
ar
X

iv
:0

81
2.

47
27

v3
 [

cs
.L

O
]

30
 S

ep
 2

00
9

Induction and Co-induction in Sequent Calculus

Alwen Tiu1 and Alberto Momigliano2

1 The Australian National University
Alwen.Tiu@rsise.anu.edu.au
2 LFCS, University of Edinburgh

amomigl1@inf.ed.ac.uk

Abstract. Proof search has been used to specify a wide range of computation systems. In order to build a framework
for reasoning about such specifications, we make use of a sequent calculus involving induction and co-induction.
These proof principles are based on a proof theoretic (rather than set-theoretic) notion ofdefinition[13,20,25,51].
Definitions are akin to (stratified) logic programs, where the left and right rules for defined atoms allow one to view
theories as “closed” or defining fixed points. The use of definitions makes it possible to reason intensionally about
syntax, in particular enforcing free equality via unification. We add in a consistent way rules for pre and post fixed
points, thus allowing the user to reason inductively and co-inductively about properties of computational system
making full use of higher-order abstract syntax. Consistency is guaranteed via cut-elimination, where we give the
first, to our knowledge, cut-elimination procedure in the presence of general inductive and co-inductive definitions.

1 Introduction

A common approach to specifying computation systems is via deductive systems. Those are used to specify and
reason about various logics, as well as aspects of programming languages such as operational semantics, type theories,
abstract machinesetc. Such specifications can be represented as logical theoriesin a suitably expressive formal logic
whereproof-searchcan then be used to model the computation. A logic used as a specification language is known
as alogical frameworks[39], which comes equipped with a representation methodology. The encoding of the syntax
of deductive systems inside formal logic can benefit from theuse ofhigher-order abstract syntax(HOAS) [40], a
high-level and declarative treatment of object-level bound variables and substitution. At the same time, we want to use
such a logic in order to reason over themeta-theoreticalproperties of object languages, for example type preservation
in operational semantics [26], soundness and completenessof compilation [32] or congruence of bisimulation in
transition systems [27]. Typically this involves reasoning by (structural) induction and, when dealing with infinite
behavior, co-induction [23].

The need to support both inductive and co-inductive reasoning and some form of HOAS requires some careful
design decisions, since the two are prima facie notoriouslyincompatible. While any meta-language based on aλ-
calculus can be used to specify and animate HOAS encodings, meta-reasoning has traditionally involved (co)inductive
specifications both at the level of the syntax and of the judgements — which are of course unified at the type-theoretic
level. The first provides crucial freeness properties for datatypes constructors, while the second offers principle ofcase
analysis and (co)induction. This is well-known to be problematic, since HOAS specifications lead to non-monotone
(co)inductive operators, which by cardinality and consistency reasons are not permitted in inductive logical frame-
works. Moreover, even when HOAS is weakened so as to be made compatible with standard proof assistants [12] such
as HOL or Coq, the latter suffer the fate of allowing the existence of too many functions and yielding the so called
exoticterms. Those are canonical terms in the signature of an HOAS encoding that do not correspond to any term in
the deductive system under study. This causes a loss of adequacy in HOAS specifications, which is one of the pillar of
formal verification, and it undermines the trust in formal derivations. On the other hand, logics such as LF [21] that
are weak by design [10] in order to support this style of syntax are not directly endowed with (co)induction principles.

The contribution of this paper lies in the design of a new logic, called Linc− (for a logic withλ-terms, induction
and co-induction),3 which carefully adds principles of induction and co-induction to a higher-order intuitionistic logic
based on a proof theoretic notion ofdefinition, following on work (among others) Lars Hallnäs [20], Eriksson [13],
Schroeder-Heister [51] and McDowell and Miller [25]. Definitions are akin to logic programs, but allow us to view
theories as “closed” or defining fixed points. This alone allows us to perform case analysis independently from induc-
tion principles. Our approach to formalizing induction andco-induction is via the least and greatest solutions of the

3 The “minus” in the terminology refers to the lack of the∇ quantifier w.r.t. the eponymous logic in Tiu’s thesis [56].

http://arxiv.org/abs/0812.4727v3

fixed point equations specified by the definitions. Such leastand greatest solutions are guaranteed to exist by impos-
ing a stratification condition on definitions (which basically ensures monotonicity). The proof rules for induction and
co-induction makes use of the notion ofpre-fixed pointsandpost-fixed pointsrespectively. In the inductive case, this
corresponds to the induction invariant, while in the co-inductive one to the so-called simulation.

The simply typed language underlying Linc− and the notion of definition make it possible to reasonintensionally
about syntax, in particular enforcingfree equality via unification, which can be used on first-order terms or higher-
orderλ-terms. In fact, we can support HOAS encodings of constants without requiring them to be the constructors of
a (recursive) datatype, which could not exist for cardinality reasons. In particular we canprovethe freeness properties
of those constructors, namely injectivity, distinctness and case exhaustion. Judgements are encoded as definitions
accordingly to their informal semantics, either inductiveor co-inductive. Definitions that are true in every fixed point
will not be given here special consideration.

Linc− can be proved to be a conservative extension ofFOλ∆IN [25] and a generalization with a higher-order
language of Martin-Löf [24] first-order theory of iteratedinductive definitions. Moreover, to the best of our knowledge,
it is the first sequent calculus with a syntactical cut-elimination theorem for co-inductive definitions. In recent years,
several logical systems have been designed that build on thecore features of Linc−. In particular, one interesting,
and orthogonal, extension is the addition of the∇-quantifier [14, 31, 56, 57], which allows one to reason aboutthe
intentional aspects ofnames and bindingsin object syntax specifications (see, e.g., [15, 58, 59]). The cut elimination
proof presented in this paper can be used as a springboard towards cut elimination procedures for more expressive
(conservative) extensions of Linc− such as the ones with∇. Here lies the added value of the present paper, which
extends and revises a conference paper published in the proceedings of TYPES 2003 [33]. In the conference version,
the co-inductive rule had a technical side condition that isrestrictive and unnatural. The restriction was essentially
imposed by the particular cut elimination proof technique outlined in that paper. This restriction has been removed in
the present version, and as such the cut elimination proof itself has consequently been significantly revised.

The rest of the paper is organized as follows. Section 2 introduces the sequent calculus for the logic Linc−. Sec-
tion 3 shows some examples of using induction and co-induction to prove properties of list-related predicates and
the lazyλ-calculus. Section 4 studies several properties of derivations in Linc− that will be used extensively in the
cut-elimination proof (Section 5). Section 6 surveys the related work and Section 7 concludes this paper.

2 The LogicLinc−

The logic Linc− shares the core fragment ofFOλ∆IN , which is an intuitionistic version of Church’s Simple Theory
of Types. Formulae in the logic are built from predicate symbols and the usual logical connectives⊥, ⊤, ∧, ∨, ⊃, ∀τ
and∃τ. Following Church, formulae will be given typeo. The quantification typeτ (omitted in the rest of the paper)
can have base or higher types, but those are restricted not tocontaino. Thus the logic has a first-order proof theory but
allows the encoding of higher-order abstract syntax.

We assume the usual notion of capture-avoiding substitutions. Substitutions are ranged over by lower-case Greek
letters, e.g.,θ, ρ andσ. Application of substitution is written in postfix notation, e.g. tθ denotes the term resulting from
an application of substitutionθ to t. Composition of substitutions, denoted by◦, is defined ast(θ◦ρ) = (tθ)ρ.

The whole logic is presented in the sequent calculus in Figure 1. A sequent is denoted byΓ −→C whereC is a
formula andΓ is a multiset of formulae. Notice that in the presentation ofthe rule schemes, we make use of HOAS,
e.g., in the applicationBx it is implicit thatB has no free occurrence ofx. In particular we work moduloα-conversion
without further notice. In the∀R and∃L rules,y is an eigenvariable that is not free in the lower sequent of the rule.
Whenever we write a sequent, it is assumed implicitly that the formulae are well-typed and inβη-long normal forms:
the type context, i.e., the types of the constants and the eigenvariables used in the sequent, is left implicit as well. The
mc rule is a generalization of the cut rule that simplifies the presentation of the cut-elimination proof.

We extend the core fragment with a proof theoretic notion of equality and fixed points. Each of these extensions
are discussed below.

2.1 Equality

The right introduction rule for equality is the standard one, that is, it recognizes that two terms are syntactically equal.
The left introduction rule is more interesting. The substitution ρ in eqL is a unifier of s andt. Note that we specify
the premise of eqL as a set, with the intention that every sequent in the set is a premise of the rule. This set is of

2

Core rules:
B,B,Γ −→C
B,Γ −→C cL

Γ −→C
B,Γ −→C wL

⊥,Γ −→ B
⊥L Γ −→⊤

⊤R

B,Γ −→ D
B∧C,Γ −→ D

∧L
C,Γ −→ D

B∧C,Γ −→ D
∧L

Γ −→ B Γ −→C
Γ −→ B∧C

∧R

B,Γ −→ D C,Γ −→ D
B∨C,Γ −→ D

∨L
Γ −→ B

Γ −→ B∨C
∨R

Γ −→C
Γ −→ B∨C

∨R

Bt,Γ −→C

∀x.Bx,Γ −→C
∀L

Γ −→ By

Γ −→ ∀x.Bx
∀R

By,Γ −→C

∃x.Bx,Γ −→C
∃L

Γ −→ Bt
Γ −→ ∃x.Bx

∃R

Γ −→ B C,Γ −→ D
B⊃C,Γ −→ D

⊃ L
B,Γ −→C

Γ −→ B⊃C
⊃ R

C−→C
init

∆1 −→ B1 · · · ∆n −→ Bn B1, . . . ,Bn,Γ −→C

∆1, . . . ,∆n,Γ −→C
mc, wheren> 0

.

Equality rules:
{Γρ −→Cρ | sρ =βη tρ}

s= t,Γ −→C
eqL

Γ −→ t = t
eqR

.

Induction rules:
BS~y−→ S~y Γ,S~t −→C

Γ, p~t −→C
IL , p~x

µ
= B p~x

Γ −→ B p~t

Γ −→ p~t
IR , p~x

µ
= B p~x

.

Co-induction rules:
B p~t ,Γ −→C

p~t ,Γ −→C
CIL , p~x

ν
= B p~x

Γ −→ S~t S~y−→ BS~y

Γ −→ p~t
CIR , p~x

ν
= B p~x

Fig. 1. The inference rules of Linc−

3

course infinite, since for every unifier of(s, t), we can extend it to another unifier (e.g., by adding substitution pairs
for variables not in the terms). However, in many cases, it issufficient to consider a particular set of unifiers, which
is often called acomplete set of unifiers (CSU)[4], from which any unifier can be obtained by composing a member
of the CSU set with a substitution. In the case where the termsare first-order terms, or higher-order terms with the
pattern restriction [30], the set CSU is a singleton, i.e., there exists a most general unifier (MGU) for the terms.

In examples and applications, we shall use a more restrictedversion of eqL using CSU:

{Γρ −→Cρ | sρ =βη tρ,ρ ∈CSU(s, t)}

s= t,Γ −→C
eqLCSU

Replacing eqL with eqLCSU does not change the class of provable formulae, as shown in [56]. Note that in applying
eqL and eqLCSU, eigenvariables can be instantiated as a result. Note also that if the premise set of eqL and eqLCSU

are empty, then the sequent in the conclusion is considered proved.
Our treatment of equality implicitly assumes the notion offree equalityas commonly found in logic programming.

More specifically, the axioms of free equality [9], that is, injectivity of function symbols, inequality between distinct
function symbols, and the “occur-check” are enforced via unification in the eqL-rule. For instance, given a base type
nt (for natural numbers) and the constantsz : nt (zero) ands : nt → nt (successor), we can derive∀x. z= (s x)⊃⊥ as
follows:

z= (s x)−→⊥
eqL

−→ z= (s x)⊃⊥
⊃ R

−→ ∀x. z= (s x)⊃⊥
∀R

Sincez ands xare not unifiable, the eqL rule above has empty premise, thus concluding the derivation. We can also
prove the injectivity of the successor function,i.e.∀x∀y.(s x) = (s y)⊃ x= y.

This proof theoretic notion of equality has been consideredin several previous worke.g.by by Schroeder-Heister
[51], and McDowell and Miller [25].

2.2 Induction and co-induction

One way of adding induction and co-induction is to introducefixed point expressions and their associated introduction
rules,i.e. using theµ andν operators of the (first-order)µ-calculus. This is essentially what we shall follow here, but
with a different notation. Instead of using a “nameless” notation usingµ andν to express fixed points, we associate a
fixed point equation with an atomic formula. That is, we associate certain designated predicates with adefinition. This
notation is clearer and more convenient as far as our examples and applications are concerned. For the proof system
using nameless notation for inductive and co-inductive predicates, the interested reader is referred to a recent work by
Baelde and Miller [5].

Definition 1. An inductive definition clauseis written∀~x.p~x
µ
=B~x, where p is a predicate constant and~x is a sequence

of variables. The atomic formula p~x is called theheadof the clause, and the formula B~x, where B is a closed term,
is called thebody. Similarly, aco-inductive definition clauseis written∀~x.p~x

ν
= B~x. The symbols

µ
= and

ν
= are used

simply to indicate a definition clause: they are not a logicalconnective. Adefinitionis a set of definition clauses.

It is technically convenient to bundle up all the definitional clause for a given predicate in a single clause, so that
a predicate may occur only at most once in the heads of the clauses of a definition, following the same principles of
the iff-completionin logic programming [50]. Further, in order to simplify thepresentation of some rules that involve
predicate substitutions, we sometimes denote a definition using an abstraction over predicates, that is

∀~x. p~x
µ
= B p~x

whereB is an abstraction with no free occurrence of predicate symbol p and variables~x. Substitution ofp in the
body of the clause with a formulaS can then be written simply asBS~x. When writing definition clauses, we often
omit the outermost universal quantifiers, with the assumption that free variables in a clause are universally quantified

(such variables will often be denoted with capital letters). We shall write∀~x. p~x
△
= B p~x to denote a definition clause

generally, i.e., when we are not interested in the details ofwhether it is an inductive or a co-inductive definition.

4

The introduction rules for (co-)inductively defined atoms are given at the bottom of Figure 1. The abstractionS is
an invariant of the (co-)induction rule, which is of the sametype asp. The variables~y are new eigenvariables. For the
induction rule IL, Sdenotes a pre-fixed point of the underlying fixed point operator. Similarly, for the co-induction rule
CIL, Scan be seen as denoting a post-fixed point of the same operator. Here, we use a characterization of induction
and co-induction proof rules as, respectively, the least and the greatest solutions to a fixed point equation. To guarantee
soundness of these rules, we shall restrict the (co)inductive definitions to ones which are monotone. In this case, the
Knaster-Tarski fixed point theorems tell us that the existence of a pre-fixed point (respectively, post-fixed point) implies
the existence of a least (resp., greatest) fixed point. Monotonicity is enforced by a syntactic condition on definitions,as
it is used for the logicFOλ∆IN [25]: we rule out definitions with circular calling through implications (negations) that
can lead to inconsistency [49]. The notion oflevelof a formula allows us to define a proper stratification on definitions.

Definition 2. To each predicate p we associate a natural numberlvl(p), the level of p. Given a formula B, itslevel
lvl(B) is defined as follows:

1. lvl(p~t) = lvl(p),
2. lvl(⊥) = lvl(⊤) = 0,
3. lvl(B∧C) = lvl(B∨C) = max(lvl(B), lvl(C))
4. lvl(B⊃C) = max(lvl(B)+1, lvl(C))
5. lvl(∀x. Bx) = lvl(∃x. Bx) = lvl(Bt), for any term t.

The level of a sequentΓ −→ C is the level of C. A formula B is said to bedominatedby a predicate symbol p, if

lvl(B)≤ lvl(p) and lvl(B[λ~x.⊤/p])< lvl(p), whereλ~x.⊤ is of the same type as p. A definition clause∀~x. p~x
△
= B~x is

stratifiedif B~x is dominated by p.

