and Havens [24] converted the original problem to multiple spanning trees. 

Approxin~ations to the solution probabilities are obtained by combining the solution prob- 

abilities of each subproblems. 

Let the original constraint graph be G, ,and the original constraint graph is decomposed 

into a set of subproblenls Ci, such that 

where 
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The approximated probability that x = v is part of the global solution is calculated as: 

One advantage of the MST algorithm is that all constraints from the original problem 

are maintained. However, the MST algorithm assumes independence among subproblems 

which is clearly not the case, because a global solution to C must also be a solution in 

each Ci. Experimental results show that tlhe independence assumption starts to affect the 

performance of the MST algorithm as CSPs become more dense and less tree-like. [24]. 

3.1.3 Uniform Propagation Algorithm 

Meisels et al. [16] calculated the marginal solution counts based on the probability updating 

in a Bayesian network. 

The constraint network of a CSP is firmst converted to a directed acyclic graph (DAG) 

where an edge (z j ,  xi) between variables x j  and xi is defined when i < j .  x j  is called the 

predecessor of xi and xl is always the sink node which has no successors. 

An example of converting constraint graph with three variables to a directed acyclic 

graph is shown in Figure 3.2. 

Figure 3.2: Directed acyclic graph for a three variable CSP 

Starting at the source node (node with no predecessors) and moving down the ordered 

graph, the probability of a variable instantiation < x3, vj > being part of the global solution, 

P ( x j  = vj), is calculated recursively as 
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1 
P(.j = U j )  = -- II C P(xs = us) 

IL)x,l s T 

where 

S = {sixs is the predecessor of x j )  

This algorithm assumes conditional independence between predecessors of node x j .  The 

ordering heuristic of this algorithm is found to perform slightly better than the Dechter and 

Pearl's SST algorithm [24]. Due to the same reason as the MST method, the independence 

assumption introduces error into the estimated probabilities. 

3.1.4 Geelen's Value Ordering Heuristic [6] 

Geelen's algorithm calculates products of the remaining domain sizes of the future variables. 

This value represents an upper bound on the number of different solutions after assigning 

xi = ui. The domain value with the highest upper bound value is chosen. 

Given a set S of current compound label, CONSISTENT(S) is defined as true if and 

only if these assignments do not violate any constraints. Let xi be a future variable that is 

as yet unassigned. The set of useful values for xi is defined as 

The number of values that will still be useful for a future variable xj after assigning ui 

to xi is defined as 

And finally, the promise value of an assignment is defined below. The domain value 

with the largest promise value is chosen. 

promises(xi = vi) == l-J LEFTs(x jx i  = ui) 
j #i 

Geelen's algorithm constantly assure arc-consistency. If LEFTs(xj lx i  = ui) = 0, then 

the assignment xi = ui would leave xj without useful values. So, ui can be removed from 

the live domain of xi. This domain reduction is propagated through the constraint network. 

All the related promise values are re-calculated. 



CHAPTER 3. RELATED WORK 23 

3.1.5 Probabilistic Arc Consistency (PAC) Algorithm 

The PAC algorithm introduced by Horsch and Havens [13] is a generalization of the arc 

consistency algorithm. It tries to determine how often each domain value appears in all 

solutions of a CSP. 

Given a constraint graph, as shown in Figure 3.3, in which each node represents a 

variable of the CSP, the PAC algorithm works in a distributed fashion. Each node has 

a list of neighbors which are connected with it by constraints. The PAC process begins 

when each node tells all neighbors its current knowledge of the solution probabilities of its 

own domain values. After node i receives a message Pij from node j, node i consults the 

constraint between node j, Cij, and updates the solution probabilities for each of its domain 

values using the real plus operation, +. Messages from different nodes are combined using 

real multiplication, x .  After combining messages from all its neighbors, node i sends a 

new message to each of its neighbors and tells them its updated probabilities. The process 

repeats in this fashion until changes in the solution probabilities are less than a threshold, 6 ,  

or the total number of iterations has exceeded the predefined maximum number. To avoid 

the double counting problem, ie., same information being considered more than once, the 

updated message Pii sent from node i back to node j should not include the information 

that node j already knew. 

Figure 3.3: p 
by node xj. 

AC algorithm. Message Pij is received by node xi and message Pji is received 

Using mathematical form, the probabilistic arc consistency is achieved by updating the 

following formula repeatedly until the probabilities in Pii(ai) becomes stable. 
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in this formula: 

0 Pjli(ai) is the revised probability that xi = ai. 

0 n represents real product. 

