Temporal Difference Approach to Playing
Give-Away Checkers

Jacek Maridziuk and Daniel Osman

Faculty of Mathematics and Information Science, Warsaw University of Technology,
Plac Politechniki 1, 00-661 Warsaw, POLAND

mandziuk@mini.pw.edu.pl, dosman@prioris.mini.pw.edu.pl

Abstract. In this paper we examine the application of temporal dif-
ference methods in learning a linear state value function approximation
in a game of give-away checkers. Empirical results show that the TD()\)
algorithm can be successfully used to improve playing policy quality in
this domain. Training games with strong and random opponents were
considered. Results show that learning only on negative game outcomes
improved performance of the learning player against strong opponents.

1 Introduction

The temporal difference algorithm TD(A) [1] has been successfully used in many
games: backgammon [2], checkers [3, 4], chess [5], go [6], othello [7] and other. It
was first used by A.L. Samuel in 1959 [3] but received it’s name after the work
of R. Sutton [1].

In this paper we apply the TD(A) method to the US variant of give-away
checkers (GAC). The rules of GAC [8] are exactly the same as in ordinary check-
ers, the only difference between these two games is the goal. In GAC a player
that loses all his pieces is considered a winner. Formally a player wins if in his
turn no legal move can be made. Although computer checkers have achieved
world class game play [9], there is no known GAC program able to compete with
the best human players. The game at first glance may seem trivial or at least
not interesting, however a closer look reveals that it may be even a harder game
to play than checkers. For example a simple piece disadvantage isn’t a good es-
timation of in-game player’s performance. A player left with one king can easily
be forced to eliminate all of the opponent’s pieces.

2 Value Function

In order to assign values to non-terminal states s € S the following state value
function approximation was used:

K
V(s,w) = a - tanh (b . Zwk : ¢k(s)), a=99, b=0.027 (1)
k=1

where ¢1(s),...,0x(s) are state to integer mapping functions also called basis
functions or the elements of a state feature vector. w = [wy,...,wk]T € R
is the tunable weight vector. a = 99 to guarantee that V(s,w) € (—99;499)
and b = 0.027 so that a - tanh(b- 99) ~ 99. The tanh(-) function was used only
for technical reasons. Besides this the value function V(s,w) can be seen as a
weighted sum of basis functions ¢;(s). For terminal states s € T the values of
V(s,w) are +100 for win, 0 for tie and -100 for loss for any w € R¥.

The value function is used to assign values to leaf nodes of a fixed-depth
d-ply mini-max game search tree. After that a move is executed following the
best line of play found. In this case it is said that a player follows a greedy policy
because at every state always the best move according to the program is made.

3 Temporal Difference Algorithm. Learning a Policy

The TD(A) algorithm is used to modify weights. At time ¢ the weight update
vector Aw, is computed from the following equation:

Awt:a-ét-et (2)

where o € (0,1) is the learning step-size parameter. The second component
0 = Ti1 + ’}/V(Sg?_l, w) — V(SEZ), w) represents the temporal difference in state
values. ryy1 is the scalar reward obtained after a transition from state s; to s¢41.
~v € (0;1) is the discount parameter. In our experiments v = 1 and r; = 0 for all
t, although a small negative value of r; could have been used in order to promote
early wins. sgl) is the principal variation leaf node obtained after performing a
d-ply mini-max search starting from state s; (the state observed by the learning
player at time t). In other words V(sgl),w) is the mini-max value of state s;
or a d-step look-ahead value of s;. The last component of equation (2) is the
eligibility vector e; updated in the following recursive equation:

eo = 0, etr1 = VuVir1 + (7N)es (3)

where A € (0, 1) is the decay parameter. V,,V} is the gradient of V (s, w) relative
to weights w. Formally the i-th element of this gradient equals:

OV (sk,w)
(vak)l - 8’11)1

=¢i(sg) i=1,....,K, k=1,2,... (4)
where K is the size of the weight vector and s, is the state observed at time
k. The eligibility vector holds the history of state features encountered. The el-
ements of this vector (unless they are encountered again) decay exponentially
according to the decay parameter A. The features in e; are thought to be sig-
nificant while performing weight updates at time ¢. The eligibility vector is the
main tool used by delayed reinforcement learning for assigning credit to past
actions [10].

In TD(A) weight updates are usually computed on-line after every learning
player’s move. However in this paper the learning player’s weights are changed

only after the game ends (off-line TD(A)). This enables us to condition weight
replacement with the final result of the game (win, loss or tie).