Note that whenp is vacuous inB andp dominatesB, we obviously have lvl(B)< lvl(p).
From now on, we shall be concerned only with stratified definitions. An occurrence of a formulaA in a formulaC

is strictly positiveif that particular occurrence ofA is not to the left of any implication inC. Stratification then implies
that all occurrences of the head in the body are strictly positive, and that there is no mutual recursion between different
definition clauses. This restriction to non-mutual recursion is just for the sake of simplicity in the presentation of
the underlying idea of the cut elimination proof. This proof(Section 5) can be extended to handle mutually recursive
definitions with some straightforward, albeit tedious, modifications. In the first-order case, the restriction to non-mutual
recursion is immaterial, since one can easily encode mutually recursive predicates as a single predicate with an extra
argument. For example, consider the following mutual recursive definitions for even and odd numbers.

even X
µ
= X = z∨∃y.y= (s X)∧odd y.

odd X
µ
= ∃y.y= (s X)∧even y.

We can collapse these two definition clauses into a single one, with a parameter that takes a constante (for ‘even’) or
o (for ‘odd’):

evod W X
µ
= [W = e∧ (X = z∨∃y. y= (s X)∧evod o y)]∨

[W = o∧ (∃y. y= (s X)∧evod e y)].

We then define even and odd as follows:
even X

µ
= evod e X.

odd X
µ
= evod o X.

This definition can be stratified by assigning levels to the predicate symbols such that

lvl(evod)< lvl(even)< lvl(odd).

3 Examples

We now give some examples, starting with some that make essential use of HOAS.

5

3.1 Lazyλ-Calculus

We consider an untyped version of the pureλ-calculus with lazy evaluation, following the usual HOAS style, i.e.,
object-levelλ-operator and application are encoded as constants lam :(tm→ tm)→ tmand @ :tm→ tm→ tm, where
tm is the syntactic category of object-levelλ-terms. The evaluation relation is encoded as the followinginductive
definition

M⇓N
µ
= [∃M′. (M = lamM′)∧ (M = N)]∨

[∃M1∃M2∃P. (M = M1@M2)∧M1⇓ lamP∧ (PM2)⇓N]

Notice that object-level substitution is realized viaβ-reduction in the meta-logic.
The notion ofapplicative simulationof λ-expressions [1] can be encoded as the (stratified) co-inductive definition

sim R S
ν
= ∀T. R⇓ lamT ⊃ ∃U. S⇓ lamU ∧∀P.sim (T P) (U P).

Given this encoding, we can prove the reflexivity property ofsimulation, i.e.,∀s. sims s. This is proved co-inductively
by using the simulationλxλy. x= y. After applying∀R and CIR , it remains to prove the sequents−→ s= s, and

x= y−→ ∀x1. x⇓ lamx1 ⊃ (∃x2. y⇓ lamx2∧∀x3.(x1x3) = (x2 x3))

The first sequent is provable by an application of eqR rule. The second sequent is proved as follows.

z⇓ lamx1 −→ z⇓ lamx1
init

z⇓ lamx1 −→ (x1x3) = (x1 x3)
eqR

z⇓ lamx1 −→ ∀x3.(x1x3) = (x1 x3)
∀R

z⇓ lamx1 −→ (z⇓ lamx1∧∀x3.(x1x3) = (x1x3))
∧R

z⇓ lamx1 −→ (∃x2.z⇓ lamx2∧∀x3.(x1x3) = (x2 x3))
∃R

x= y,x⇓ lamx1 −→ (∃x2.y⇓ lamx2∧∀x3.(x1 x3) = (x2 x3))
eqL

x= y−→ x⇓ lamx1 ⊃ (∃x2.y⇓ lamx2∧∀x3.(x1x3) = (x2x3))
⊃ R

x= y−→ ∀x1.x⇓ lamx1 ⊃ (∃x2.y⇓ lamx2∧∀x3.(x1x3) = (x2 x3))
∀R

The transitivity property is expressed as∀r∀s∀t.sim r s∧ sim s t ⊃ sim r t . Its proof involves co-induction on
sim r t with the simulationλuλv.∃w.simu w∧sim w v, followed by case analysis (i.e.,defL and eqL rules) onsim r s
andsims t. The rest of the proof is purely logical.

We can also show the existence of divergent terms. Divergence is encoded as follows.

divrg T
ν
= [∃T1∃T2. T = (T1@T2)∧divrg T1]∨

[∃T1∃T2. T = (T1@T2)∧∃E. T1⇓ lamE∧divrg (E T2)].

Let Ω be the term(lamx.(x@x))@(lamx.(x@x)). We show that divrgΩ holds. The proof is straightforward by co-
induction using the simulationS:= λs. s= Ω. Applying the CIR produces the sequents−→ Ω = Ω andT = Ω −→
S1 ∨ S2 where

S1 := ∃T1∃T2. T = (T1@T2)∧ (ST1), and

S2 := ∃T1∃T2. T = (T1@T2)∧∃E. T1⇓ lamE∧S(E T2).

Clearly, only the second disjunct is provable, i.e., by instantiatingT1 andT2 with the same term lamx.(x@x), andE
with the functionλx.(x@x).

3.2 Lists

Lists over some fixed typeα are encoded as the typelst, with the usual constructor nil :lst for empty list and :: of type
α → lst→ lst. We consider here the append predicate for both the finite andinfinite case.

6

Finite lists The usual append predicate on finite lists can be encoded as the inductive definition

appL1 L2 L3
µ
= [(L1 = nil)∧ (L2 = L3)]∨

[∃x∃L′
1∃L′

3. (L1 = x::L′
1)∧ (L3 = x::L′

3)∧appL′
1 L2 L′

3].

Associativity of append is stated formally as

∀l1∀l2∀l12∀l3∀l4.(appl1 l2 l12∧appl12 l3 l4)⊃ ∀l23.appl2 l3 l23 ⊃ appl1 l23 l4.

Proving this formula requires us to prove first that the definition of append is functional, that is,

∀l1∀l2∀l3∀l4.appl1 l2 l3∧appl1 l2 l4 ⊃ l3 = l4.

This is done by induction onl1, i.e., we apply the IL rule on appl1 l2 l3, after the introduction rules for∀ and⊃, of
course. The invariant in this case is

S:= λr1λr2λr3.∀r.appr1 r2 r ⊃ r = r3.

It is a simple case analysis to check that this is the right invariant. Back to our original problem: after applying the
introduction rules for the logical connectives in the formula, the problem of associativity is reduced to the following
sequent

appl1 l2 l12, appl12 l3 l4, appl2 l3 l23 −→ appl1 l23 l4. (1)

We then proceed by induction on the listl1, that is, we apply the IL rule to the hypothesis appl1 l2 l12. The invariant
is simply

S:= λl1λl2λl12.∀l3∀l4.appl12 l3 l4 ⊃ ∀l23.appl2 l3 l23 ⊃ appl1 l23 l4.

Applying the IL rule, followed by∨L, to sequent (1) reduces the sequent to the following sub-goals

(i) S l1 l2 l12, appl12 l3 l4, appl2 l3 l23 −→ appl1 l23 l4,
(ii) (l1 = nil∧ l2 = l3)−→ S l1 l2 l3,
(iii) ∃x, l ′1, l

′
3.l1 = x:: l ′1∧ l3 = x:: l ′3∧S l′1 l2 l ′3 −→ S l1 l2 l3

The proof for the second sequent is straightforward. The first sequent reduces to

appl12 l3 l4,appl12 l3 l23 −→ app nil l23 l4.

This follows from the functionality of append and IR . The third sequent follows by case analysis. Of course, these
proofs could have been simplified by using aderivedprinciple ofstructural induction. While this is easy to do, we
have preferred here to use the primitive IL rule.

Infinite lists The append predicate on infinite lists is defined via co-recursion, that is, we define the behavior of
destructor operationson lists (i.e., taking the head and the tail of the list). In this case we never construct explicitly the
result of appending two lists, rather the head and the tail ofthe resulting lists are computed as needed. The co-recursive
append requires case analysis on all arguments.

coappL1 L2 L3
ν
= [(L1 = nil)∧ (L2 = nil)∧ (L3 = nil)]∨

[(L1 = nil)∧∃x∃L′
2∃L′

3. (L2 = x::L′
2)∧ (L3= x::L′

3) ∧ coapp nilL′
2 L′

3]∨
[∃x∃L′

1∃L′
3. (L1 = x::L′

1)∧ (L3 = x::L′
3) ∧ coappL′

1 L2 L′
3].

The corresponding associativity property is stated analogously to the inductive one and the main statement reduces to
proving the sequent

coappl1 l2 l12, coappl12 l3 l4, coappl2 l3 l23 −→ coappl1 l23 l4.

We apply the CIR rule to coappl1 l23 l4, using the simulation

S:= λl1λl2λl12.∃l23∃l3∃l4.coappl12 l3 l4∧ coappl2 l3 l23∧ coappl1 l23 l4.

Subsequent steps of the proof involve mainly case analysis on coappl12 l3 l4. As in the inductive case, we have to prove
the sub-cases whenl12 is nil. However, unlike in the former case, case analysis on the arguments of coapp suffices.

7

4 Properties of derivations

We discuss several properties of derivations in Linc−. Some of them involve transformations on derivations which
will be used extensively in the cut-elimination proof in Section 5. Before we proceed, some remarks on the use of
eigenvariables in derivations are useful. In proof search involving∀R , ∃L IL, CIR or eqL, new eigenvariables can be
introduced in the premises of the rules. Let us refer to such variables as internal eigenvariables, since they occur only
in the premise derivations. We view the choice of such eigenvariables as arbitrary and therefore we identify derivations
that differ only in the choice of the eigenvariables introduced by those rules. Another way to look at it is to consider
eigenvariables as proof-level binders. Hence when we work with a derivation, we actually work with an equivalence
class of derivations modulo renaming of internal eigenvariables.

4.1 Instantiating derivations

The following definition extends substitutions to apply to derivations. Since we identify derivations that differ onlyin
the choice of variables that are not free in the end-sequent,we will assume that such variables are chosen to be distinct
from the variables in the domain of the substitution and fromthe free variables of the range of the substitution. Thus
applying a substitution to a derivation will only affect thevariables free in the end-sequent.

Definition 3. If Π is a derivation ofΓ −→C andθ is a substitution, then we define the derivationΠθ of Γθ −→Cθ
as follows:

1. SupposeΠ ends with theeqL rule
{

Πρ

Γ′ρ −→Cρ

}

ρ

s= t,Γ′ −→C
eqL

where sρ =βη tρ. Observe that any unifier for the pair(sθ, tθ) can be transformed to another unifier for(s, t), by
composing the unifier withθ. ThusΠθ is

{

Πθ◦ρ′

Γ′θρ′ −→Cθρ′

}

ρ′

sθ = tθ,Γ′θ −→Cθ
eqL

,

where sθρ′ =βη tθρ′.
2. If Π ends with any other rule and has premise derivationsΠ1, . . . ,Πn, thenΠθ also ends with the same rule and

has premise derivationsΠ1θ, . . . ,Πnθ.

Among the premises of the inference rules of Linc−, certain premises share the same right-hand side formula with
the sequent in the conclusion. We refer to such premises as major premises. This notion of major premise will be
useful in proving cut-elimination, as certain proof transformations involve only major premises.

Definition 4. Given an inference rule R with one or more premise sequents, we define its major premise sequents as
follows.

1. If R is either⊃ L,mcor IL, then its rightmost premise is the major premise
2. If R isCIR then its left premise is the major premise.
3. Otherwise, all the premises of R are major premises.

A minor premiseof a rule R is a premise of R which is not a major premise. The definition extends to derivations by
replacing premise sequents with premise derivations.

The following two measures on derivations will be useful later in proving many properties of the logic. Given a set
of measuresS , we denote with lub(S) the least upper bound ofS .

Definition 5. Given a derivationΠ with premise derivations{Πi}i , the measureht(Π) is lub({ht(Πi)}i)+1.

8

Definition 6. Given a derivationΠ with premise derivations{Πi}i , the measureindm(Π) is defined as follows

indm(Π) =

{

lub({indm(Πi)}i)+1, if Π ends withIL,
lub({indm(Πi)}i), otherwise.

Note that given the possible infinite branching of eqL rule, these measures in general can be ordinals. Therefore
in proofs involving induction on those measures, transfinite induction is needed. However, in most of the inductive
proofs to follow, we often do case analysis on the last rule ofa derivation. In such a situation, the inductive cases for
both successor ordinals and limit ordinals are basically covered by the case analysis on the inference figures involved,
and we shall not make explicit use of transfinite induction.

Lemma 1. For any substitutionθ and derivationΠ of Γ −→C, Πθ is a derivation ofΓθ −→Cθ.

Proof. This lemma states that Definition 3 is well-constructed, andfollows by induction on ht(Π). ⊓⊔

Lemma 2. For any derivationΠ and substitutionθ, ht(Π)≥ ht(Πθ) andindm(Π)≥ indm(Πθ).

Proof. By induction on ht(Π). The measures may not be equal because in the case where the derivation ends with the
eqL rule, some of the premise derivations ofΠ may not be needed to construct the premise derivations ofΠθ. ⊓⊔

Lemma 3. For any derivationΠ and substitutionsθ andρ, the derivations(Πθ)ρ andΠ(θ◦ρ) are the same deriva-
tion.

Proof. By induction on the measure ht(Π). ⊓⊔

4.2 Atomic initial rule

It is a common property of most logics that the initial rule can be restricted to atomic form, that is, the rule

p~t −→ p~t
init

wherep is a predicate symbol. The more general rule is derived as follows.

Definition 7. We construct a derivationIdC of the sequent C−→ C inductively as follows. The induction is on the
size of C. If C is an atomic formula we simply apply the atomic initial rule. Otherwise, we apply the left and right
introduction rules for the topmost logical constant in C, probably with some instances of the contraction and the
weakening rule.

The proof of the following lemma is straightforward by induction on ht(IdC).

Lemma 4. For any formula C, it holds thatindm(IdC) = 0.

Restricting the initial rule to atomic form will simplify some technical definitions to follow. We shall use Id instead
of IdC to denote identity derivations since the formulaC is always known from context.

4.3 Unfolding of derivations

Definition 8. Inductive unfolding.Let p~x
µ
= B p~x be an inductive definition. LetΠ be a derivation ofΓ −→C where

p dominates C. Let S be a closed term of the same type as p and letΠS be a derivation of the sequent

BS~x−→ S~x

where~x are new eigenvariables not free inΓ and C. We define the derivation µp
C(Π,ΠS) of Γ −→C[S/p] as follows.

If p is vacuous in C, then µpC(Π,ΠS) = Π. Otherwise, we define µp
C(Π,ΠS) according to the last rule ofΠ.

9

1. SupposeΠ ends withinit

p~t −→ p~t
init

.

Then µpC(Π,ΠS) is the derivation
ΠS

BS~x−→ S~x
Id

S~t −→ S~t
p~t −→ S~t

IL

2. SupposeΠ ends with⊃ L
Π1

Γ′ −→ D1

Π2
D2,Γ′ −→C

D1 ⊃ D2,Γ′ −→C
⊃ L

Then µpC(Π,ΠS) is the derivation

Π1
Γ′ −→ D1

µp
C(Π2,ΠS)

D2,Γ′ −→C[S/p]

D1 ⊃ D2,Γ′ −→C[S/p]
⊃ L

3. SupposeΠ ends with⊃ R
Π′

Γ,C1 −→C2

Γ −→C1 ⊃C2
⊃ R

Note that since p dominates C, it must be the case that p does not occur in C1. The derivation µ(Π,ΠS) is then
defined as follows.

µp
C2
(Π′,ΠS)

Γ,C1 −→C2[S/p]

Γ −→C1 ⊃C2[S/p]
⊃ R

4. SupposeΠ ends withmc

Π1
∆1 −→ B1 . . .

Πm
∆m −→ Bm

Π′

B1, . . . ,Bm,Γ′ −→C

∆1, . . . ,∆m,Γ′ −→C
mc

Then µpC(Π,ΠS) is

Π1
∆1 −→ B1 . . .