C represents real sum. 

0 Cij(ai, a j )  is 1 if the pair xi = ai, xj =: a j  is allowed by the constraint between xi and 

xj ,  and 0 otherwise. 

0 cu nornlalizes the resulting probabilities such that they sum to 1. 

In the above formula, the revised probability that xi = ai in the updated message sent 

from node i back to node j, P;,(ai), is calculated as follows: for each neighbor j ,  the solution 

probabilities for value a j  of node j that are consistent with value ai are added up using real 

sum operation, C. The solution probability from different neighbors are combined using real 

product operation, n. To avoid double counting problem, the probabilities in the previous 

message which are sent from node j to node i, Pji(ai),  is deleted from the updated message 

Pji sent from node i back to node j .  For more detailed information, see [14]. 

Experimental results [12] show that there is a high correlation between the exact solution 

probabilities and the approximations com:puted by PAC. And when this information is 

used as a value ordering heuristic to guide the search algorithm, the number of backtracks 

required to find solutions is reduced by as many as two orders of magnitude. However the 

PAC algorithm exhibits slow convergence speed and in some cases may not converge at all. 

For larger problems, pAC's runtime is competitive or superior to other marginal solution 

counting algorithms. When the problem is small, the cost of computing the PAC outweighs 

the benefit of reducing search cost. 

In Chapter 4, we introduce our proposed algorithms, HAC and PAC . These algorithms 

provide heuristic ordering for domain values while maintaining arc consistency throughout 

the whole process. In addition, our proposed algorithms intend to overcome the convergence 

problem of the PAC algorithm. 
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HAC and PAC Algorithms 

In this Chapter, we introduce our proposed algorithms, Histogram Arc Consistency(HAC) 

and p Arc Consistency (PAC). These algorithms generate rough approximations of marginal 

solution counts. This information can be used as value ordering heuristic to guide the search 

algorithm. 

4.1 Histogram Arc Consistency (HAC) 

The Histogram Arc Consistency algorithm is a natural extension of both the traditional arc 

consistency algorithm and the probabilistic arc consistency algorithm. In the traditional arc 

consistency algorithm, each domain value is associated with a boolean value representing the 

membership status of this value which tells us whether the associated domain value is in the 

live domain or not. Constraints are combined using boolean operations, V and A. As pointed 

out in the previous section, the constraint value obtained by the traditional arc consistency 

algorithm distinguishes domain values that are in the live domain from those that are not, it 

does not give these values any likelihood of being in a consistent global solution. In the HAC 

algorithm, we change the data type of the constraint valuations from boolean to integer, 

and we change the operations from boolean operations to integer operations, i. e. + and x. 

Using mathematical form the Histogram Arc Consistency algorithm is represented as: 

where 
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0 DXi is the current live domain of variable xi. 

0 f (vi) is the HAC valuation for value zii in xi. 

0 n represents integer product. 

C represents integer sum. 

0 N(xi)  represents neighboring variableis of xi. 

0 Cxi,xj (vi, vj) is 1 if the pair {xi = vi, ~j = vj} is allowed by the constraint Cxi,rj, and 

0 otherwise. 

0 m(vj) is the membership of vj in the Five domain of xj. It  is obtained by the following 

formula 

In the above function, f(vi) is the HAC valuation associated with the assignment < 
xi, vi >. The sum operation tells us how many domain values in variable xi's neighboring 

variable, xj, supporting the assignment < xi, vi >. The number of supports from different 

neighbors are combined using the integer product operation, n. A value that gets the 

support count of 0 means that there is no support from its neighboring variables, and thus 

can be removed from the variable's live domain. Same as in the traditional arc consistency 

algorithm, removing domain values may cause other values in their neighboring variables to 

become inconsistent, thus should be deleted as well. To achieve Histogram Arc Consistency 

for the whole problem, these HAC valuations are updated repeatedly until no values are 

deleted from any variable domains. 