The weight vector determines the value function which in turn determines
the player’s policy « : (S,IR"¥) — A. Policy (s, w) is a function that for every
state s € S and some weight vector w € IR® maps an action a € A. Thus tells
the computer player which move to perform at state s. Our goal is to learn an
optimal policy that maximizes the chance of a win (learning control). This is
achieved indirectly by learning to predict the final outcome of being in state s.

4 Experiment Design and Results

The computer player that has his weights changed (trained) after every game
by the TD(\) algorithm is called the learning player. There were 10 learning
players each having it’s own set of 25 opponents. All weights for players 1 and 6
where initialized with 0. The rest of the players had their vectors initialized with
random numbers r € (—10.0,+10.0). Each of the 250 opponents also had their
weight vector initialized with random numbers. All the opponent’s weight vectors
were pairwise different and were never changed during learning. In training game
number ¢ the learning player played against opponent (i mod 25) + 1. Players 1
to 5 always played using white pieces (they performed the first move). Players
6 to 10 played using black pieces. For every win the learning player received 1
point, for a tie 0.5 and for a loss 0 points.

The game tree search depth d = 4 mainly due to time limitations. The size of
the weight vector K = 22. In games marked with LL (learn on loss) the learning
player’s weights were modified only in the case of its loss or tie. In games marked
with LB (learn on both) the weights were modified after every game no matter
the final outcome.

In order to check if the performance in the training phase really reflects
policy improvement, a testing phase was introduced. In the testing phase one
weight vector achieved by the learning player in some point in time is taken and
used by the testing player to play against 1,000 new random opponents. These
opponents were not encountered earlier by the learning players. The same set of
1,000 opponents was used in all testing phases mentioned in this paper.

4.1 Tuning o and A

Over 300,000 initial games were played in order to observe performance with
different values of parameters a and A chosen. The results in this phase showed
that applying a good pair of parameters in the right moment can substantially
shorten the learning time and increase results. Finally the following scheme for
decreasing o and A was chosen: in games 1 — 2,500: (« = 1F — 4, = 0.95),
in games 2,501 — 5,000: (« = 2E — 5, A = 0.7), in games 5,001 — 7,500: (o =
1E —5,A = 0.5) and in games 7,501 — 10,000: (&« = 5E — 6, A = 0.2). All the
following results are based on games played using this scheme.

Table 1. Training and test phase performance. Each result is averaged over 10 passes,
one for each learning player.

(a) Training phase. Random opponents (b) Training phase. Strong opponents
games LL LB games LL LB

1 - 2,500 64.9% 64.7% 1- 2,500 61.8% 52.9%
2,501 - 5,000 70.5%| 70.2% 2,501 - 5,000 64.3%| 54.9%
5,001 - 7,500 72.0% 72.2% 5,001 - 7,500 71.9% 51.8%
7,501 - 10,000 70.8% 69.1% 7,501 - 10,000 62.8% 52.3%

(c) Test phase. Random opponents (d) Test phase. Strong opponents

after game LL LB after game LL LB

7,500 70.2% 68.8% 7,500 72.3% 69.1%
10,000 69.8% 68.7% 10,000 72.9% 68.9%

4.2 Learning on 25 Random Opponents

Table 1(a) presents the results of training the learning players on 25 random
opponents. It can be seen that both the LL and LB methods achieved comparable
results. The highest average result (72.2%) was obtained using the LB method
during games 5,001-7,500. In subsequent games the performance decreased.
Results of the learning players during training were observed after every 25
games. Performance history of the best players learning with the LL and LB
methods on 25 random opponents are presented in Figs. 1(a) and 1(b), resp.
The best overall result was achieved by player 9-LB some time after the 6000-th
game (Fig. 1(b)) and exceeded 88% of the possible maximum. The worst overall
result was a fall to 56% for player 7-LL after 10,000 games (not presented).