Πm
∆m −→ Bm

µp
C(Π

′,ΠS)

B1, . . . ,Bm,Γ′ −→C[S/p]

∆1, . . . ,∆m,Γ′ −→C[S/p]
mc

5. SupposeΠ ends withIL on some predicate q given a definition clause q~z
µ
= Dq~z.

Ψ
DI~z−→ I~z

Π′

I~t,Γ′ −→C

q~t,Γ′ −→C
IL

Then µpC(Π,ΠS) is the derivation

Ψ
DI~z−→ I~z

µp
C(Π

′,ΠS)

I~t,Γ′ −→C[S/p]

q~t,Γ′ −→C[S/p]
IL

6. SupposeΠ ends withIR
Π′

Γ −→ B p~t

Γ −→ p~t
IR .

Then µpC(Π,ΠS) is the derivation
µp

B p(Π′,ΠS)

Γ −→ BS~t
ΠS[~t/~x]

BS~t −→ S~t
Γ −→ S~t

mc.

10

7. If Π ends with any other rules, and has premise derivations
{

Πi
Γi −→Ci

}

i∈I

for some index setI , then µpC(Π,ΠS) also ends with the same rule and has premise derivations{µp
Ci
(Πi ,ΠS)}i∈I .

Definition 9. Co-inductive unfolding.Let p~x
ν
= B p~x be a co-inductive definition. Let S be a closed term of the same

type as p and letΠS be a derivation of
S~x−→ BS~x.

Let C be a formula dominated by p, and letΠ be a derivation ofΓ −→C[S/p]. We define the derivationνp
C(Π,ΠS) of

Γ −→C as follows.
If p is vacuous in C, thenνp

C(Π,ΠS) = Π. If C = p~t then C[S/p] = S~t andνp
C(Π,ΠS) is the derivation

Π
Γ −→ S~t

ΠS
S~x−→ BS~x

Γ −→ p~t
CIR

Otherwise, we defineνp
C(Π,ΠS) based on the last rule inΠ.

1. SupposeΠ ends with⊃ L
Π1

Γ′ −→ D1

Π2
D2,Γ′ −→C[S/p]

D1 ⊃ D2,Γ′ −→C[S/p]
⊃ L

Thenνp
C(Π,ΠS) is the derivation

Π1
Γ′ −→ D1

νp
C(Π2,ΠS)

D2,Γ′ −→C

D1 ⊃ D2,Γ′ −→C
⊃ L

2. SupposeΠ ends with⊃ R
Π′

Γ,C1 −→C2[S/p]

Γ −→ (C1 ⊃C2)[S/p]
⊃ R

Note that since p dominates C, it must be the case that p is vacuous in C1. Therefore we construct the derivation
νp

C(Π,ΠS) as follows.
νp

C2
(Π′,ΠS)

Γ,C1 −→C2

Γ −→C1 ⊃C2
⊃ R

3. SupposeΠ ends withmc

Π1
∆1 −→ B1 . . .

Πm
∆m −→ Bm

Π′

B1, . . . ,Bm,Γ′ −→C[S/p]

∆1, . . . ,∆m,Γ′ −→C[S/p]
mc

Thenνp
C(Π,ΠS) is

Π1
∆1 −→ B1 . . .

Πm
∆m −→ Bm

νp
C(Π

′,ΠS)

B1, . . . ,Bm,Γ′ −→C

∆1, . . . ,∆m,Γ′ −→C
mc

4. SupposeΠ ends withIL on a predicate q~t, given an inductive definition q~z
µ
= Dq~z.

Ψ
DI~z−→ I~z

Π′

I~t,Γ′ −→C[S/p]

q~t,Γ′ −→C[S/p]
IL

11

Thenνp
C(Π,ΠS) is the derivation

Ψ
DI~z−→ I~z

νp
C(Π

′,ΠS)

I~t,Γ′ −→C

q~t,Γ′ −→C
IL

5. If Π ends with any other rules, and has premise derivations

{

Πi
Γi −→Ci [S/p]

}

i∈I

for some index setI , thenνp
C(Π,ΠS) also ends with the same rule and has premise derivations{νp

C(Πi ,ΠS)}i∈I .

The following two lemmas state that substitutions commute with unfolding of derivations. Their proofs follow
straightforwardly from the fact that the definitions of (co-)inductive unfolding depend only on the logical structuresof
conclusions of sequents, hence is orthogonal to substitutions of eigenvariables. In these lemmas, we assume that the
formulasC, p and derivationsΠ andΠS satisfy the conditions of Definition 8 and Definition 9.

Lemma 5. The derivations µpC(Π,ΠS)θ and µp
C(Πθ,ΠS) are the same derivation.

Lemma 6. The derivationsνp
C(Π,ΠS)θ andνp

C(Πθ,ΠS) are the same derivation.

5 Cut elimination for Linc−

A central result of our work is cut-elimination, from which consistency of the logic follows. Gentzen’s classic proof
of cut-elimination for first-order logic uses an induction on the size of the cut formula, i.e., the number of logical
connectives in the formula. The cut-elimination procedureconsists of a set of reduction rules that reduce a cut of a
compound formula to cuts on its sub-formulae of smaller size. In the case of Linc−, the use of induction/co-induction
complicates the reduction of cuts. Consider for example a cut involving the induction rules

Π1
∆ −→ B pt
∆ −→ pt

IR

ΠB
BSy−→ Sy

Π
St,Γ −→C

pt,Γ −→C IL

∆,Γ −→C
mc

There are at least two problems in reducing this cut. First, any permutation upwards of the cut will necessarily involve
a cut withS that can be of larger size thanp, and hence a simple induction on the size of cut formula will not work.
Second, the invariantSdoes not appear in the conclusion of the left premise of the cut. The latter means that we need
to transform the left premise so that its end sequent will agree with the right premise. Any such transformation will
most likely beglobal, and hence simple induction on the height of derivations will not work either.

We shall use thereducibility techniques to prove cut elimination. More specifically, we shall build on the notion
of reducibility introduced by Martin-Löf to prove normalization of an intuitionistic logic with iterative inductivedefi-
nition [24]. Martin-Löf’s proof has been adapted to sequent calculus by McDowell and Miller [25], but in a restricted
setting where only natural number induction is allowed. Since our logic involves arbitrary stratified inductive defi-
nitions, which also includes iterative inductive definitions, we shall need a more general cut reductions. But the real
difficulty in our case is really in establishing cut elimination in the presence of co-inductive definitions, for which there
is no known cut elimination proof for the sequent calculus formulation.

The main part of the reducibility technique is a definition ofthe family of reducible sets of derivations. In Martin-
Löf’s theory of iterative inductive definition, this family of sets is defined inductively by the level of the derivations they
contain. Extending this definition of reducibility to Linc− is not obvious. In particular, in establishing the reducibility
of a derivationΞ ending with a CIR rule:

Π
Γ −→ S~t

ΠS
S~x−→ BS~x

Γ −→ p~t
CIR , p~x

ν
= B p~x

12

one must first establish the reducibility of its premise derivations. But a naive definition of reducibility forΞ, i.e., a
definition that postulates the reducibility ofΞ from the reducibility of its premises, is not a monotone definition, since
the premise derivations ofΞ may be derivations that have a higher level thanΞ.

To define a proper notion of reducibility for the co-inductive cases, we use a notion ofparametric reducibility,
similar to that used in the strong normalisation proof of System F [19]. The notion of a parameter in our case is
essentially a coinductive predicate. As with strong normalisation of System F, these parameters are substituted with
some “reducibility candidates”, which in our case are certain sets of derivations of a co-inductive invariant which
we callsaturated sets. Let us say that a derivationΨ has typeB if its end sequent is of the formΓ −→ B, for some
Γ. Roughly, a parametric reducibility set of typeC, under a parameter substitution[S/p], wherep is a co-inductive
predicate andS is an invariant of the same type asS, is a certain set of derivations of typeC[S/p] satisfying some
closure conditions which are very similar to the definition of reducibility sets, but without the co-inductive part. The
definition of reducibility in the case involving co-induction rules, e.g., as in the derivationΞ above, can then be defined
in terms parametric reducibility sets, under appropriate parameter substitutions. Details of the definition will be given
later in this section.

5.1 Cut reduction

We follow the idea of Martin-Löf in using derivations directly as a measure by defining a well-founded ordering on
them. The basis for the latter relation is a set of reduction rules (called the contraction rules in [24]) that are used to
eliminate the applications of the cut rule. For the cases involving logical connectives, the cut-reduction rules used to
prove the cut-elimination for Linc− are the same to those ofFOλ∆IN . The crucial differences are in the reduction rules
involving induction and co-induction rules.

Definition 10. We define areductionrelation between derivations. The redex is always a derivation Ξ ending with the
multicut rule

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π
B1, . . . ,Bn,Γ −→C

∆1, . . . ,∆n,Γ −→C
mc

We refer to the formulas B1, . . . ,Bn produced by themcascut formulas.
If n = 0, Ξ reduces to the premise derivationΠ.
For n > 0 we specify the reduction relation based on the last rule of the premise derivations. If the rightmost

premise derivationΠ ends with a left rule acting on a cut formula Bi , then the last rule ofΠi and the last rule ofΠ
together determine the reduction rules that apply. We classify these rules according to the following criteria: we call
the rule anessentialcase whenΠi ends with a right rule; if it ends with a left rule, it is aleft-commutativecase; if
Πi ends with theinit rule, then we have anaxiomcase; amulticut case arises when it ends with themc rule. When
Π does not end with a left rule acting on a cut formula, then its last rule is alone sufficient to determine the reduction
rules that apply. IfΠ ends in a rule acting on a formula other than a cut formula, then we call this aright-commutative
case. Astructuralcase results whenΠ ends with a contraction or weakening on a cut formula. IfΠ ends with theinit
rule, this is also an axiom case; similarly a multicut case arises ifΠ ends in themc rule.

For simplicity of presentation, we always show i= 1.

Essential cases:

∧R /∧L: If Π1 andΠ are

Π′
1

∆1 −→ B′
1

Π′′
1

∆1 −→ B′′
1

∆1 −→ B′
1∧B′′

1
∧R

Π′

B′
1,B2, . . . ,Bn,Γ −→C

B′
1∧B′′

1,B2, . . . ,Bn,Γ −→C
∧L

,

thenΞ reduces to

Π′
1

∆1 −→ B′
1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π′

B′
1,B2, . . . ,Bn,Γ −→C

∆1, . . . ,∆n,Γ −→C
mc

The case for the other∧L rule is symmetric.

13

∨R /∨L: If Π1 andΠ are

Π′
1

∆1 −→ B′
1

∆1 −→ B′
1∨B′′

1
∨R

Π′

B′
1,B2, . . . ,Bn,Γ −→C

Π′′

B′′
1,B2, . . . ,Bn,Γ −→C

B′
1∨B′′

1,B2, . . . ,Bn,Γ −→C
∨L

,

thenΞ reduces to

Π′
1

∆1 −→ B′
1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π′

B′
1,B2, . . . ,Bn,Γ −→C

∆1, . . . ,∆n,Γ −→C
mc

The case for the other∨R rule is symmetric.
⊃ R /⊃ L: SupposeΠ1 andΠ are

Π′
1

B′
1,∆1 −→ B′′

1

∆1 −→ B′
1 ⊃ B′′

1
⊃ R

Π′

B2, . . . ,Bn,Γ −→ B′
1

Π′′

B′′
1,B2, . . . ,Bn,Γ −→C

B′
1 ⊃ B′′

1,B2, . . . ,Bn,Γ −→C
⊃ L

Let Ξ1 be
{

Πi
∆i −→ Bi

}

i∈{2..n}
Π′

B2, . . . ,Bn,Γ −→ B′
1

∆2, . . . ,∆n,Γ −→ B′
1

mc Π′
1

B′
1,∆1 −→ B′′

1

∆1, . . . ,∆n,Γ −→ B′′
1

mc

ThenΞ reduces to

Ξ1
. . .−→ B′′

1

{

Πi
∆i −→ Bi

}

i∈{2..n}
Π′′

B′′
1,{Bi}i∈{2..n},Γ −→C

∆1, . . . ,∆n,Γ,∆2, . . . ,∆n,Γ −→C
mc

∆1, . . . ,∆n,Γ −→C
cL

We use the double horizontal lines to indicate that the relevant inference rule (in this case,cL) may need to be
applied zero or more times.

∀R /∀L: If Π1 andΠ are

Π′
1

∆1 −→ B′
1[y/x]

∆1 −→ ∀x.B′
1

∀R

Π′

B′
1[t/x],B2, . . . ,Bn,Γ −→C

∀x.B′
1,B2, . . . ,Bn,Γ −→C

∀L
,

thenΞ reduces to

Π′
1[t/y]

∆1 −→ B′
1[t/x]

{

Πi
∆i −→ Bi

}

i∈{2..n}
Π′

. . .−→C

∆1, . . . ,∆n,Γ −→C
mc

∃R /∃L: If Π1 andΠ are

Π′
1

∆1 −→ B′
1[t/x]

∆1 −→ ∃x.B′
1

∃R

Π′

B′
1[y/x],B2, . . . ,Bn,Γ −→C

∃x.B′
1,B2, . . . ,Bn,Γ −→C

∃L
,

thenΞ reduces to
Π′

1
∆1 −→ B′

1[t/x] . . .
Π′[t/y]

B′
1[t/x],B2, . . . ,Γ −→C

∆1, . . . ,∆n,Γ −→C
mc

14

∗/IL: SupposeΠ is the derivation
ΠS

DS~x−→ S~x
Π′

S~t,B2, . . . ,Bn,Γ −→C

p~t,B2, . . . ,Bn,Γ −→C
IL

where p~x
µ
= B p~x. ThenΞ reduces to

µp
p~t
(Π1,ΠS)

∆1 −→ S~t . . .
Π′

S~t, . . . ,Bn,Γ −→C
∆1, . . . ,∆n,Γ −→C

mc

CIR /CIL: SupposeΠ1 andΠ are

Π′
1

∆1 −→ S~t
ΠS

S~x−→ DS~x

∆1 −→ p~t
CIR

Π′

D p~t, . . . ,Γ −→C

p~t, . . . ,Γ −→C
CIL

Let Ξ1 be the derivation
Π′

1
∆1 −→ S~t

ΠS[~t/~x]
S~t −→ DS~t

∆1 −→ DS~t
mc

ThenΞ reduces to
νp

D p(Ξ1,ΠS)

∆1 −→ D p~t

{

Π j

∆ j −→ B j

}

j∈{2,...,n}

Π′

D p~t, . . . ,Γ −→C

∆1, . . . ,∆n,Γ −→C
mc

eqR /eqL: SupposeΠ1 andΠ are

∆1 −→ s= t
eqR

{

Πρ

B2ρ, . . . ,Bnρ,Γρ −→Cρ

}

ρ

s= t,B2, . . . ,Bn,Γ −→C
eqL

Then by the definition ofeqR rule, s and t are equal terms (moduloλ-conversion), and hence are unifiable by the
empty substitution. Note that in this caseΠε ∈ {Πρ}ρ. ThereforeΞ reduces to

{

Πi
∆i −→ Bi

}

i∈{2..n}
Πε

B2, . . . ,Bn,Γ −→C
∆2, . . . ,∆n,Γ −→C

mc

∆1,∆2, . . . ,∆n,Γ −→C
wL

Left-commutative cases: In the following cases, we supposethat Π ends with a left rule, other than{cL,wL, IL},
acting on B1.