The HAC-REVISE(xi, xj) procedure shown in Figure 4.1 revises HAC valuations for 

variable xi based on the live domain of variable xj. In this procedure, mi is a vector 

containing the membership of domain values of variable xi, as defined above. sij is a vector 

containing the number of supports for domain values in variable xi from xj. Initially, all 

HAC values are set to 1. At lines 2, and 3, previous memberships of domain values for 

variable xi, and previous supports for doma,in values of xi from neighboring variable x j  are 

saved into vector mi and s^,j respectively. For each value vi in the live domain of variable xi, 

line 8 counts the new number of supports based on the current live domain of its neighboring 

variable xj. Line 10 combines the supports for value vi from different neighboring variables 
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precedure HAC-REVISE(xi, x j  ) 
1. begin 
2. mi +- mi 
3. Sij  +- S . .  23 

4. sij +- 0 
5 .  for vi +- each element in D,, do 
6. for vj +- each element in Dxj do1 
7. if (C,,,,, (vi, ~ j )  A mj [vj]) then 
8. sij[vi] ++; 
9. for each element k in f i  do 
10. fi[k] = fi[k] * sij[k]/sij[k] 
11. mi +- UPDATEMEMBERSHIP( f i )  
12. return (mi # mi) 
13. end 

procedure UPDATEMEMBERSHIP( f i )  
1. begin 
2. m i + O  
3. for each element k in f i  do 
4. if fi[lc] > 0 then 
5 .  mi[k] = 1 
6. return mi 
7. end 

Figure 4.1: The HAC-REVISE algorithm 

using multiplication. To avoid the double counting problem, the old number of supports 

from variable xj ,  s&, is deleted from the updated support valuation. 

The membership value for each domain value is updated base on the new HAC valua- 

tions as shown in the UPDATEMEMBERSHIP procedure. If any of the membership values 

becomes zero, the associated domain value is deleted from the variable's live domain. The 

deletion of domain values from live domains will certainly cause HAC valuations of neigh- 

boring variables to change. As in the traditional arc consistency algorithm, this deletion is 

propagated through the constraint network. 

Figure 4.2 shows the pseudo code of th'e HAC algorithm which achieves histogram arc 

consistency for the whole CSP. The HAC algorithm is based on the AC-3 algorithm. First, 

the HAC-REVISE procedure is performed for each constraint C,t,xj. If any value is deleted 

from the variable domain during the HAC-REVISE procedure, all affected constraints are 
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procedure HAC(Z, Dl C) 
1. begin 
2. Q + { ( i l ~ ) l c x , , x j  6 C1i  # d 
3. while Q not empty do 
4. select and delete any constraint C,,,,, from Q 
5. if HAC-REVISE(xk, x,) then 
6. Q + Q u ((21  k)ICx,,x, 6 C, i # k i # m} 
7. endwhile 
8. end 

Figure 4.2: The HAC algorithm 

re-examined and valuations revised. The process terminates when no value is deleted from 

any variable domains. The result is a set of histogram valuations fi for variable x, that tell 

us how well each domain value in DX1 is locally consistent with its neighboring variables. 

We interpret fi as a rough approximation of the marginal solution counts. This information 

can now be used as value ordering heuristic: to guide the search. 

Although the HAC algorithm is essentially arc consistency, by changing the data type 

of the constraint valuations from boolean to integer, and changing additive and multiplica- 

tive operations from boolean operations to integer operations, we are able to gather more 

information from the HAC propagation process than from the traditional arc consistency al- 

gorithm. Like the traditional arc consistency algorithm, when combined with the backtrack 

search algorithm to solve CSPs, the HAC algorithm can be used in preprocessing before 

search to reduce the size of the search tree or used during search (after each assignment is 

made) to prune off search space. In addition, the HAC algorithm provides heuristic order 

for the domain values: choose a value in the variable's live domain with the largest HAC 

valuation. 

Still using the CSP example as shown in Figure 3.5 and 3.6, Figure 4.3 shows the process 

of revising HAC valuations for variable xo. The integer sum operation is first used to project 

the constraint values for the variable xo from constraints C,,,, and C,,,, respectively. 