4.3 Learning on 25 Strong Opponents

After 10,000 games with 25 random opponents, the learning players were trained
against 25 strong opponents during another 10,000 games. This time the oppo-
nents used the weight vectors of the 20 learning players trained using the LL
and LB methods in the first 10,000 games. The additional 5 opponents were ini-
tialized with random weight vectors. Like before, the opponents did not change
during training. This set of opponents was the same for all learning players in
this phase. The results are presented in Table 1(b). This time the LL method was
superior to LB one. The difference in performance was about 10 to 20 percent
points in favor of LL during all the games played. The history of performance
changes for the best LL and LB players is presented in Figs. 1(c) and 1(d), resp.
Results from the test phase are presented in Tables 1(c) and 1(d). They con-
firm the superiority of the LL method used for training with strong opponents. In
this case however, unlike in the case of training with random opponents, the fall
in training performance during games 7,500-10,000 was not observed. Further
investigation of this phenomenon is one of our future research goals.

points
points

0 0 10

8t 8 8 8

6 f 6 6 6

4 14 4 14

2L points 2 2 points 1 o

............ avg e AV
0 . . . 0 0 . . . : 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
games played games played

(a) Player 8-LL. Random opponents. (b) Player 9-LB. Random opponents.

24 24

22 22

20 20

18 18

16 16

o] 14] 14
€ £

£ [12 k< 12
Q Q

0r 10 0 10

8r 8 8 8

6 - 6 6 6

4 r 14 4 14

2L points | o 2 points 1 o

............ avg s AV
0 . . . : 0 0 . . . : 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
games played games played
(c) Player 1-LL. Strong opponents. (d) Player 10-LB. Strong opponents.

Fig. 1. History of performance changes for the best players in LL and LB methods
playing against random and strong opponents.

5 Conclusions

A similar approach to the LL method presented in this paper was used earlier
by Baxter [5]. In his chess learning program (KnightCap), there was no weight
update in the case when the learning player won with a lower ranked opponent.
As of our knowledge however, no one compared the LL and LB methods di-
rectly. The superiority of the LL method can be explained in the following way.
A loss or a tie of the learning player means that the weight vector is not optimal
and a weight update is recommended. A win however probably means only that
the opponent was not good enough and a different one could have performed
better. Learning on such outcomes can be misleading. The LL method showed
its superiority only while learning on strong opponents. The reason behind this
could be that while learning on random (weak) opponents no special care has
to be taken in order to achieve good results and an ordinary TD(A) algorithm
is sufficient. Another explanation is that frequent weight updates may be desir-
able when playing against random opponents that share no common strategy.

Frequent weight changing in this case could compensate for the superiority of
LL learning.

In the experiment also a variant of LL method (called 3L) consisted in train-
ing with the same opponent for up to 3 games in a row in case of losses was
introduced. The idea of 3L method was to focus more on the opponents that
“with no doubt” were stronger than the learning player. This method however
appeared to be inferior to LL one.

A variant of the TD(A) algorithm called TDLeaf()\) was proposed in [5] for
applications using a game tree search. Comparing the performance of this algo-
rithm with the results presented in this paper is one of our future goals.

References

1. Sutton, R.: Learning to predict by the method of temporal differences. Machine
Learning 3 (1988) 9-44

2. Tesauro, G.: Temporal difference learning and td-gammon. Communications of
the ACM 38 (1995) 58-68

3. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development 3 (1959) 210-229

4. Schaeffer, J., Hlynka, M., Jussila, V.: Temporal difference learning applied to a
high-performance game-playing program. In: International Joint Conference on
Artificial Intelligence (IJCAI). (2001) 529-534

5. Baxter, J., Tridgell, A., Weaver, L.: Knightcap: A chess program that learns by
combining td(lambda) with game-tree search. In: MACHINE LEARNING Pro-
ceedings of the Fifteenth International Conference (ICML ’98), Madison WIS-
CONSIN (1998) 28-36

6. Schraudolph, N.N., Dayan, P., Sejnowski, T.J.: Learning to evaluate go positions
via temporal difference methods. In Baba, N., Jain, L., eds.: Computational Intel-
ligence in Games. Volume 62. Springer Verlag, Berlin (2001)

7. Walker, S., Lister, R., Downs, T.: On self-learning patterns in the othello board
game by the method of temporal differences. In: Proceedings of the 6th Australian
Joint Conference on Artificial Intelligence, Melbourne, World Scientific (1993) 328—
333

8. Alemanni, J.B.: Give-away checkers. http://perso.wanadoo.fr/alemanni/
give_away.html (1993)

9. Schaeffer, J., Lake, R., Lu, P., Bryant, M.: Chinook: The world man-machine
checkers champion. Al Magazine 17 (1996) 21-29

10. Singh, S.P., Sutton, R.S.: Reinforcement learning with replacing eligibility traces.
Machine Learning 22 (1996) 123-158