•L/ ◦L: SupposeΠ1 is
{

Πi
1

∆i
1 −→ B1

}

∆1 −→ B1
•L

,

where•L is any left rule except⊃ L, eqL, or IL. ThenΞ reduces to














Πi
1

∆i
1 −→ B1

{

Π j

∆ j −→ B j

}

j∈{2..n}
Π

B1, . . . ,Bn,Γ −→C

∆i
1,∆2, . . . ,∆n,Γ −→C

mc















∆1,∆2, . . . ,∆n,Γ −→C
•L

15

⊃ L/ ◦L: SupposeΠ1 is
Π′

1
∆′

1 −→ D′
1

Π′′
1

D′′
1,∆

′
1 −→ B1

D′
1 ⊃ D′′

1,∆′
1 −→ B1

⊃ L

Let Ξ1 be
Π′′

1
D′′

1,∆′
1 −→ B1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π
B1, . . . ,Bn,Γ −→C

D′′
1,∆′

1,∆2, . . . ,∆n,Γ −→C
mc

ThenΞ reduces to
Π′

1
∆′

1 −→ D′
1

∆′
1,∆2, . . . ,∆n,Γ −→ D′

1
wL Ξ1

D′′
1,∆′

1,∆2, . . . ,∆n,Γ −→C

D′
1 ⊃ D′′

1,∆′
1,∆2, . . . ,∆n,Γ −→C

⊃ L

IL/ ◦L: SupposeΠ1 is
ΠS

DS~x−→ S~x
Π′

1
S~t,∆′

1 −→ B1

p~t,∆′
1 −→ B1

IL

where p~x
µ
= D p~x. LetΞ1 be

Π′
1

S~t,∆′
1 −→ B1 . . .

Πn
∆n −→ Bn

Π
B1, . . . ,Bn,Γ −→C

S~t,∆′
1,∆2, . . . ,∆n,Γ −→C

mc

ThenΞ reduces to
ΠS

DS~x−→ S~x
Ξ1

S~t,∆′
1, . . . ,∆n,Γ −→C

p~t,∆′
1, . . . ,∆n −→C

IL

eqL/ ◦L: SupposeΠ1 is
{

Πρ
1

∆′
1ρ −→ B1ρ

}

s= t,∆′
1 −→ B1

eqL
,

thenΞ reduces to










Πρ
1

∆′
1ρ −→ B1ρ

{

Πiρ
∆iρ −→ Biρ

}

i∈{2..n}
Πρ

. . .−→Cρ
∆′

1ρ,∆2ρ, . . . ,∆nρ,Γρ −→Cρ
mc











s= t,∆′
1,∆2, . . . ,∆n,Γ −→C

eqL

Right-commutative cases:

−/ ◦L: SupposeΠ is
{

Πi

B1, . . . ,Bn,Γi −→C

}

B1, . . . ,Bn,Γ −→C ◦L
,

where◦L is any left rule other than⊃ L, eqL, or IL acting on a formula other than B1, . . . ,Bn. The derivationΞ
reduces to











Π1
∆1 −→ B1 · · ·

Πn
∆n −→ B′

n

Πi

B1, . . . ,Bn,Γi −→C

∆1, . . . ,∆n,Γi −→C
mc











∆1, . . . ,∆n,Γ −→C
◦L

16

−/⊃ L: SupposeΠ is
Π′

B1, . . . ,Bn,Γ′ −→ D′
Π′′

B1, . . . ,Bn,D′′,Γ′ −→C

B1, . . . ,Bn,D′ ⊃ D′′,Γ′ −→C
⊃ L

Let Ξ1 be
Π1

∆1 −→ B1 · · ·
Πn

∆n −→ Bn

Π′

B1, . . . ,Bn,Γ′ −→ D′

∆1, . . . ,∆n,Γ′ −→ D′
mc

andΞ2 be
Π1

∆1 −→ B1 · · ·
Πn

∆n −→ Bn

Π′′

B1, . . . ,Bn,D′′,Γ′ −→C

∆1, . . . ,∆n,D′′,Γ′ −→C
mc

ThenΞ reduces to
Ξ1

∆1, . . . ,∆n,Γ′ −→ D′
Ξ2

∆1, . . . ,∆n,D′′,Γ′ −→C

∆1, . . . ,∆n,D′ ⊃ D′′,Γ′ −→C
⊃ L

−/IL: SupposeΠ is
ΠS

DS~x−→ S~x
Π′

B1, . . . ,Bn,S~t,Γ′ −→C

B1, . . . ,Bn, p~t,Γ′ −→C
IL

,

where p~x
µ
= D p~x. LetΞ1 be

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π′

B1, . . . ,Bn,S~t,Γ′ −→C

∆1, . . . ,∆n,S~t,Γ′ −→C
mc

ThenΞ reduces to
ΠS

DS~x−→ S~x
Ξ

∆1, . . . ,∆n,S~t,Γ′ −→C

∆1, . . . ,∆n, p~t,Γ′ −→C
IL

−/eqL: If Π is
{

Πρ

B1ρ, . . . ,Bnρ,Γ′ρ −→Cρ

}

B1, . . . ,Bn,s= t,Γ′ −→C
eqL

,

thenΞ reduces to










{

Πiρ
∆iρ −→ Biρ

}

i∈{1..n}
Πρ

Biρ, . . . ,Γ′ρ −→Cρ
∆1ρ, . . . ,∆nρ,Γ′ρ −→Cρ

mc











∆1, . . . ,∆n,s= t,Γ′ −→C
eqL

−/ ◦R : If Π is
{

Πi

B1, . . . ,Bn,Γi −→Ci

}

B1, . . . ,Bn,Γ −→C
◦R

,

where◦R is any right rule exceptCIR , thenΞ reduces to










Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Πi

B1, . . . ,Bn,Γi −→Ci

∆1, . . . ,∆n,Γi −→Ci
mc











∆1, . . . ,∆n,Γ −→C
◦R

,

17

−/CIR : SupposeΠ is
Π′

B1, . . . ,Bn,Γ −→ S~t
ΠS

S~x−→ DS~x

B1, . . . ,Bn,Γ −→ p~t
CIR

,

where p~x
ν
= D p~x. LetΞ1 be

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π′

B1, . . . ,Bn,Γ −→ S~t

∆1, . . . ,∆n,Γ −→ S~t
mc

ThenΞ reduces to
Ξ1

∆1, . . . ,∆n,Γ −→ S~t
ΠS

S~x−→ DS~x

∆1, . . . ,∆n,Γ −→ p~t
CIR

Multicut cases:

mc/ ◦L: If Π ends with a left rule, other thancL, wL andIL, acting on B1 andΠ1 ends with a multicut and reduces
to Π′

1, thenΞ reduces to

Π′
1

∆1 −→ B1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π
B1, . . . ,Bn,Γ −→C

∆1, . . . ,∆n,Γ −→C
mc

−/mc: SupposeΠ is

{

Π j

{Bi}i∈I j ,Γ j −→ D j

}

j∈{1..m}

Π′

{D j} j∈{1..m},{Bi}i∈I ′ ,Γ′ −→C

B1, . . . ,Bn,Γ1, . . . ,Γm,Γ′ −→C
mc

,

where I1, . . . , Im, I ′ partition the formulas{Bi}i∈{1..n} among the premise derivationsΠ1, . . . ,Πm,Π′. For 1≤ j ≤m
let Ξ j be

{

Πi
∆i −→ Bi

}

i∈I j
Π j

{Bi}i∈I j ,Γ j −→ D j

{∆i}i∈I j ,Γ j −→ D j
mc

ThenΞ reduces to
{

Ξ j

. . .−→ D j

}

j∈{1..m}

{

Πi
∆i −→ Bi

}

i∈I ′
Π′

. . .−→C
∆1, . . . ,∆n,Γ1, . . .Γm,Γ′ −→C

mc

Structural cases:

−/cL: If Π is
Π′

B1,B1,B2, . . . ,Bn,Γ −→C
B1,B2, . . . ,Bn,Γ −→C cL

,

thenΞ reduces to

Π1
∆1 −→ B1

{

Πi
∆i −→ Bi

}

i∈{1..n}
Π′

B1,B1,B2, . . . ,Bn,Γ −→C
∆1,∆1,∆2, . . . ,∆n,∆n,Γ −→C

mc

∆1,∆2, . . . ,∆n,Γ −→C
cL

18

−/wL: If Π is
Π′

B2, . . . ,Bn,Γ −→C
B1,B2, . . . ,Bn,Γ −→C wL

,

thenΞ reduces to
Π2

∆2 −→ B2 . . .
Πn

∆n −→ Bn
Π′

B2, . . . ,Bn,Γ −→C
∆2, . . . ,∆n,Γ −→C

mc

∆1,∆2, . . . ,∆n,Γ −→C
wL

Axiom cases:

init/ ◦L: SupposeΠ ends with a left-rule acting on B1 andΠ1 ends with theinit rule. Then it must be the case that
∆1 = {B1} andΞ reduces to

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π
B1,B2, . . . ,Bn,Γ −→C

B1,∆2, . . . ,∆n,Γ −→C
mc

−/init: If Π ends with theinit rule, then n= 1, Γ is the empty multiset, and C must be a cut formula, i.e., C= B1.
ThereforeΞ reduces toΠ1.

Notice that the reductions in the essential case for induction and co-induction are not symmetric. This is because we
use an asymmetric measure to show the termination of cut-reduction, that is, the complexity of cut is always reduced
on the right premise. The difficulty in getting a symmetric measure, in the presence of contraction and implication (in
the body of definition), is already observed in logics with definitions but without (co-)induction [49].

It is clear from an inspection of the rules of the logic and thedefinition of cut reduction that every derivation ending
with a multicut has a reduct. But because we use multisets in sequents, there may be some ambiguity as to whether a
formula occurring on the left side of the rightmost premise of a multicut rule is in fact a cut formula, and if so, which
of the left premises corresponds to it. As a result, several of the reduction rules may apply, and so a derivation may
have multiple redexes.

The following lemmas show that the reduction relation is preserved by some of the transformations of derivations
defined previously.

Lemma 7. Let Π be a derivation ofΓ −→ C ending with amc and letθ be a substitution. IfΠθ reduces toΞ then
there exists a derivationΠ′ such thatΞ = Π′θ andΠ reduces toΠ′.

Proof. Observe that the redexes of a derivation are not affected by substitution, since the cut reduction rules are
determined by the last rules of the premise derivations of the derivation, which are not changed by substitution.
Therefore, any cut reduction rule that is applied toΠθ to get Ξ can also be applied toΠ. Suppose thatΠ′ is the
reduct ofΠ obtained this way. In all cases, except for the cases where the reduction rule applied is either∗/IL or
CIL/CIR , it is a matter of routine to check thatΠ′θ = Ξ. For the reduction rules∗/IL and CIL/CIR , we need
Lemma 5 and Lemma 6 which show that substitution commutes with (co-)inductive unfolding. ⊓⊔

Lemma 8. Let p~x
µ
= D p~x be an inductive definition and letΠS be a derivation of DS~x−→ S~x for some invariant S.

Let C be a non-atomic formula dominated by p. LetΠ andΠ′ be two derivations of the same sequentΓ −→ C, and
Π ends with anmc-rule. If µp

C(Π,ΠS) reduces toΞ then there exists a derivationΠ′ such thatΞ = µp
C(Π

′,ΠS) andΠ
reduces toΠ′.

Proof. By case analysis on the reduction rules. The case analysis can be much simplified by the following observations.
First, the reduction rules are driven only by outermost connectives in the formulas in the sequent. Second, the unfolding
of a derivation affects only the right-hand-side of the sequents appearing in the derivation (or more specifically, only
the branches containing major premises). By a quick inspection on the definition of reduction rules in Definition 10,
we see that the only non-trivial case to consider is the right-commutative case−/ ◦R . SinceC is non-atomic (and
assuming that it has at least one occurrence ofp, otherwise it is trivial sinceΠ = µp

C(Π,ΠS) in this case), the only cases
we need to verify is when its topmost logical connective is either∧, ∨, ⊃, ∀ and∃. In these cases, the unfolding does
not change the topmost connective, therefore any reductionrule that applies toµ(Π,ΠS) also applies toΠ. Lemma 5
and Lemma 6 are used when substitutions are involved (right/left commutative cases with eqL). ⊓⊔

19

Lemma 9. Let p~x
µ
= D p~x be an inductive definition and letΠS be a derivation of DS~x−→ S~x for some invariant S.

Let Π be the derivation
Π1

∆1 −→ B1 · · ·
Πn

∆n −→ Bn

Π′

B1, . . . ,Bn,Γ −→ p~t

∆1, . . . ,∆n,Γ −→ p~t
mc

Suppose thatΠ′ ends with a rule other thaninit and IR . If µp
p~t
(Π,ΠS) reduces toΞ then there exists a derivationΠ′′

such thatΞ = µp
p~t
(Π′′,ΠS) andΠ reduces toΠ′′.

Proof. The proof is straightforward by inspection on the cut reduction rules and the definition of inductive unfolding.
⊓⊔

Lemma 10. Let p~x
ν
= D p~x be a co-inductive definition and letΠS be a derivation of S~x−→ DS~x for some invariant

S. Let C be a non-atomic formula dominated by p. LetΠ andΠ′ be two derivations of the sequentΓ −→C[S/p], where
Π ends with amc rule. If νp

C(Π,ΠS) reduces toΞ then there exists a derivationΠ′ such thatΞ = νp
C(Π

′,ΠS) andΠ
reduces toΠ′.

Proof. Analogous to the proof of Lemma 8. ⊓⊔

5.2 Normalizability

Definition 11. We define the set ofnormalizablederivations to be the smallest set that satisfies the following condi-
tions:

1. If a derivationΠ ends with a multicut, then it is normalizable if every reductof Π is normalizable.
2. If a derivation ends with any rule other than a multicut, then it is normalizable if the premise derivations are

normalizable.

Following Martin-Löf [24], instead of assigning some ordinal measures to derivations and define an ordering on
them, we shall use the derivation figures themselves as a measure. Each clause in the definition of normalizability
asserts that a derivation is normalizable if certain (possibly infinitely many) other derivations are normalizable. We
call the latter thepredecessorsof the former. Thus a derivation is normalizable if the tree of its successive predecessors
is well-founded. We refer to this well-founded tree as itsnormalization.

Since a normalization is well-founded, it has an associatedinduction principle: for any propertyP of derivations,
if for every derivationΠ in the normalization,P holds for every predecessor ofΠ implies thatP holds forΠ, thenP
holds for every derivation in the normalization.

The set of all normalizable derivations is denoted byNM .

Lemma 11. If there is a normalizable derivation of a sequent, then there is a cut-free derivation of the sequent.

Proof. Let Π be a normalizable derivation of the sequentΓ −→ B. We show by induction on the normalization ofΠ
that there is a cut-free derivation ofΓ −→ B.

1. If Π ends with a multicut, then any of its reducts is one of its predecessors and so is normalizable. But the reduct
is also a derivation ofΓ −→ B , so by the induction hypothesis this sequent has a cut-free derivation.

2. SupposeΠ ends with a rule other than multicut. Since we are given thatΠ is normalizable, by definition the
premise derivations are normalizable. These premise derivations are the predecessors ofΠ, so by the induction
hypothesis there are cut-free derivations of the premises.Thus there is a cut-free derivation ofΓ −→ B .

⊓⊔

The next lemma states that normalization is closed under substitutions.

Lemma 12. If Π is a normalizable derivation, then for any substitutionθ, Πθ is normalizable.

Proof. We prove this lemma by induction on the normalization ofΠ.

1. If Π ends with a multicut, thenΠθ also ends with a multicut. By Lemma 7 every reduct ofΠθ corresponds to a
reduct ofΠ, therefore by induction hypothesis every reduct ofΠθ is normalizable, and henceΠθ is normalizable.

2. SupposeΠ ends with a rule other than multicut and has premise derivations{Πi}. By Definition 3 each premise
derivation inΠθ is eitherΠi or Πiθ. SinceΠ is normalizable,Πi is normalizable, and so by the induction hypoth-
esisΠiθ is also normalizable. ThusΠθ is normalizable. ⊓⊔

20

5.3 Parametric reducibility

Let us first define some terminology concerning derivations.We say that a derivationΠ has typeC if the end sequent
of Π is of the formΓ −→C for someΓ. We say that a set of derivationsS has typeC, if every derivationΠ ∈ S has
typeC. A set of derivationsR is closed under substitutionif for everyΠ ∈ R and for every substitutionθ, Πθ ∈ R .