Then, the integer product operator is used to combine these constraint values from different 

constraints. To achieve histogram arc consistency for the whole problem, these projection 

and combination operations need to be performed on every constraint repeatedly until no 

domain is changed. The CSP that is histogram arc consistent is shown in Figure 4.4. 

jFrom these HAC valuations we know that all domain values are still in their variable 
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%, XI CXO.X~ m(a,) xo, x l  Cxo,xl m(ai) 

lnteger sum operation is used 
to project HAC values for x, 

from Cxox1 

lnteger sum operation is used 
to project HAC values for x, 

from Cxox2 

a , . .  1 x 1  = 1 
b . . .  1 x i  = I  
c . . .  2 x 2  = 4  

Integer product operation is used to 
combine HAC values from different 

constraints 

Figure 4.3: Integer operations in the HAC algorithm 
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Figure 4.4: Constraint values after achieving HAC 

live domains. In addition, these HAC valuations tell us that, for variable so ,  the value 

c may be the better choice than values a and b. And for variable X I ,  values b and c are 

more locally consistent than the value a. A.nd the best value for variable x2 is the value c. 

Based on these HAC valuations, the search algorithm assigns x l  = c and finds a solution 

without any backtracks. From this example we can see that HAC provides a good value 

ordering heuristic. When this information is used to guide the search algorithm, backtracks 

are reduced. 

4.2 p Arc Consistency (PAC:) 

In most cases, we are more interested in finding a solution quickly than in the completeness 

of the algorithm. So the idea behind the /LAC algorithm is: We aggressively reduce variable 

live domains by simply removing domain values with small HAC valuations from variable live 

domains. We quickly search through this very small search space. If no solution is found, 

we expand the search space a little more by putting more values back into live domains 

and search again. If eventually we have to put all values back into variable live domains 

and search, the PAC algorithm exhausts the entire search space. Thus PAC is guaranteed 

to find the solution if one exists. The worst case complexity of the PAC algorithm is 

O(n + 2n + 3n + ... + dn) = O(dn).  However, as pointed out in [9], if the heuristic is good, 

i.e., if HAC algorithm provides a good ordering of domain values, the worst scenario is 



CHAPTER 4. HAC AND bAC ALGORI1"HMS 

procedure pAC(Z, Dl C, p)  
1. begin 
2. HAC(Z, Dl C) 
3. Dl c p-OPERATION(D, p)  
4. HAC(Z, Dl, C) 
5. end 

procedure p-OPERATION(D, p) 
1. begin 
2. for each domain Di E D do 
3. D; + 

4. delete all the elements with valuations less than p from Di 
5. return Dl 
6. end 

Figure 4.5: pAC algorithm 

unlikely to happen. 

Basically, pAC is HAC with a p parameter. In HAC, when any of the HAC valuations 

becomes zero the associated domain value i:j deleted from the variable's live domain and all 

affected constraints are reexamined. In pAlC, 0 is replaced by p. So if any HAC valuation 

becomes less than p, the associated domain value is deleted from the variable's live domain 

and related constraints are reexamined. 

One problem with this algorithm is that one can never know how big these HAC values 

will be after HAC propagation. For ease of implementation, we set the p value to be 

proportional to the size of the variable's live domain. 

The pseudo code of pAC algorithm is presented in Figure 4.5. The algorithm starts with 

performing an HAC propagation at line 2. After histogram arc consistency is achieved, the 

p-OPERATION is called at line 3 with a predefined value p as one of the arguments. This 

operation temporarily removes domain values with HAC valuations less than p from variable 

live domains. And then, at line 4, another HAC propagation is performed to achieve p arc 

consistency for the CSP. 
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4.3 Using HAC and PAC to Solve CSPs 

4.3.1 The HAC Look-ahead Algorithm 

We call the algorithm that combines HAC with the chronological backtrack search algorithm 

the HAC Look-ahead Algorithm. The pseudo code of the HAC Look-ahead algorithm is 

shown in Figure 4.6. 

The HAC Look-ahead algorithm searches for solutions through recursively calling the 

HAC-L(U, Pl Dl C) procedure. In the HAC-L procedure, line 3 performs HAC propagation. 

If none of the variable domains becomes empty after HAC, Line 8 assigns the variable x to 

a value with the largest HAC valuation in its domain, say v. After this assignment, the live 

domain of variable x is updated using the UPDATE procedure. In this procedure, all the 

constraint values in the domain of variable x are set to 0 except for the value v which is set 

to 1. This updated domain D' is used in the recursive call of the HAC-L procedure at line 12 

to instantiate another variable. If after the HAC propagation, any of the variable domains 

becomes empty, the program backtracks, which means that the last assigned variable is 

re-assigned to a value with the next highest HAC valuation in its domain. The program 

either stops after all variables are assigned a value or exhausts the whole search space and 

concludes that no solution exists. 

4.3.2 The PAC Look-ahead Algorithm 

While HAC Look-ahead is a complete algorithm, the pAC Look-ahead algorithm only looks 

for the first solution. 

The pseudo code of pAC Look-ahead algorithm is shown in Figure 4.7. The init(p) 

procedure initializes the p value to be 90%. The pAC Look-ahead algorithm searches for 

solutions through recursively calling the pAC-L procedure. In the PAC-L procedure, line 3 

performs pAC propagation with the p parameter set to 90%. This means that, after HAC 

propagation, 90% of the domain values are temporarily removed from variable live domains 

and only top 10% of the domain values with the largest HAC valuations stay. If none of 

the variable domains becomes empty after PAC, Line 8 assigns variable x to a value with 

the largest HAC valuation in its domain, say v. After this assignment, the live domain of 

variable x is updated using the UPDATE procedure. In this procedure, all the constraint 

values in the domain of variable x are set; to 0 except for the value v which is set to 1. 
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precedure HAC-Lookahead(k, Dl C) 
1. begin 
2. HAC-L(Z, {), D, C) 
3. e n d  

precedure HAC-L(U, P, D, C) 
1. begin 
2. if (U = {)) t h e n  return (P) 
3. HAC(Z,D,C)  
4. if no domain in D becomes empty t h e n  
5. begin 
6. pick one variable x from U 
7. repeat 
8. pick a value v  from D, with the largest HAC valuation; 
9. delete v  from D, 
10 Dl t UPDATE(D, < x, v  >) 
11. Result t 
12. HAC-L(U - {x), P -I- {< X,  v >), D', C) 
13. if(Resu1t # NIL) t h e n  return (Result) 
14. until D, = {) 
15. e n d  
16. r e t u r n  NIL 
17. e n d  

precedure UPDATE(D, < x, v  >) 
1. begin 
2. D' t D 
3. for each element a in DL 
4. if a = v  
5. f(a) = 1 
6. else f(a) = 0 
7. r e t u r n  D' 
8. e n d  

Figure 4.6: The pseudo code of the HAC Look-ahead algorithm 
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This updated domain D' is used in the recursive call of the PAC-L procedure at line 12 

to instantiate another variable. If after the pAC propagation, any of the variable domains 

becomes empty, the program backtracks, which means that the last assigned variable is 

re-assigned to a value with the next highest HAC valuation in its domain. The program 

either stops after all variables are assigned values or concludes that no solution exists with 

the given p value. If after the PAC-L procedure returns to the PAC-Lookahead(Z, D, C) 

procedure at line 4 and no solution is found, original variable domains are restored and the p 

value is decreased by a pre-defined amount A, as shown at line 7 of the PAC-Lookahead(Z, 

D, C) procedure. This means that, in the next iteration, more values are allowed to stay 

in their variable live domains. The PAC-L procedure is performed repeatedly decreasing p 

each time until a solution is found or until p reaches zero thus concludes that no solution 

exists. 

In the next Chapter, the proposed algorithms are tested using randomly generated CSPs. 

Numbers of backtracks used to find first solutions and CPU times are collected. The per- 

formances of these two new algorithms are compared with the traditional arc consistency 

algorithm and with the pAC algorithm. 
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precedure  pAC-Lookahead(Z, D, C) 
1. begin  
2. init(p) 
3. repeat 
4. Result t PAC-L(Z, {), D, C, p.) 
5 .  if Result # NIL t h e n  
6. r e t u r n  Result 
7. p = p - A  
8. u n t i l p = O  
9. r e t u r n  NIL 
10. end 

p recedure  PAC-L(U, P, D, C,  p )  
1. begin  
2. if (U = {)) t h e n  return (P )  
3. pAC(U1 Dl C, P) 
4. if no domain in D becomes empty t h e n  
5. begin 
6. pick one variable x from U 
7. repeat 
8. pick a value v from D, with the largest non-zero HAC valuation 
9. delete v from D, 
10. Dl t UPDATE(D, < a:, v >) 
11. Result t 
12. PAC-L(U - {x), P -t {< x,v >), D1,C)  
13. if(Resu1t # NIL) then return (Result) 
14. un t i l  D, = {) 
15. end 
16. r e t u r n  NIL 
17. end 

p recedure  UPDATE(D, < x,  v >) 
1. begin  
2. Dl t D 
3. for each element a in Dk 
4. if a = v  
5. f(a) = 1 
6. else f(a) = 0 
7. r e t u r n  Dl 
8. end 

Figure 4.7: The pAC Look-ahead algorithm 
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Experimental Results 

I11 this chapter, proposed algorithms are tested using randomly generated CSPs. Before we 

present experimental results, we will first introduce the algorithm used to generate random 

csps. 