To simplify presentation, we shall use the following notations to denote certain types of derivations. The derivation

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π
Γ −→C

∆1, . . . ,∆n,Γ −→C
mc

is abbreviated asmc(Π1, . . . ,Πn,Π). The derivation

ΠS
BS~x−→ S~x

Π
Γ,S~u−→C

Γ, p~u−→C
IL

is abbreviated asind(ΠS,Π), and the derivation

Π
Γ −→ S~u

ΠS
S~x−→ BS~x

Γ −→ p~u
CIR

is abbreviated ascoind(Π,ΠS).

Definition 12. Let F be a closed term of typeα1 → ··· → αn → o. A set of derivationsS is said to be F-indexedif
every derivation inS has type F t1 . . . tn for some t1, . . . , tn.

Given a setS of derivations and a formulaC, we denote withS ↓C the set

{Π ∈ S | Π is of typeC }.

We shall now define a family of sets of derivations, which we call parametric reducibility sets.

Definition 13. Parametric Reduciblity.Let p~x
ν
= B p~x be a co-inductive definition, let I be a closed term of the same

type as p, letR be a set of derivations, and letS be an I-indexed set of derivations. Let C be a formula dominated by
p. We define theparametric reducibility setsREDp

C[R ,S], consisting of derivations of type C[I/p], by induction on the
size of C, as follows. (In the following, we shall refer to C asthe typeof REDp

C[R ,S].)

1. If p does not appear in C thenREDp
C[R ,S] = R ↓C.

2. If C= p~u, for some~u, thenREDp
C[R ,S] = S ↓I~u.

3. Otherwise, the family of parametric reducibility sets{REDp
Cθ[R ,S]}θ is the smallest family that satisfies the

following: for everyθ and for every derivationΠ of type Cθ[I/p], Π ∈ REDp
Cθ[R ,S] if one of the following holds:

(a) Π ends with mc, and all its reducts are inREDp
Cθ[R ,S].

(b) Π ends with⊃ R , i.e.,
Π′

Γ,B−→ D[I/p]

Γ −→ B⊃ D[I/p]
⊃ R

Π′ ∈ REDp
D[R ,S], and for every substitutionρ and for every derivationΞ of ∆ −→ Bρ in R , we have

mc(Ξ,Π′ρ) ∈ REDp
Dρ[R ,S].

(c) Π ends with a ruleρ other than mc and⊃ R , the minor premise derivations ofΠ are normalizable, and its
major premise derivations are in the parametric reducibility sets of the appropriate types.

From now on, when we writeREDp
C[R ,S], it is understood thatp is a co-inductive predicate,C is dominated by

p, R is a set of derivations, andS is anI -indexed set of normalizable derivations, for someI .
Note that in Definition 13 (3), we define simultaneously the reducibility setsREDP

Cθ[R ,S] for all substitution
θ. This is because in the case the derivationΠ ends with eqL, reducibility of Π may depend on the reducibility of
(possibly infinitely many) derivations which are inREDp

Cρ[R ,S] for someρ. SinceCρ is of the same size asCθ, its

21

parametric reducibility set may not yet be defined by induction on the size. We therefore need to define this and other
reducibility sets which are indexed by instances ofC simultaneously.

As with the definition of normalizability, clause (3) in Definition 13 defines a monotone fixed point operator
(assuming the parametric reducibility sets of smaller types have been fixed), and it therefore induces a well-founded
tree of derivations in the family{REDp

Cθ[R ,S]}θ. It is immediately clear from the definition that a derivation Π′ in
the family is a predecessor ofΠ (in the same family) if either

– Π ends with a left rule andΠ′ is a major premise ofΠ, or
– Π ends withmcandΠ′ is a reduct ofΠ.

We shall call the well-founded tree of successive predecessors of a derivationΠ in the family{REDp
Cθ[R ,S]}θ the

parametric reductionof Π. As with the normalization of a derivation, it has an associated induction principle. Note
that, however, this ordering on derivations is defined only in the case whereC satisfies the syntactic condition defined
in Definition 13(3), i.e., it contains at least an occurrenceof p and is not an atomic formula.

The definition of parametric reducibility can be seen as defining a function onS-indexed sets. In the case where the
type of the parametric reducibility set is the body of the co-inductive definition forp, this function corresponds to the
underlying fixed point operator forp. We shall now define a class ofS-indexed sets which are closed under this fixed
point operator. These sets, called saturated sets in the following, can be seen as post-fixed points of the fixed point
operator for the co-inductive definition forp. They will be used in defining the reducibility of derivations involving
the co-induction rule CIR .

Definition 14. Let∀~x. p~x
ν
= B p~x be an co-inductive definition. Let S be a closed term of the same type as p. LetΠS

be a derivation of S~x −→ BS~x. Let R be a set of derivations. An S-indexed setS is a (R ,ΠS)-saturated setif the
following hold:

1. Every derivation inS is normalizable.
2. If Π ∈ S thenΠθ ∈ S for anyθ.
3. If Π ∈ S andΠ is of type S~u for some~u, then mc(Π,ΠS[~u/~x]) ∈ REDp

B p~u[R ,S].

5.4 Reducibility

We now define a family of reducible setsREDi of level i.

Definition 15. Reducibility.We define the family{REDi}i of reducible setsof level i by induction on i. In defining the
reducible set of level i, we assume that reducible sets of smaller levels have been defined. Each setREDi the smallest
set that satisfies the following: For every derivationΠ of level i,Π ∈ REDi if one of the following holds:

1. Π ends with mc and all its reducts are inREDi .
2. Π is

Π′

Γ,B−→ D
Γ −→ B⊃ D

⊃ R ,

Π′ ∈ REDlvl(D), and for every substitutionθ and for every derivationΞ of ∆ −→ Bθ in REDlvl(Bθ), we have
mc(Ξ,Π′θ) ∈ REDlvl(Dθ).

3. Π ends withCIR , i.e.,Π is
Π′

Γ −→ S~t
ΠS

S~x−→ BS~x
Γ −→ p~t

CIR

where p~x
ν
= B p~x, Π′ andΠS are normalizable, and there exists a(R ,ΠS)-saturated setS , whereR =

S

{RED j |
j < i}, such thatΠ′ ∈ S .

4. Π ends with a ruleρ other than mc and⊃ R , the minor premise derivations ofΠ are normalizable, and its major
premise derivations are in the reducibility sets of the appropriate levels.

22

As in the definition of normalizability, each clause in the definition of reducibility asserts that a derivation is
reducible provided that certain other derivations, calledthe predecessors of the derivation, are reducible. The definition
of reducibility induces a well-founded ordering on derivations in the reducibility sets. We shall refer to this ordering
asreducibility orderingand the induced well-founded tree as thereductionof the derivation. We say that a derivation
is reducibleif it is in REDi for somei.

Lemma 13. Every reducible derivation is normalizable.

Proof. Given a reducible derivationΠ, it is straightforward to show by induction on its reductionthat it is normalizable.
In the case whereΠ ends with CIR , by the definition of saturated sets (Definition 14) and reducibility (Definition 15),
its premise derivations are normalizable, and thereforeΠ is also normalizable. ⊓⊔

Lemma 14. If Π is reducible then for every derivationθ, Πθ is also reducible.

Proof. The proof is by induction on the reduction ofΠ. We consider two non-trivial cases here: the case whereΠ ends
with mc and the case where it ends with CIR . For the former, suppose thatΠ = mc(Π1, . . . ,Πn,Π′). By Lemma 7,
every reduct ofΠθ, sayΞ, is the result of substituting a reduct ofΠ. By induction hypothesis, every reduct ofΠθ is
reducible, henceΠθ is also reducible.

We now consider the caseΠ ends with CIR , i.e.,Π is

Π′

Γ −→ S~t
ΠS

S~x−→ BS~x
Γ −→ p~t

CIR

wherep~x
ν
= B p~x. Let i be the level ofp and letR =

S

{RED j | j < lvl(p)}. By the definition of reducibility, we
have thatΠ′ andΠS are both normalizable, and moreover, there exists a(R ,ΠS)-saturated setS , such thatΠ′ ∈ S .
Suppose that~u= (~t)θ. To show thatΠθ is reducible, we must first show that bothΠ′θ andΠS are normalizable. This is
straightforward from the fact that bothΠ′ andΠS are normalizable and that normalisation is closed under substitutions
(Lemma 12). It remains to show that there exists a(R ,ΠS)-saturated setS ′ such thatΠ′θ ∈ S ′. Let S ′ = S . Since
saturated sets are closed under substitution andΠ′ ∈ S ′, we haveΠ′θ ∈ S ′. ⊓⊔

Lemma 15. Let p be a co-inductive predicate, let S be a closed term of thesame type as p. LetR =
S

{RED j | j <
lvl(p)}, let

S =
[

{Ξ | Ξ is reducible and has type S~t for some~t}

and let C be a formula dominated by p. Then for every reduciblederivationΠ of type C[S/p], Π ∈ REDp
C[R ,S].

Proof. By induction on the reduction ofΠ. If p does not occur inC thenΠ ∈ R , since in this case lvl(C) < lvl(p)
(recall thatC is dominated byp), thereforeΠ ∈ REDp

C[R ,S]. If C = p thenΠ ∈ S (sinceΠ is reducible), hence
Π ∈ REDp

C[R ,S]. The other cases follow from straightforwardly from induction hypothesis. We show here the case
whereΠ ends with⊃ R .

Π′

Γ,B−→ D[S/p]

Γ −→ B⊃ D[S/p]
⊃ R

Note that in this caseC = B ⊃ D, and p does not occur inB by the restriction onC (p dominatesC). SinceΠ is
reducible, we have thatΠ′ is a reducible predecessor ofΠ, and for every substitutionθ and every reducible derivation
Ξ of type Bθ, we havemc(Ξ,Π′θ) is also a reducible predecessor ofΠ. It thus follows from induction hypotheses
that Π′ ∈ REDp

D[R ,S] and for everyΞ ∈ R of type Bθ (which is reducible by the definition ofR), mc(Ξ,Π′θ) ∈
REDp

Dθ[R ,S]. Therefore, by the definition of parametric reducibility, we have thatΠ ∈ REDp
C[R ,S]. ⊓⊔

5.5 Reducibility of unfolded derivations

The following lemmas state that reducibility is preserved by (co)inductive unfolding, under certain assumptions.

Lemma 16. Inductive unfolding.Let p~x
µ
= B p~x be an inductive definition. LetΠS be a reducible derivation of

BS~x−→ S~x. LetΠ be a reducible derivation ofΓ −→C such that p dominates C. Suppose the following statements
hold:

23

1. For every derivationΞ of ∆ −→ B p~u, if µ(Ξ,ΠS) is reducible, then the derivation mc(µ(Ξ,ΠS),ΠS[~u/~x]) is re-
ducible.

2. For every reducible derivationΞ of ∆ −→ S~u the derivation mc(Ξ, IdS~u) is reducible.
3. The derivation ind(ΠS, IdS~u) is reducible, for every~u of the appropriate types.

Then the derivation µpC(Π,ΠS) of Γ −→C[S/p] is reducible.

Proof. By induction on the reduction ofΠ. We show the non-trivial cases, assuming thatp is not vacuous inC. To
simplify presentation, we shall writeµ(., .) instead ofµp

F(., .), since in each of the following cases, it is easy to infer
from the context whichF we are referring to.

1. SupposeΠ ends withinit rule onp~u. Thenµ(Π,ΠS) = ind(ΠS, IdS~u), which is reducible by assumption.
2. SupposeΠ ends with⊃ R , that is,C=C1 ⊃C2.

Π′

Γ,C1 −→C2

Γ −→C1 ⊃C2
⊃ R

By the restriction onC, we know thatp is vacuous inC1, henceC[S/p] = C1 ⊃ C2[S/p]. By the definition of
reducibility, the derivationΠ′ is reducible and for every substitutionθ and every reducible derivationΨ of ∆ −→
C1θ, the derivationΞ

Ψ
∆ −→C1θ

Π′θ
Γθ,C1θ −→C2θ

∆,Γθ −→C2θ
mc

is reducible. We want to show that the derivationµ(Π,ΠS)

µ(Π′,ΠS)
Γ,C1 p−→C2S

Γ −→C1 p⊃C2[S/p]
⊃ R

is reducible. This reduces to showing thatµ(Π′,ΠS) is reducible and that

Ψ
∆ −→C1θ

µ(Π′,ΠS)θ
Γθ,C1θ −→C2θ[S/p]

∆,Γθ −→C2θ[S/p]
mc

is reducible. The first follows from induction hypothesis onΠ′. For the second derivation, we know from Lemma 5
that

µ(Π′,ΠS)θ = µ(Π′θ,ΠS).

It follows from this and the definition of inductive unfolding (Definition 8) that

mc(Ψ,µ(Π′,ΠS)θ) = mc(Ψ,µ(Π′θ,ΠS)) = µ(mc(Ψ,Π′θ),ΠS) = µ(Ξ,ΠS)

We can apply induction hypothesis onΞ, since it is a predecessor ofΠ, to establish the reducibility ofµ(Ξ,ΠS).
This, together with reducibility ofµ(Π′,ΠS) implies thatµ(Π,ΠS) is reducible.

3. SupposeΠ ends with IR rule onp~u.
Π′

Γ −→ B p~u
Γ −→ p~u

IR

Thenµ(Π,ΠS) is the derivation
µ(Π′,ΠS)

Γ −→ BS~u
ΠS[~u/~x]

BS~u−→ S~u
Γ −→ S~u

mc

The derivationµ(Π′,ΠS) is reducible by induction hypothesis. This, together with assumption (1) of the lemma,
imply thatµ(Π,ΠS) is reducible.

24

4. SupposeΠ ends withmc.

Π1
∆1 −→ D1 · · ·

Πn
∆n −→ Dm

Π′

D1, . . . ,Dm,Γ′ −→C

∆1, . . . ,∆m,Γ′ −→C
mc

Thenµ(Π,ΠS) is the derivation

Π1
∆1 −→ D1 · · ·

Πn
∆n −→ Dm

µ(Π′,ΠS)
D1, . . . ,Dm,Γ′ −→C[S/p]

∆1, . . . ,∆m,Γ′ −→C[S/p]
mc

By the definition of reducibility, every reduct ofΠ is reducible. We need to show that every reduct ofµ(Π,ΠS) is
reducible.
From Lemma 8, we know that for the case whereC is not atomic every reduct ofµ(Π,ΠS) corresponds to some
reduct ofΠ. Similarly, for the case whereΠ′ ends with a rule other thaninit or IR , by Lemma 9, the reducts of
µ(Π,ΠS) are in one-to-one correspondence with the reducts ofΠ. Therefore in these cases, the inductive hypoth-
esis can be applied to show the reducibility of each reduct ofµ(Π,ΠS). This leaves us the following two cases,
whereC= p~u andΠ′ ends with either IR or init rules.

– SupposeΠ′ is the derivation
Π′′

D1, . . . ,Dm,Γ′ −→ B p~u

D1, . . . ,Dm,Γ′ −→ p~u
IR

Let Ξ1 be the derivation
{

Π j

∆ j −→ D j

}

j∈{1,...,m}

Π′′

D1, . . . ,Γ′ −→ B p~u

∆1, . . . ,∆m,Γ′ −→ B p~u
mc

then the derivation
Ξ1

∆1, . . . ,∆m,Γ′ −→ B p~u

∆1, . . . ,∆m,Γ′ −→ p~u
IR

is a reduct ofΠ (by the reduction rule−/IR), and therefore by the definition of reducibility both this reduct
andΞ1 are reducible predecessors ofΠ. Let Ψ be the derivation

µ(Π′′,ΠS)
D1, . . . ,Γ′ −→ BS~u

Π′
S

BS~u−→ S~u

D1, . . . ,Γ′ −→ S~u
mc

Then the derivationµ(Π,ΠS) is the following
{

Π j

∆ j −→ D j

}

j∈{1,...,m}

Ψ
D1, . . . ,Γ′ −→ S~u

∆1, . . . ,∆m,Γ′ −→ S~u
mc

The only applicable reduction rule toµ(Π,ΠS) is−/mc, which gives us the reductΞ

Ψ′

∆1, . . . ,∆m,Γ′ −→ BS~u
Π′

S
BS~u−→ S~u

∆1, . . . ,∆m,Γ′ −→ S~u
mc

,

whereΨ′ is the derivation
{

Π j

∆ j −→ D j

}

j∈{1,...,m}

µ(Π′′,ΠS)
D1, . . . ,Γ′ −→ BS~u

∆1, . . . ,∆m,Γ′ −→ BS~u
mc

Notice thatΨ′ is exactlyµ(Ξ1,ΠS), and is reducible by inductive hypothesis. Therefore assumption (1) applies,
and the reductΞ is reducible, henceµ(Π,ΠS) is also reducible.