5.1 Generating Random CSPs 

Randomly generated CSPs are widely used to test and compare algorithms. These random 

CSPs can be described by the tuple < n,m,pl ,p2 >, where n represents the number of 

variables, m represents the uniform domain size, p l  is a measure of the density of the 

constraint graph, and pz is a measure of the tightness of the constraints [7]. 

A random CSP generator generates a constraint graph G, in which each edge represents 

the constraint between a pair of variables. For each edge in G, a boolean matrix is generated 

by randomly choosing pairs of incompatible values. One simple way to generate random 

CSPs is: first, randomly select exactly plnl:n - 1)/2 edges for G, and then for each selected 

edge randomly pick exactly p2m2 pairs of values as incompatible. Achlioptas e t  al. identify 

a shortcoming of this model. They prove -that if p2 > l /m then, as n + m, there almost 

always exists a flawed variable, for which every value is flawed. A value for a variable is 

flawed if it is not supported by any value in its neighboring variable. So, a CSP with a 

flawed variable can not have a solution. To overcome this problem, Gent e t  al. [7] introduce 

the flawless random CSP model. The basic idea of this model is to make sure that every 

value of a variable is supported by at least one unique value. 

The random CSP generator used in this thesis is written by Michael Horsch. He used 
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the flawless model introduce by Gent et a1 [7]. The algorithm is as follows: 

1. randomly generate exactly p ln(n  - 1)/2 edges for G. 

2. for each edge, the boolean matrix is initialized such that the diagonal elements are set 

to be true and all other elements are set to be false. 

3. permute rows randomly. 

4. randomly set more elements to be true until p2 is correct. 

5.2 Experimental Results 

For small CSP problems, we test a set of random CSPs with numOfVar = 20 and domSize 

= 10. These test problenls are further divided into 3 sets. For each set, the probability 

that a constraint exists between any pair of variables, represented as p l ,  is set to be 0.2, 

0.4 and 0.8 respectively. In other words, these three sets of CSPs represent three different 

levels of density of the constraint network. When pl  equals to 0.2, the constraint network is 

sparsely connected and when pl  equals 0.8, the network is densely connected. Within each 

constraint, the probability that a given pair of values is disallowed, called p2, ranges from 

0.01 to 1.0 with 0.01 increment. For each pair of pl  and pz, 200 different CSP instances 

are tested. To test performances of HAC a:nd pAC for medium sized CSPs, we test a set of 

problems with n = 60 and m = 30. For each problem, pl is set to be 0.3 and p2 ranges from 

0.1 to 1.0 with 0.01 increment. For each pair of pl  and p2, 50 CSP instances are tested. 

These test problenls are solved using four different algorithms. They are: (1). backtrack 

search with traditional arc consistency (Full Look-ahead); (2). backtrack search with HAC 

as a value ordering heuristic (HAC Look-ahead); (3). backtrack search with pAC as a value 

ordering heuristic (PAC Look-ahead). p values used in this algorithm are {0.8,0.4,0.2,0). 

(4). backtrack search with PAC as a value ordering heuristic (PAC Look-ahead). For each 

test problem, we record the number of backtracks required to find first solutions, and also 

CPU times taken by these algorithms. All tests are done using computer with AMD Athlon 

processor with 261MB RAM. 

Experimental results show that our proposed algorithms provide valuable heuristic in- 

formation. When HAC and pAC are used as value ordering heuristics to guide the search 

algorithm, fewer number of backtracks are required to find solutions than the traditional 
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arc consistency algorithm. Our experimental results also show that our methods are quick 

to compute. As the size of the test problem increases, the advantage of using HAC and 

PAC as value ordering heuristics becomes more significant. 

In Figure 5.1, 6800 problems with numONar = 20, domSize = 10, pl  (constraint density) 

= 0.2, pa (constraint tightness) E [0.46,0.79] are selected. The figure plots numbers of 

backtracks used by each algorithm to find first solutions against constraint tightness ( p a ) .  In 

Figure 5.2, we compare the total number of backtracks used to solve all test problems by each 

algorithm. Test results show that our proposed algorithms, HAC and PAC, outperformed 

the traditional arc consistency algorithm. On average, the HAC algorithm saved about 

3.20% of backtracks from the traditional arc consistency algorithm, PAC saved 38.20% and 

PAC saved 45.52%. 