25

– Otherwise, supposeΠ′ ends withinit, thenD1 = p~u andΠ is the derivation

Π1
∆1 −→ p~u p~u−→ p~u

init

∆1 −→ p~u
mc

The only reduct ofΠ is Π1 since the only applicable reduction is−/init. On the other hand, the derivation
µ(Π,ΠS) is

Π1
∆1 −→ p~u

ΠS
BS~x−→ S~x

Id
S~u−→ S~u

p~u−→ S~u
IL

∆1 −→ S~u
mc

Its only reduct is (by∗/IL)
µ(Π1,ΠS)
∆1 −→ S~u

Id
S~u−→ S~u

∆1 −→ S~u
mc

The derivationµ(Π1,ΠS) is reducible by inductive hypothesis (Π1 is a predecessor ofΠ) and assumption (2)
applies, and the above reduct is reducible.

⊓⊔

Remark 1.Intuitively, condition (1) of Lemma 16 can be seen as asserting that the set of reducible derivations whose
types are instances ofS~x forms a pre-fixed point of the fixed point operator induced by the inductive definition ofp.

Lemma 17. Co-inductive unfolding.Let p~x
ν
= B p~x be a co-inductive definition. LetΠS be a normalizable derivation

of S~x−→ BS~x for some invariant S. LetR = {RED j | j < lvl(p)}, and letS be a(R ,ΠS)-saturated set. LetΠ be a
derivation ofΓ −→C[S/p] for some C dominated by p. IfΠ ∈ REDC[R ,S] thenνp

C(Π,ΠS) is reducible.

Proof. By induction on the size ofC, with sub-induction on the parametric reduction ofΠ. As in the proof of inductive
unfolding, we omit the subscript and superscript in theν function to simplify the presentation of the proof.

1. If p is not free inC, thenν(Π,ΠS) = Π. SinceΠ ∈ REDC[R ,S], it follows from the definition of parametric
reducibility thatΠ ∈ R , hence it is reducible by assumption.

2. SupposeC= p~u. ThenC[S/p] = S~u andν(Π,ΠS) is the derivation

Π
Γ −→ S~u

ΠS
S~x−→ BS~x

Γ −→ p~u
CIR

To show that this derivation is reducible, we first show that there exist a(R ,ΠS)-saturated setS ′ such thatΠ ∈ S ′.
SinceΠ∈REDp

p~u[R ,S], by the definition of parametric reducibility, we haveΠ∈ S . LetS ′ = S . ThenS ′ is indeed
a (R ,ΠS)-saturated set containingΠ. It remains to show that bothΠ andΠS are normalizable. This follows from
the assumption onΠS and the fact that saturated sets contain only normalizable derivations.

3. Supposep occurs inC butC 6= p~u for any~u. There are several subcases, depending on the last rule inΠ. Then we
show by induction on parametric reducibility ofΠ that it is also reducible.
(a) The base cases are those whereΠ ends with a rule with empty premises and whereΠ ends with a right-

introduction rule. In the former case, its reducibility is immediate from the definition of reducibility (Def-
inition 15). For the latter, in most cases, the reducibilityof Π follows from the outer induction hypothesis
(since in this case, the premise derivations ofΠ are in the parametric reducibility sets of smaller types) and
Definition 15. We show here a non-trivial case involving implication-right: SupposeΠ ends with⊃ R , i.e.,
C=C1 ⊃C2 for someC1 andC2.

Π′

Γ,C1 −→C2[S/p]

Γ −→C1 ⊃C2[S/p]
⊃ R

26

Note thatp is vacuous inC1 by the restriction onC. The derivationν(Π,ΠS) is

ν(Π′,ΠS)
Γ,C1 −→C2

Γ −→C1 ⊃C2
⊃ R

To show thatν(Π,ΠS) is reducible, we need to show thatν(Π′,ΠS) is reducible, and for everyθ and every
Ψ ∈ REDC1θ, we havemc(Ψ,ν(Π′,ΠS)θ) ∈ REDC2θ.
The parametric reducibility ofΠ implies thatΠ′ ∈ REDC2[R ,S] and for everyθ and every derivationΨ′ ∈
R , mc(Ψ′,Π′θ) ∈ REDC2θ[R ,S]. Note thatΨ is in R since lvl(C1θ) < lvl(p). Therefore we also have
mc(Ψ,Π′θ) ∈ REDC2θ[R ,S]. By the outer induction hypothesis, we have that both

ν(Π′,ΠS) and ν(mc(Ψ,Π′θ),ΠS)

are reducible. It remains to show that themc(Ψ,ν(Π′,ΠS)θ) is reducible. Note that by Lemma 6 this derivation
is equivalent tomc(Ψ,ν(Π′θ,ΠS)). To show that this derivation is reducible, there are two cases to consider.
If C2 is non-atomic then it is easy to see thatmc(Ψ,ν(Π′θ,ΠS)) is equivalent toν(mc(Ψ,Π′θ),ΠS), which is
reducible by the outer induction hypothesis. If, however,C2 = p~u for some~u, thenmc(Ψ,ν(Π′θ,ΠS)) is the
derivation (supposing that the end sequent ofΨ is ∆ −→C1θ):

Ψ
∆ −→C1θ

Π′θ
C1θ,Γθ −→ S~u

ΠS
S~x−→ BS~x

C1θ,Γθ −→ p~u
CIR

∆,Γθ −→ p~u
mc

To show that this derivation is reducible, we must show that all its reducts are reducible. There is only one
reduction rule that is applicable in this case, i.e., the−/CIR -case, which leads to the following derivation:

Ψ
∆ −→C1θ

Π′θ
C1θ,Γθ −→ S~u

∆,Γθ −→ S~u
mc ΠS

S~x−→ BS~x
∆,Γθ −→ p~u

CIR .

But notice that this is exactly the derivationν(mc(Ψ,Π′θ),ΠS), which is reducible by the outer induction
hypothesis.
Having shown thatν(Π′,ΠS) andmc(Ψ,ν(Π′,ΠS)θ) are reducible, we have sufficient conditions to conclude
thatν(Π,ΠS) is indeed reducible.

(b) For the inductive cases,Π ends either withmcor a left-rule. We show the former case here (the other cases
are straightforward). SupposeΠ is

Π1
∆1 −→ D1 · · ·

Πn
∆n −→ Dm

Π′

D1, . . . ,Dm,Γ′ −→C[S/p]

∆1, . . . ,∆n,Γ′ −→C[S/p]
mc

Thenν(Π,ΠS) is the derivation

Π1
∆1 −→ D1 · · ·

Πn
∆n −→ Dm

ν(Π′,ΠS)
D1, . . . ,Dm,Γ′ −→C

∆1, . . . ,∆n,Γ′ −→C
mc

The derivationν(Π,ΠS) is reducible if every reduct ofν(Π,ΠS) is also reducible. From Lemma10, it follows
that every reduct ofν(Π,ΠS) is of the formν(Ξ,ΠS) whereΞ is a reduct ofΠ. Since all reducts ofΠ are
predecessors ofΠ in the parametric reducibility ordering, we can apply the inductive hypothesis to show that
every reduct ofν(Π,ΠS) is reducible, henceν(Π,ΠS) is also reducible.

⊓⊔

27

5.6 Cut elimination

Most cases in the cut elimination proof for Linc− in the following are similar to those ofFOλ∆IN . The crucial differ-
ences are in the handling of the essential cut reductions forinductive and co-inductive rules.4 In the case of derivations
of inductive predicates, a crucial part of the proof is in establishing that theS-indexed set of reducible derivations
(whereS is an inductive invariant) satisfies the conditions of Lemma16 (in effect, demonstrating that the said set
forms a pre-fixed point). Dually, in the case for co-inductive proofs, one must show that theS-indexed set of reducible
derivations, whereS is a co-inductive invariant, forms a saturated set (i.e., a post fixed point of the co-inductive defini-
tion involved).

Lemma 18. For any derivationΠ of B1, . . . ,Bn,Γ −→C, for any reducible derivations

Π1
∆1 −→ B1, . . . ,

Πn
∆n −→ Bn

where n≥ 0, and for any substitutionsδ1, . . . ,δn,γ such that Biδi = Biγ for every i∈ {1, . . . ,n}, the derivationΞ

Π1δ1
∆1δ1 −→ B1δ1 · · ·

Πnδn
∆nδn −→ Bnδn

Πγ
B1γ, . . . ,Bnγ,Γγ −→Cγ

∆1δ1, . . . ,∆nδn,Γγ −→Cγ
mc

is reducible.

Proof. The proof is by induction on indm(Π) with subordinate induction on ht(Π), on n and on the reductions of
Π1, . . . ,Πn. The proof does not rely on the order of the inductions on reductions. Thus when we need to distinguish
one of theΠi , we shall refer to it asΠ1 without loss of generality. The derivationΞ is reducible if all its reducts are
reducible.

If n= 0, thenΞ reduces toΠγ, thus in this case we show thatΠγ is reducible. Since reducibility is preserved by
substitution (Lemma 14), it is enough to show thatΠ is reducible. This is proved by a case analysis of the last rule in
Π. For each case, the result follows easily from the inductionhypothesis on ht(Π) and Definition 15. The⊃ R case
requires that substitution for variables does not increasethe measures of a derivation. In the cases for⊃ L and IL
we need the additional information that reducibility implies normalizability (Lemma 13). The case for CIR requires
special attention. Letp~x

ν
= D p~x be a co-inductive definition. SupposeΠ is the derivation

Π′

Γ −→ S~t
ΠS

S~x−→ DS~x
Γ −→ p~t

CIR

for some invariantS. Let R =
S

{RED j | j < lvl(p)}. To show thatΠ is reducible we must show that its premises
are normalizable and that there exists a(R ,ΠS)-saturated setS such thatΠ′ ∈ S . The former follows from the outer
induction hypothesis and Lemma 13. For the latter, the setS is defined as follows:

S = {Ψ | Ψ is a reducible derivaiton of typeS~u, for some~u}.

SinceΠ′ is reducible by induction hypothesis, we haveΠ′ ∈ S . It remains to show thatS is a (R ,ΠS)-saturated set.
More specifically, we show thatS has the following properties.

1. Every derivation inS is normalizable.
2. If Ψ ∈ S thenΨθ ∈ S for anyθ.
3. If Ψ ∈ S andΨ is of typeS~u for some~u, thenmc(Ψ,ΠS[~u/~x]) ∈ REDp

B p~u[R ,S]

4 We also note that McDowell and Miller’s proof of cut elimination for FOλ∆IN given in [25] appears to contain a small gap in
the proof of a main technical lemma. More specifically, they use a similar technical lemma as Lemma 18, but without the extra
assumptions about the substitutionsδ1, . . . ,δn,θ. The problem with their formulation of the lemma appears in the case involving
the eqL/◦L reduction rule. This problem is fixed in our cut elimination proof with the more general statement of Lemma 18.
See http://www.lix.polytechnique.fr/ dale/papers/tcs00.errata.html for details of the errata in their paper.

28

Property (1) follows from the fact that reducibility implies normalizability (Lemma 13). Property (2) follows from the
fact that reducibility is closed under substitution (Lemma14). To prove (3), first notice that by Lemma 2, indm(ΠS[~u/~x])≤
indm(ΠS) = indm(Π) and ht(ΠS[~u/~x])≤ ht(ΠS)< ht(Π). Therefore, by the outer induction hypothesis, we have that
mc(Ψ,ΠS[~u/~x]) is reducible. By Lemma 15, we have thatmc(Ψ,ΠS[~u/~x])∈REDp

B p~u[R ,S]. Therefore,S is a(R ,ΠS)-
saturated set containingΠ′, henceΠ is reducible.

Forn> 0, we analyze all possible cut reductions and show for each case the reduct is reducible. Some cases follow
immediately from inductive hypothesis. We show here the non-trivial cases.

⊃ R /⊃ L: SupposeΠ1 andΠ are

Π′
1

∆1,B′
1 −→ B′′

1

∆1 −→ B′
1 ⊃ B′′

1
⊃ R

Π′

B2, . . . ,Γ −→ B′
1

Π′′

B′′
1,B2, . . . ,Γ −→C

B′
1 ⊃ B′′

1,B2, . . . ,Bn,Γ −→C
⊃ L

The derivationΞ1

Π2δ2
∆2δ2 −→ B2δ2 . . .

Πnδn
∆nδn −→ Bnδn

Π′γ
B2γ, . . . ,Bnγ,Γγ −→ B′

1γ
∆2δ2, . . . ,∆nδn,Γγ −→ B′

1γ
mc

is reducible by induction hypothesis since indm(Π′) ≤ indm(Π) and ht(Π′) < ht(Π). SinceΠ1 is reducible, by
Definition 15 the derivationΞ2

Ξ1
∆2δ2, . . . ,Γγ −→ B′

1γ
Π1δ1

B′
1δ1,∆1δ1 −→ B′′

1δ1

∆1δ1, . . . ,∆nδn,Γγ −→ B′′
1δ1

mc

is a predecessor ofΠ1 and therefore is reducible. The reduct ofΞ in this case is the following derivation

Ξ2
. . .−→ B′′

1δ1

{

Πiδi
∆iδi −→ Biδi

}

i∈{2..n}

Π′′γ
B′′

1γ, . . . ,Bnγ,Γγ −→Cγ
∆1δ1, . . . ,∆nδn,Γγ,∆2δ2, . . . ,∆nγ,Γγ −→Cγ

mc

cL
∆1δ1, . . . ,∆nδn,Γγ −→Cγ

which is reducible by induction hypothesis and Definition 15.
∀L/∀R : SupposeΠ1 andΠ are

Π′
1

∆1 −→ B′
1[y/x]

∆1 −→ ∀x.B′
1

∀R

Π′

B′
1[t/x],B2, . . . ,Bn,Γ −→C

∀x.B′
1,B2, . . . ,Bn,Γ −→C

∀L

Since we identify derivations that differ only in the choiceof intermediate eigenvariables that are not free in the
end sequents, we can choose a variabley such that it is not free in the domains and ranges ofδ1 andγ. We assume
without loss of generality thatx is chosen to be fresh with respect to the free variables in thesubstitutions so we
can push the substitutions under the binder. The derivationΞ is thus

Π′
1δ1

∆1δ1 −→ B′
1δ1[y/x]

∆1δ1 −→ ∀x.B′
1δ1

∀R
. . .

Π′γ
B′

1γ[tγ/x], . . . ,Γγ −→Cγ
∀x.B′

1γ, . . . ,Γγ −→Cγ ∀L

∆1δ1, . . . ,∆nδn,Γγ −→Cγ
mc

Let δ′1 = δ1◦ [tγ/y]. The reduct ofΞ in this case is

Π′
1δ′1

∆1δ1 −→ B′
1δ1[tγ/x] . . .

Π′γ
B′

1γ[tγ/x], . . . ,Γγ −→Cγ
∆1δ1, . . . ,∆nδn,Γγ −→Cγ

mc

which is reducible by induction hypothesis.

29

eqR /eqL: SupposeΠ1 andΠ are

∆1 −→ s= t
eqR

{

Πρ

B2ρ, . . . ,Bnρ,Γρ −→Cρ

}

ρ

s= t, . . . ,Bn,Γ −→C
eqL

ThenΞ is the derivation

∆1δ1 −→ (s= t)δ1
eqR

· · ·

{

Πγ◦ρ′

B2γρ′, . . . ,Bnγρ′,Γρ′ −→Cγρ′

}

ρ′

(s= t)γ, . . . ,Bnγ,Γγ −→Cγ
eqL

∆1δ1, . . . ,∆nδn,Γγ −→Cγ
mc

The eqR tells us thatsandt are unifiable via empty substitution (i.e., they are the samenormal terms). The reduct
of Ξ

Π2δ2
∆2δ2 −→ B2δ2 . . .

Πγ

B2γ, . . . ,Γγ −→Cγ
∆2δ2, . . . ,∆nδn,Γγ −→Cγ

mc

∆1δ1,∆2δ2, . . . ,∆nδn,Γγ −→Cγ wL

is therefore reducible by induction hypothesis.
∗/IL: SupposeΠ is the derivation

ΠS
DS~x−→ S~x

Π′

S~t,Γ −→C

p~t,Γ −→C
IL

wherep~x
µ
= D p~x. Let p~u be the result of applyingδ1 to p~t. ThenΞ is the derivation

Π1δ1
∆1δ1 −→ p~u · · ·

Πnδn
∆nδn −→ Bnδn

ΠS
DS~x−→ S~x

Π′γ
S~u, . . . ,Γγ −→Cγ

p~u, . . . ,Γγ −→Cγ IL

∆1δ1, . . . ,∆nδn,Γγ −→Cγ
mc

The derivationΞ reduces to the derivationΞ′

µ(Π1,ΠS)δ1

∆1δ1 −→ S~u · · ·
Πnδn

∆nδn −→ Bnδn

Π′γ
S~u,Γγ −→Cγ

∆1δ1, . . . ,∆nδn,Γγ −→Cγ
mc

Notice that we have used the fact that
µ(Π1δ1,ΠS) = µ(Π1,ΠS)δ1

in the derivation above, which follows from Lemma 5. Therefore, in order to prove thatΞ′ is reducible, it remains
to show that the unfolding ofΠ1 produces a reducible derivation. This will be proved using Lemma 16, but we
shall first prove the following properties, which are the conditions for applying Lemma 16:
1. For every derivationΨ of ∆ −→ D p~s, if µ(Ψ,ΠS) is reducible, then the derivationmc(µ(Ψ,ΠS),ΠS[~s/~x]) is

reducible.
2. For every reducible derivationΨ of ∆ −→ S~u the derivationmc(Ψ, IdS~u) is reducible.
3. The derivationind(ΠS, IdS~u) is reducible, for every~u of the appropriate types.

To prove (1), we observe that indm(ΠS[~u/~x]) ≤ indm(ΠS) < indm(Π), so by the outer induction hypothesis, the
derivationmc(µ(Ξ,ΠS),ΠS[~u/~x]) is reducible. Property (2) is proved similarly, by observing that indm(IdS~u) <
indm(Π) (since identity derivations do not use the IL rule; c.f. Lemma 4). Property (3) follows from the fact that
IdS~u is reducible and thatΠS is reducible (hence, also normalizable). Having shown these three properties, using
Lemma 16 we conclude thatµ(Π1,ΠS) is reducible, hence, by the outer induction (Π′ is smaller thanΠ), the
reductΞ′ is reducible.

30

CIR /CIL: SupposeΠ1 andΠ are

Π′
1

∆1 −→ S~t
ΠS

S~x−→ DS~x

∆1 −→ p~t
CIR

Π′

D p~t,B2, . . . ,Γ −→C

p~t,B2, . . . ,Γ −→C
CIL

wherep~x
ν
= D p~x. Suppose(p~t)δ1 = (p~t)γ = p~u. ThenΞ is the derivation

Π′
1δ1

∆1δ1 −→ S~u
ΠS

S~x−→ DS~x
∆1δ1 −→ p~u

CIR
· · ·

Π′γ
D p~u, . . . ,Γγ −→Cγ
p~u, . . . ,Γγ −→Cγ CIL

∆1δ1, . . . ,∆nδn,Γγ −→Cγ
mc

Let R =
S

{REDF | lvl(F) < lvl(p)}. SinceΠ1 is reducible, there exists a(R ,ΠS)-saturated setS such that
Π′

1 ∈ S . Let Ξ1 be the derivation
Π′

1δ1

∆1δ1 −→ S~u
ΠS[~u/~x]

S~u−→ DS~u
∆1δ1 −→ DS~u

mc

SinceS is a (R ,ΠS)-saturated set, by Definition 14,Ξ1 ∈ REDp
D p~u[R ,S]. It then follows from Lemma 17 that

ν(Ξ1,ΠS) is reducible.
The reduct ofΞ is the derivation

ν(Ξ1,ΠS)
∆1δ1 −→ D p~u · · ·

Πnδn
∆nδn −→ Bnδn

Π′γ
D p~u, . . . ,Bnγ,Γγ −→Cγ

∆1δ1, . . . ,∆nδn,Γγ −→Cγ
mc.

Its reducibility follows from the reducibility ofν(Ξ1,ΠS) and the outer induction hypothesis.
⊃ L/ ◦L: SupposeΠ1 is

Π′
1

∆′
1 −→ D′

1

Π′′
1

D′′
1,∆′

1 −→ B1

D′
1 ⊃ D′′

1,∆
′
1 −→ B1

⊃ L

SinceΠ1 is reducible, it follows from Definition 15 thatΠ′
1 is normalizable andΠ′′

1 is reducible. LetΞ1 be the
derivation

Π′′
1δ1

D′′
1δ1,∆′

1δ1 −→ B1δ1

Π2δ2
∆2δ2 −→ B2δ2 · · ·

Πγ
B1δ1, . . . ,Γγ −→Cγ

D′′
1δ1,∆′

1δ1,∆2δ2, . . . ,Γγ −→Cγ
mc

Ξ1 is reducible by induction hypothesis on the reduction ofΠ1 (Π′′
1 is a predecessor ofΠ1). The reduct ofΞ in this

case is the derivation

Π′
1δ1

∆′
1δ1 −→ D′

1δ1
wL

∆′
1δ1,∆2δ2, . . . ,Γγ −→ D′

1δ1

Ξ1
D′′

1δ1,∆′
1δ1,∆2δ2, . . . ,Γγ −→Cγ

(D′
1 ⊃ D′′

1)δ1,∆′
1δ1,∆2δ2, . . . ,Γγ −→Cγ ⊃ L

SinceΠ′
1 is normalizable and substitutions preserve normalizability, by Definition 11 the left premise of the reduct

is normalizable, and hence the reduct is reducible.
eqL/ ◦L: SupposeΠ1 is

{

Πρ

∆′
1ρ −→ B1ρ

}

ρ

s= t,∆′
1 −→ B1

eqL

31

ThenΞ is the derivation
{

Πδ1◦ρ′

∆′
1δ1ρ′ −→ B1δ1ρ′

}

ρ′

(s= t)δ1,∆′
1δ1 −→ B1δ1

eqL Π2δ2
∆2δ2 −→ B2δ2 · · ·

Πγ
B1γ, . . . ,Γγ −→Cγ

(s= t)δ1,∆′
1δ1,∆2δ2, . . . ,Γγ −→Cγ

mc

Notice that each premise derivationΠδ1◦ρ′ of Π1δ1 is a also a premise derivation ofΠ1, since for every unifierρ′

of (s= t)δ1, there is a unifier ofs= t, i.e., the substitutionδ1 ◦ρ′. Therefore everyΠδ1◦ρ′ is a predecessor ofΠ1.
Let Ξρ′ be the derivation

Πδ1◦ρ′
1

∆′
1δ1ρ′ −→ B1δ1ρ′

Π2δ2ρ′

∆2δ2ρ′ −→ B2δ2ρ′ . . . Πγρ′

B1γρ′, . . . ,Γγρ′ −→Cγρ′

∆′
1δ1ρ′,∆2δ2ρ′, . . . ,Γγρ′ −→Cγρ′

mc.

The reduct ofΞ
{

Ξρ′

∆′
1δ1ρ′, . . . ,Γγρ′ −→Cγρ′

}

ρ′

(s= t)δ1,∆′
1δ1, . . . ,Γγ −→Cγ

eqL

is then reducible by Definition 15.
IL/ ◦L: SupposeΠ1 is

ΠS
DS~x−→ S~x

Π′
1

S~t,∆′
1 −→ B1

p~t,∆′
1 −→ B1

IL

SinceΠ1 is reducible, it follows from the definition of reducibilitythatΠ′
1 is reducible predecessor ofΠ1 andΠS

is normalizable. Supposep~u= (p~t)δ1 = (p~t)γ. Let Ξ1 be the derivation

Π′
1δ1

S~u,∆′
1δ1 −→ B1δ1 · · ·

Πnδn
∆nδn −→ Bnδn

Πγ
B1γ, . . . ,Bnγ,Γγ −→Cγ

S~u,∆′
1δ1, . . . ,∆nδn,Γγ −→Cγ

mc

Ξ1 is reducible by induction on the reduction ofΠ1, therefore the reduct ofΞ

ΠS
DS~x−→ S~x

Ξ1
S~u,∆′

1δ1, . . . ,∆nδn,Γγ −→Cγ
p~u,∆′

1δ1, . . . ,∆nδn,Γγ −→Cγ IL

is reducible.
−/⊃ L: SupposeΠ is

Π′

B1, . . . ,Bn,Γ′ −→ D′
Π′′

B1, . . . ,Bn,D′′,Γ′ −→C

B1, . . . ,Bn,D′ ⊃ D′′,Γ′ −→C
⊃ L

Let Ξ1 be
Π1δ1

∆1δ1 −→ B1δ1 · · ·
Πnδn

∆nδn −→ Bnδn

Π′γ
B1γ, . . . ,Bnγ,Γ′γ −→ D′γ

∆1δ1, . . . ,∆nδn,Γ′γ −→ D′γ
mc

andΞ2 be
Π1δ1

∆1δ1 −→ B1δ1 · · ·
Πnδn

∆nδn −→ Bnδn

Π′′γ
B1γ, . . . ,Bnγ,D′′γ,Γ′γ −→Cγ

∆1δ1, . . . ,∆nδn,D′′γ,Γ′γ −→Cγ
mc

32

Both Ξ1 andΞ2 are reducible by induction hypothesis. Therefore the reduct of Ξ

Ξ1
∆1δ1, . . . ,∆nδn,Γ′γ −→ D′γ

Ξ2
∆1δ1, . . . ,∆nδn,D′′γ,Γ′γ −→Cγ

∆1δ1, . . . ,∆nδn,(D′ ⊃ D′′)γ,Γ′γ −→Cγ ⊃ L

is reducible (reducibility ofΞ1 implies its normalizability by Lemma 12).
−/CIR : SupposeΠ is

Π′

B1, . . . ,Bn,Γ −→ S~t
ΠS

S~x−→ DS~x

B1, . . . ,Bn,Γ −→ p~t
CIR

,

wherep~x
ν
= D p~x. Supposep~u= (p~t)δ1 = (p~t)γ. Let Ξ1 be the derivation

Π1δ1
∆1δ1 −→ B1δ1 · · ·

Πnδn
∆nδn −→ Bnδn

Π′γ
B1γ, . . . ,Bnγ,Γγ −→ S~u

∆1δ1, . . . ,∆nδn,Γγ −→ S~u
mc

.

The derivationsΠ′γ, ΠS, Ξ1 and the derivation

Ψ
∆′ −→ S~w

ΠS[~w/~x]
S~w−→ DS~w

∆′ −→ DS~w
mc

,

whereΨ is any reducible derivation, are all reducible by inductionhypothesis on the length ofΠ. Again, we use
the same arguments as in the case wheren= 0 to construct a(R ,ΠS)-saturated setS such thatΞ1 ∈ S . Therefore
by Definition 15, the reduct ofΞ:

Ξ1
∆1δ1, . . . ,∆nδn,Γγ −→ S~u

ΠS
S~x−→ DS~x

∆1δ1, . . . ,∆nδn,Γγ −→ p~u
CIR

is reducible.
mc/ ◦L: SupposeΠ1 ends with amc. Then any reduct ofΠ1δ1 corresponds to a predecessor ofΠ1 by Lemma 7.

Therefore the reduct ofΞ is reducible by induction on the reduction ofΠ1.
−/init: Ξ reduces toΠ1δ1. SinceΠ1 is reducible, by Lemma 14,Π1δ1 is reducible and henceΞ is reducible.

⊓⊔

Corollary 1. Every derivation is reducible.

Proof. The proof follows from Lemma 18, by settingn= 0. ⊓⊔

Since reducibility implies cut-elimination, it follows that every proof can be transformed into a cut-free proof.

Corollary 2. Given a fixed stratified definition, a sequent has a proof inLinc− if and only if it has a cut-free proof.

The consistency of Linc− is an immediate consequence of cut-elimination. By consistency we mean the following:
given a fixed stratified definition and an arbitrary formulaC, it is not the case that bothC andC⊃⊥ are provable.

Corollary 3. The logicLinc− is consistent.

Proof. Suppose otherwise, that is, there is a formulaC such that there is a proofΠ1 of C and another proofΠ2

for C ⊃ ⊥. Since cut elimination holds, we can assume, without loss ofgenerality, thatΠ1 andΠ2 are cut free. By
inspection of the inference rules of Linc−, we see thatΠ2 must end with⊃ R , that is,Π2 is

Π′
2

C−→⊥
−→C⊃⊥

⊃ R

Cutting Π1 with Π′
2 we get a derivation of· −→ ⊥, and applying the cut-elimination procedure we get a cut-free

derivation of· −→⊥. But there cannot be such a derivation since there is no right-introduction rule for⊥, contradiction.
⊓⊔

33

6 Related Work

Of course, there is a long association between mathematicallogic and inductive definitions [2] and in particular with
proof-theory, starting with the Takeuti’s conjecture, theearliest relevant entry for our purposes being Martin-Löf’s
original formulation of the theory ofiterated inductive definitions[24]. From the impredicative encoding of inductive
types [7] and the introduction of (co)recursion [16, 29] in system F, (co)inductive types became common and made it
into type-theoretic proof assistants such as Coq [37], firstvia a primitive recursive operator, but eventually in the let-rec
style of functional programming languages, as in Gimenez’sCalculus of Infinite Constructions[18]; here termination
(resp. productivity) is ensured by a syntactic check known as guarded by destructors[17]. Note that Coq forbids
altogether the introduction of blocks of mutually dependent types containing both inductive and co-inductive ones,
even though they could be stratified. Moreover, while a syntactic check has obvious advantages, it tends to be too
restrictive, as observed and improved upon in [6] by using type based termination. The same can be said aboutAgda
[36], where size types termination will eventually supersede guardedness [28].

Baelde and Miller have recently introduced an extension of linear logic with least and greatest fixed points [5].
However, cut elimination is proved indirectly via a second-order encoding of the least and the greatest fixed point
operators into higher-order linear logic and via an appeal to completeness of focused proofs for higher-order linear
logic.

Circular proofs are also connected with the emerging proof-theory of of fixed point logics and process calculi [48,
55], as well as in traditional sequent calculi such as in [8].The issue is the equivalence between systems with local vs
global induction, that is, between fixed point rules vs. well-founded and guarded induction (i.e.circular proofs). In the
sequent calculus it is unknown whether every inductive proof can be obtained via global induction.