In Figure 5.3, 7000 problems with num'Var = 20, domSize = 10, p l  (constraint density) 

= 0.4, pa (constraint tightness) E [0.2,0.54] are selected. The figure plots numbers of 

backtracks used by each algorithm to find first solutions against constraint tightness (pa). 

The total numbers of backtracks used to solve all test problems by each algorithm are 

shown in Figure 5.4. As far as the number of backtracks is concerned, PAC performed 

almost as well as the PAC algorithm. On average, HAC saved 22.21% of backtracks from 

the traditional arc consistency algorithm, pAC saved 44.74% and PAC saved 50.15%. 

In Figure 5.5, 5200 problems with numOfVar = 20, domSize = 10, p l  (constraint den- 

sity) = 0.8, pa (constraint tightness) E [0.:1, 0.81 are selected. The figure plots numbers of 

backtracks used by each algorithm to find first solutions against constraint tightness (pa). 

The total numbers of backtracks used to solve all test problems by each algorithm are shown 

in Figure 5.6. These results show that our .proposed algorithms take fewer number of back- 

tracks to find the first solution than the traditional arc consistency algorithm. In addition, 

the PAC algorithm uses fewer number of backtracks than the PAC algorithm. On average, 

HAC saved 20.7% of backtracks from the traditional arc consistency algorithm, PAC saved 

43.5% and PAC saved 42.4%. 

After comparing test results for all three sets of CSPs, we can see that as the density of 

the constraint network, pl ,  increases, the performance of the HAC and the PAC algorithms 

improves. When pl  = 0.2, the HAC algorithm only saved 3.20% of backtracks from the 

traditional arc consistency algorithm, and pAC saved 38.20%. When p l  = 0.8, HAC saved 

20.7% of backtracks from the traditional arc consistency algorithm, and PAC saved 43.5%. 

This is because the more constraints that are involved in a CSP, the more informative the 
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Figure 5.1: Number of backtracks used to find first solutions, numOfVar = 20, domSize = 
10, pl (constraint density) = 0.2, pz (constraint tightness) E [0.46,0.79] 
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Figure 5.2: Total number of backtracks used to find first solutions, numOfVar = 20, domSize 
= 10, pl (constraint density) = 0.2, p2 (constraint tightness) E [0.46,0.79] 

valuations will be after the HAC propagation. If most variables in the CSP are not connected 

by constraints, then after the HAC propagation, most of the valuations are close to 1. In 

this case, the HAC algorithm provides no more heuristic information than the traditional 

arc consistency algorithm. 

We also compared CPU times taken to f nd a first solution for problems with numbervar 

= 20, domSize = 10, pl (constraint densitmy) = 0.4, p2 (constraint tightness) E [0.2,0.54]. 

As shown in Figure 5.7 and Figure 5.8, the pAC Look-ahead algorithm takes much longer 

CPU time than HAC Look-ahead and PAC Look-ahead algorithms. Due to the overhead of 

integer operations and the extra search steps to find the most promising value in a variable 

domain, HAC Look-ahead and PAC Look-ahead algorithms take longer CPU time than the 

Full Look-ahead algorithm. 

To test the performance of HAC and PAC for larger CSP problems, we tested a set 

of problems with numOfVar = 60, domSjze = 30, pl (constraint density) = 0.3 and p2 

(constraint tightness) E [0.1,0.3]. As shown in Figure 5.9, the PAC algorithm takes a large 

amount of CPU time to find solutions. HAC Look-ahead and PAC Look-ahead algorithms 

take less CPU time than the Full Look-ahead algorithm to find the first solutions. The 

reduced search cost compensates for the overhead incurred in the proposed algorithms. 