In higher order logic (co)inductive definitions are obtained via the usual Tarski fixed point constructions, as realized
for example in Isabelle/HOL [38]. As we mentioned before, those approaches are at odd with HOAS even at the level
of the syntax. This issue has originated a research field in its own that we can only try to mention the main contenders:
in the Twelf system [41] the LF type theory is used to encode deductive systems as judgments and to specify meta-
theorems as relations (type families) among them; a logic programming-like interpretation provides an operational
semantics to those relations, so that an external check for totality (incorporating termination, well-modedness and
coverage [42,53]) verifies that the given relation is indeeda realizer for that theorem. Coinduction is still unaccounted
for and may require a switch to a different operational semantics for LF. There exists a second approach to reasoning
in LF that is built on the idea of devising an explicit (meta-)meta-logic (Mω) for reasoning (inductively) about the
framework, in a fully automated way [52]. It can be seen as a constructive first-order inductive type theory, whose
quantifiers range over possibly open LF objects over a signature. In this calculus it is possible to express and induc-
tively prove meta-logical properties of an object level system.Mω can be also seen as a dependently-typed functional
programming language, and as such it has been refined first into theElphin programming language [54] and more
recently inDelphin [47]. In a similar vein the context modal logic of Pientka, Pfenning and Naneski [34] provides a
basis for a different foundation for programming with HOAS and dependent types based on hereditary substitutions,
see the programming languageBeluga([43,44]). Because all of these systems are programming languages, we refrain
from a deeper discussion. We only note that systems like Delphin or Beluga separate data from computations. This
means they are always based on eager evaluation, whereas co-recursive functions should be interpreted lazily. Using
standard techniques such asthunksto simulate lazy evaluation in such a context seems problematic (Pientka, personal
communication).

Weak higher-order abstract syntax[11] is an approach that strives to co-exist with an inductive setting, where the
positivity condition for datatypes and hypothetical judgments must be obeyed. The problem of negative occurrences
in datatypes is handled by replacing them with a new type. Theapproach is extended to hypothetical judgments by
introducing distinct predicates for the negative occurrences. Some axioms are needed to reason about hypothetical
judgments, to mimic what is inferred by the cut rule in our architecture. Miculanet al.’s framework [22] embraces
this axiomaticapproach extending Coq with the “theory of contexts” (ToC).The theory includes axioms for the the
reification of key properties of names akin tofreshness. Furthermore, higher-order induction and recursion schemata
on expressions are also assumed.Hybrid [3] is a λ-calculus on top of Isabelle/HOL which provides the user with a
Full HOAS syntax, compatible with a classical (co)-inductive setting. Linc− improves on the latter on several counts.
First it disposes of Hybrid notion ofabstraction, which is used to carve out the “parametric” function space from the
full HOL space. Moreover it is not restricted to second-order abstract syntax, as the current Hybrid version is (and as
ToC cannot escape from being). Finally, at higher types, reasoning viadefL is more powerful than inversion, which
does not exploit higher-order unification.

34

ToC can be seen as a stepping stone towards Gabbay and Pittsnominal logic, which aims to be a foundation of
programming and reasoning withnames. It can be presented as a first-order theory [45], which includes primitives for
variable renaming and variable freshness, and a (derived) new “freshness” quantifier. Using this theory, it is possible
to prove properties by structural induction and also to define functions by recursion over syntax [46]. Urbanet al.’s
have engineered anominal datatype packageinside Isabelle/HOL [35] analogous to the standard datatype package but
defining equivalence classes of term constructors. In more recent versions, principles of primitive recursion and strong
induction have been added [60]. Coinduction on nominal datatypes is not available, but to be fair it is also absent from
Isabelle/HOL due to some technical limitations in the automation of the inductive package

7 Conclusion and Future Work

We have presented a proof theoretical treatment of both induction and co-induction in a sequent calculus compatible
with HOAS encodings. The proof principle underlying the explicit proof rules is basically fixed point (co)induction.
We have shown some examples where informal (co)inductive proofs using invariants and simulations are reproduced
formally in Linc−.

Consistency of the logic is an easy consequence of cut-elimination. Our proof system is, as far as we know, the
first which incorporates a co-induction proof rule with a direct cut elimination proof. This schema can be used as a
springboard towards cut elimination procedures for more expressive (conservative) extensions of Linc−, for example
in the direction ofFOλ∇ [31], or more recently, the logicLGω [57] by Tiu and the logicG by Gaceket al. [14].

As far as future work, we may investigate loosening the stratification condition for example in the sense oflocal
stratification, possibly allowing to encode proofs such as type preservation in operational semantics directly in Linc−

rather than with the 2-level approach [26, 32]. More generalnotions of stratifications are already allowed in practice,
see the proof by logical relations in [15], but not formally justified.

Another interesting problem is the connection withcircular proofs, which is particularly attractive from the view-
point of proof search, both inductively and co-inductively. This could be realized by directly proving a cut-elimination
result for a logic where circular proofs, under terminationand guardedness conditions completely replace (co)inductive
rules. Indeed, the question whether “global” proofs are equivalent to “local” proofs [8] is still unsettled.

AcknowledgementsThe Linc− logic was developed in collaboration with Dale Miller. Alberto Momigliano has
been supported by EPSRC grant GR/M98555 and partly by the MRGproject (IST-2001-33149), funded by the EC
under the FET proactive initiative on Global Computing.

References

[1] S. Abramsky and C.-H. L. Ong. Full abstraction in the lazylambda calculus.Inf. Comput., 105(2):159–267, 1993.
[2] P. Aczel. An introduction to inductive definitions. In J.Barwise, editor,Handbook of Mathematical Logic, volume 90 of

Studies in Logic and the Foundations of Mathematics, chapter C.7, pages 739–782. North-Holland, Amsterdam, 1977.
[3] S. Ambler, R. Crole, and A. Momigliano. Combining higherorder abstract syntax with tactical theorem proving and

(co)induction. In V. A. Carreño, editor,Proceedings of the 15th International Conference on Theorem Proving in Higher
Order Logics, Hampton, VA, 1-3 August 2002, volume 2342 ofLNCS. Springer Verlag, 2002.

[4] F. Baader and W. Snyder. Unification theory. In J. A. Robinson and A. Voronkov, editors,Handbook of Automated Reasoning,
pages 445–532. Elsevier and MIT Press, 2001.

[5] D. Baelde and D. Miller. Least and greatest fixed points inlinear logic. InLPAR, Lecture Notes in Computer Science, pages
92–106. Springer, 2007.

[6] G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of recursive definitions.Mathematical
Structures in Computer Science, 14(1):97–141, 2004.

[7] C. Bohm and A. Berarducci. Automatic synthesis of typed lambda -programs on term algebras.Theoretical Computer
Science, 39(2-3):135–153, Aug. 1985.

[8] J. Brotherston and A. Simpson. Complete sequent calculifor induction and infinite descent. InLICS, pages 51–62. IEEE
Computer Society, 2007.

[9] K. L. Clark. Negation as failure. In J. Gallaire and J. Minker, editors,Logic and Data Bases, pages 293–322. Plenum Press,
New York, 1978.

[10] N. de Bruijn. A plea for weaker frameworks. In G. Huet andG. Plotkin, editors,Logical Frameworks, pages 40–67.
Cambridge University Press, 1991.

35

[11] J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract syntax in Coq. InSecond International Conference on
Typed Lambda Calculi and Applications, pages 124–138. Springer,Lecture Notes in Computer Science, Apr. 1995.

[12] J. Despeyroux and A. Hirschowitz. Higher-order abstract syntax with induction in Coq. InFifth International Conference on
Logic Programming and Automated Reasoning, pages 159–173, June 1994.

[13] L.-H. Eriksson. A finitary version of the calculus of partial inductive definitions. In L.-H. Eriksson, L. Hallnäs,and
P. Schroeder-Heister, editors,Proceedings of the Second International Workshop on Extensions to Logic Programming, vol-
ume 596 ofLecture Notes in Artificial Intelligence, pages 89–134. Springer-Verlag, 1991.

[14] A. Gacek, D. Miller, and G. Nadathur. Combining genericjudgments with recursive definitions. InLICS, pages 33–44. IEEE
Computer Society, 2008.

[15] A. Gacek, D. Miller, and G. Nadathur. Reasoning in Abella about structural operational semantics specifications. In A. Abel
and C. Urban, editors,Informal proceedings of LFMTP’08. To appearin ENTCS, 2008.

[16] H. Geuvers. Inductive and coinductive types with iteration and recursion. In B. Nordström, K. Pettersson, and G. Plotkin,
editors,Informal Proceedings Workshop on Types for Proofs and Programs, Båstad, Sweden, 8–12 June 1992, pages 193–217.
Dept. of Computing Science, Chalmers Univ. of Technology and Göteborg Univ., 1992.

[17] E. Giménez. Codifying guarded definitions with recursion schemes. In P. Dybjer and B. Nordström, editors,Selected Papers
2nd Int. Workshop on Types for Proofs and Programs, TYPES’94, Båstad, Sweden, 6–10 June 1994, volume 996 ofLecture
Notes in Computer Science, pages 39–59. Springer-Verlag, Berlin, 1994.

[18] E. Giménez. Un Calcul de Constructions Infinies et son Application a la Verification des Systemes Communicants. PhD
thesis PhD 96-11, Laboratoire de l’Informatique du Parall´elisme, Ecole Normale Supérieure de Lyon, Dec. 1996.

[19] J.-Y. Girard, P. Taylor, and Y. Lafont.Proofs and Types. Cambridge University Press, 1989.
[20] L. Hallnäs. Partial inductive definitions.Theor. Comput. Sci., 87(1):115–142, 1991.
[21] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.Journal of the ACM, 40(1):143–184, 1993.
[22] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning on nominal algebras in HOAS. In

F. Orejas, P. G. Spirakis, and J. van Leeuwen, editors,ICALP, volume 2076 ofLecture Notes in Computer Science, pages
963–978. Springer, 2001.

[23] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction.Bulletin of the European Association for Theoretical
Computer Science, 62:222–259, June 1997. Surveys and Tutorials.

[24] P. Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive definitions. In J. Fenstad, editor,Proceedings of the
Second Scandinavian Logic Symposium, volume 63 ofStudies in Logic and the Foundations of Mathematics, pages 179–216.
North-Holland, 1971.

[25] R. McDowell and D. Miller. Cut-elimination for a logic with definitions and induction.Theoretical Computer Science,
232:91–119, 2000.

[26] R. McDowell and D. Miller. Reasoning with higher-orderabstract syntax in a logical framework.ACM Transactions on
Computational Logic, 3(1):80–136, January 2002.

[27] R. McDowell, D. Miller, and C. Palamidessi. Encoding transition systems in sequent calculus.TCS, 294(3):411–437, 2003.
[28] K. Mehltretter. Termination checking for a dependently typed language. Master’s thesis, LMU, Dec. 2007. Diplomarbeit.
[29] N. P. Mendler. Inductive types and type constraints in the second order lambda calculus.Annals of Pure and Applied Logic,

51(1):159–172, 1991.
[30] D. Miller. A logic programming language with lambda-abstraction, function variables, and simple unification. In P. Schroeder-

Heister, editor,Extensions of Logic Programming: International Workshop,Tübingen, volume 475 ofLNAI, pages 253–281.
Springer-Verlag, 1991.

[31] D. Miller and A. Tiu. A proof theory for generic judgments. ACM Trans. Comput. Logic, 6(4):749–783, 2005.
[32] A. Momigliano and S. Ambler. Multi-level meta-reasoning with higher order abstract syntax. In A. Gordon, editor,FOS-

SACS’03, volume 2620 ofLNCS, pages 375–392. Springer Verlag, 2003.
[33] A. Momigliano and A. Tiu. Induction and co-induction insequent calculus. In S. Berardi, M. Coppo, and F. Damiani, editors,

TYPES, volume 3085 ofLecture Notes in Computer Science, pages 293–308. Springer, 2003.
[34] A. Nanevski, B. Pientka, and F. Pfenning. Contextual modal type theory.ACM Transactions on Computational Logic, 200?

To appear.
[35] Nominal Methods Group. Nominal Isabelle. isabelle.in.tum.de/nominal/, 2008, Accessed 2 July 2008.
[36] U. Norell. Towards a practical programming language based on dependent type theory. PhD thesis, Department of Computer

Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, September 2007.
[37] C. Paulin-Mohring. Inductive definitions in the systemCoq: Rules and properties. In M. Bezem and J. Groote, editors, Pro-

ceedings of the International Conference on Typed Lambda Calculi and Applications, pages 328–345, Utrecht, The Nether-
lands, Mar. 1993. Springer-Verlag LNCS 664.

[38] L. C. Paulson. Mechanizing coinduction and corecursion in higher-order logic.Journal of Logic and Computation, 7(2):175–
204, Mar. 1997.

[39] F. Pfenning. Logical frameworks. In A. Robinson and A. Voronkov, editors,Handbook of Automated Reasoning, chapter 17,
pages 1063–1147. Elsevier Science Publisher and MIT Press,2001.

[40] F. Pfenning and C. Elliott. Higher-order abstract syntax. InPLDI, pages 199–208, 1988.

36

[41] F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical framework for deductive systems. In
H. Ganzinger, editor,Proceedings of the 16th International Conference on Automated Deduction (CADE-16), pages 202–
206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

[42] B. Pientka. Verifying termination and reduction properties about higher-order logic programs.J. Autom. Reasoning,
34(2):179–207, 2005.

[43] B. Pientka. A type-theoretic foundation for programming with higher-order abstract syntax and first-class substitutions. In
G. C. Necula and P. Wadler, editors,POPL, pages 371–382. ACM, 2008.

[44] B. Pientka and J. Dunfield. Programming with proofs and explicit contexts. InPPDP. ACM Press, 2008.
[45] A. M. Pitts. Nominal logic, a first order theory of names and binding.Information and Computation, 186(2):165–193, 2003.
[46] A. M. Pitts. Alpha-structural recursion and induction. J. ACM, 53(3):459–506, 2006.
[47] A. Poswolsky and C. Schürmann. Practical programmingwith higher-order encodings and dependent types. In

S. Drossopoulou, editor,ESOP, volume 4960 ofLecture Notes in Computer Science, pages 93–107. Springer, 2008.
[48] L. Santocanale. A calculus of circular proofs and its categorical semantics. In M. Nielsen and U. Engberg, editors,FoSSaCS,

volume 2303 ofLecture Notes in Computer Science, pages 357–371. Springer, 2002.
[49] P. Schroeder-Heister. Cut-elimination in logics withdefinitional reflection. In D. Pearce and H. Wansing, editors, Nonclassical

Logics and Information Processing, volume 619 ofLNCS, pages 146–171. Springer, 1992.
[50] P. Schroeder-Heister. Definitional reflection and the completion. In R. Dyckhoff, editor,Proceedings of the 4th International

Workshop on Extensions of Logic Programming, pages 333–347. Springer-Verlag LNAI 798, 1993.
[51] P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor,Eighth Annual Symposium on Logic in Computer

Science, pages 222–232. IEEE Computer Society Press, IEEE, June 1993.
[52] C. Schürmann.Automating the Meta-Theory of Deductive Systems. PhD thesis, Carnegie-Mellon University, 2000. CMU-

CS-00-146.
[53] C. Schürmann and F. Pfenning. A coverage checking algorithm for LF. In D. A. Basin and B. Wolff, editors,TPHOLs,

volume 2758 ofLecture Notes in Computer Science, pages 120–135. Springer, 2003.
[54] C. Schürmann, A. Poswolsky, and J. Sarnat. The▽-calculus. Functional programming with higher-order encodings. In

Seventh International Conference on Typed Lambda Calculi and Applications, pages 339–353. Springer,Lecture Notes in
Computer Science, Apr. 2005.

[55] C. Spenger and M. Dams. On the structure of inductive reasoning: Circular and tree-shaped proofs in theµ-calculus. In
A. Gordon, editor,FOSSACS’03, volume 2620 ofLNCS, pages 425–440,. Springer Verlag, 2003.

[56] A. Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD thesis, Pennsylvania State University, May
2004.

[57] A. Tiu. A logic for reasoning about generic judgments.Electr. Notes Theor. Comput. Sci., 174(5):3–18, 2007.
[58] A. Tiu and D. Miller. A proof search specification of the pi-calculus.Electr. Notes Theor. Comput. Sci., 138(1):79–101, 2005.
[59] A. F. Tiu. Model checking for pi-calculus using proof search. InProceedings of CONCUR 2005, volume 3653 ofLecture

Notes in Computer Science, pages 36–50. Springer, 2005.
[60] C. Urban and S. Berghofer. A recursion combinator for nominal datatypes implemented in Isabelle/HOL. In U. Furbachand

N. Shankar, editors,IJCAR, volume 4130 ofLecture Notes in Computer Science, pages 498–512. Springer, 2006.

37