In the next Chapter, we conclude this t,hesis and point out possible future works. 
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Figure 5.3: Number of backtracks used to find first solutions, numVar = 20, domSize = 10, 
pl (constraint density) = 0.4, pz (constraint tightness) E [0.2,0.54] 
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Figure 5.4: Total number of backtracks used to find first solutions, numVar = 20, domSize 
= 10, pl  (constraint density) = 0.4, pz (constraint tightness) E [0.2,0.54] 

Figure 5.5: Number of backtracks used to find first solutions, numOfVar = 20, domSize = 
10, pl  (constraint density) = 0.8, p2 (constxaint tightness) E [0.1,0.8] 
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Figure 5.6: Total number of backtracks used to find first solutions, numOfVar = 20, domSize 
= 10, pl (constraint density) = 0.8, pz (coinstraint tightness) E [0.1,0.8] 
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Figure 5.7: CPU taken to find first solutions, numbervar = 20, domSize = 10, pl  (constraint 
density) = 0.4, pz (constraint tightness) E [0.2,0.54] 
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Figure 5.8: Total CPU taken to find first solutions, numbervar = 20, domSize = 10, p l  
(constraint density) = 0.4, p2 (constraint tightness) E [0.2,0.54] 

ACl fn&C PAC 

Figure 5.9: Total CPU taken to find first solutions for problems with numOfVar = 60, 
domSize = 30, pl (constraint density) = 0.3, p2 (constraint tightness) E [0.1,0.3] 
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Conclusions 

6.1 Summary 

In this thesis, we study the practical use of generalized propagation techniques. Heuristics 

generated by our algorithms, HAC and pic, are derived from arc consistency operations 

directly. 

When comparing HAC with previous algorithms which approximate the marginal solu- 

tion counts on simplified CSPs [5, 16, 241, a major difference is that those algorithms ignore 

loops in the constraint network and assume single connection or independence among sub- 

problems. The deletion of a domain value i:j not propagated through the constraint network. 

The resulting marginal solution counts are not locally consistent with their neighboring vari- 

ables. Our algorithms maintain the original structure of the constraint graph. Deletions 

of locally inconsistent domain values are propagated through the constraint network while 

arc consistency is maintained throughout .the whole process. The PAC algorithm does not 

ignore loops in the constraint graph. However, it tries to generate solution probabilities 

that are as accurate as possible. The PAC algorithm not only propagates the deletion of a 

domain value, it also propagates solution probabilities of these domain values until they do 

not change. Any small changes in the solution probabilities will trigger a mass constraint 

propagation. This causes an over counting problem and convergence problem. Our algo- 

rithms instead compute a quick estimation. We propagate the marginal solution counts 

until no value is deleted from any variable domain thus guaranteeing convergence. 

Experimental results show that when used as value ordering heuristics, HAC and PAC 

algorithms performed almost as good as the PAC algorithm, however, take much less CPU 
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time. The right balance is established between heuristic guidance, stability and efficiency. 

Comparing HAC with Geelen's value ordering heuristic [6 ] ,  the major difference is with 

respect to their implementation. Updating the marginal solution counts incrementally dur- 

ing the process of achieving arc c0nsistenc.y gets the same results as recalculating domain 

supports whenever the domain of a neighboring variable is changed but requires less com- 

putation. 

The PAC algorithm takes one step further. It assumes accuracy of the marginal solution 

counts generated by HAC and removes all domain values with small marginal solution counts 

from variable live domains. These forced domain reductions are propagated through the 

constraint network. Experimental results show that, although the approximated marginal 

solution counts generated by the HAC algorithm provide good heuristic guidance for the 

search algorithm, it is the aggressive value pruning of the PAC algorithm that really improves 

the performance. 

6.2 Discussion and Future Work 

In this thesis, we have shown that our new algorithms overcome the shortcomings of the 

PAC algorithm. The estimated marginal solution counts generated by these algorithms are 

fast to compute and provide useful heuristic information. However, when the problem size 

is small, HAC Look-ahead and PAC Look-ahead algorithms take longer CPU time to find 

solutions than the traditional Full Look-ahead algorithm. The reason is that HAC and 

PAC algorithms use integer operations while the traditional arc consistency algorithm uses 

boolean operations. Furthermore, when choosing the next domain value to instantiate a 

variable, these algorithms need to search through each variable domain to find a value with 

the largest HAC valuation. This step takes longer CPU time compared to the Full Look- 

ahead algorithm, which chooses any value from a variable's live domain. Our experimental 

results show that, for larger CSP problems, the reduced search cost compensates for the 

overhead incurred in the proposed algorithms. 

For future research directions, we suggest the following: 1). explore other generalized 

propagation schemes and combination operators for estimating the marginal solution counts. 

2). further investigate the performances of HAC and PAC algorithms using real-world 

problems. 
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