arXiv:0812.4727v3 [cs.LO] 30 Sep 2009

Induction and Co-induction in Sequent Calculus

Alwen Tiut and Alberto Momigliand

1 The Australian National University
Alwen.Tiul@rsise.anu.edu.au

2 LFCS, University of Edinburgh
amomigll@inf.ed.ac.uk

Abstract. Proof search has been used to specify a wide range of congmggistems. In order to build a framework
for reasoning about such specifications, we make use of @seqalculus involving induction and co-induction.
These proof principles are based on a proof theoretic (rétlaa set-theoretic) notion afefinition[13, 20, 25, 51].
Definitions are akin to (stratified) logic programs, where ligft and right rules for defined atoms allow one to view
theories as “closed” or defining fixed points. The use of diding makes it possible to reason intensionally about
syntax, in particular enforcing free equality via unificetti We add in a consistent way rules for pre and post fixed
points, thus allowing the user to reason inductively andnclctively about properties of computational system
making full use of higher-order abstract syntax. Consistés guaranteed via cut-elimination, where we give the
first, to our knowledge, cut-elimination procedure in thegemce of general inductive and co-inductive definitions.

1 Introduction

A common approach to specifying computation systems is edudtive systems. Those are used to specify and
reason about various logics, as well as aspects of progmaglaniguages such as operational semantics, type theories,
abstract machinestc Such specifications can be represented as logical theépnréesuitably expressive formal logic
whereproof-searchcan then be used to model the computation. A logic used asdfispon language is known

as alogical frameworkg39], which comes equipped with a representation methagolthe encoding of the syntax

of deductive systems inside formal logic can benefit fromubke ofhigher-order abstract syntaHOAS) [40], a
high-level and declarative treatment of object-level bibuariables and substitution. At the same time, we want to use
such a logic in order to reason over timeta-theoreticaproperties of object languages, for example type preservat

in operational semantics [26], soundness and completeafessmpilation [32] or congruence of bisimulation in
transition systems [27]. Typically this involves reasanloy (structural) induction and, when dealing with infinite
behavior, co-induction [23].

The need to support both inductive and co-inductive reagpand some form of HOAS requires some careful
design decisions, since the two are prima facie notoriouglgmpatible. While any meta-language based on a
calculus can be used to specify and animate HOAS encodiredg;reasoning has traditionally involved (co)inductive
specifications both at the level of the syntax and of the juty@s — which are of course unified at the type-theoretic
level. The first provides crucial freeness properties féaty@es constructors, while the second offers principleast
analysis and (co)induction. This is well-known to be proiédic, since HOAS specifications lead to non-monotone
(co)inductive operators, which by cardinality and coresisly reasons are not permitted in inductive logical frame-
works. Moreover, even when HOAS is weakened so as to be madjeatitle with standard proof assistants [12] such
as HOL or Coq, the latter suffer the fate of allowing the estiste of too many functions and yielding the so called
exoticterms. Those are canonical terms in the signature of an HO&8ding that do not correspond to any term in
the deductive system under study. This causes a loss of adeguHOAS specifications, which is one of the pillar of
formal verification, and it undermines the trust in formatidations. On the other hand, logics such as LF [21] that
are weak by design [10] in order to support this style of syat@ not directly endowed with (co)induction principles.

The contribution of this paper lies in the design of a newdopgalled Linc (for a logic withA-terms, induction
and co-induction§,which carefully adds principles of induction and co-indaotto a higher-order intuitionistic logic
based on a proof theoretic notion @éfinition following on work (among others) Lars Hallnas [20], Esks [13],
Schroeder-Heister [51] and McDowell and Miller [25]. Defians are akin to logic programs, but allow us to view
theories as “closed” or defining fixed points. This alonevadlais to perform case analysis independently from induc-
tion principles. Our approach to formalizing induction asadinduction is via the least and greatest solutions of the

3 The “minus” in the terminology refers to the lack of thequantifier w.r.t. the eponymous logic in Tiu's thesis [56].

http://arxiv.org/abs/0812.4727v3

fixed point equations specified by the definitions. Such laadtgreatest solutions are guaranteed to exist by impos-
ing a stratification condition on definitions (which baslgansures monotonicity). The proof rules for induction and
co-induction makes use of the notionfe-fixed pointandpost-fixed pointsespectively. In the inductive case, this
corresponds to the induction invariant, while in the cotictive one to the so-called simulation.

The simply typed language underlying Linand the notion of definition make it possible to reagdansionally
about syntax, in particular enforcifgee equality via unification, which can be used on first-ordemi®ior higher-
orderA-terms. In fact, we can support HOAS encodings of constaittswt requiring them to be the constructors of
a (recursive) datatype, which could not exist for cardigakasons. In particular we cgmovethe freeness properties
of those constructors, namely injectivity, distinctnessl @ase exhaustion. Judgements are encoded as definitions
accordingly to their informal semantics, either inductireco-inductive. Definitions that are true in every fixed goin
will not be given here special consideration.

Linc™ can be proved to be a conservative extensioff OA2N [25] and a generalization with a higher-order
language of Martin-Lof [24] first-order theory of iteratediuctive definitions. Moreover, to the best of our knowledg
it is the first sequent calculus with a syntactical cut-etiation theorem for co-inductive definitions. In recent wear
several logical systems have been designed that build onditeefeatures of Linc. In particular, one interesting,
and orthogonal, extension is the addition of thajuantifier [14, 31, 56, 57], which allows one to reason alibat
intentional aspects afames and bindings object syntax specifications (see, e.g., [15, 58, 59]& @it elimination
proof presented in this paper can be used as a springboaadd®wut elimination procedures for more expressive
(conservative) extensions of Lincsuch as the ones with. Here lies the added value of the present paper, which
extends and revises a conference paper published in thegulimgs of TYPES 2003 [33]. In the conference version,
the co-inductive rule had a technical side condition thaegrictive and unnatural. The restriction was essentiall
imposed by the particular cut elimination proof techniquéined in that paper. This restriction has been removed in
the present version, and as such the cut elimination preeif ihas consequently been significantly revised.

The rest of the paper is organized as follows. Section 2 diuites the sequent calculus for the logic LinSec-
tion 3 shows some examples of using induction and co-indodb prove properties of list-related predicates and
the lazyA-calculus. Section 4 studies several properties of déoiatin Linc™ that will be used extensively in the
cut-elimination proof (Section 5). Section 6 surveys tHatezl work and Section 7 concludes this paper.

2 The LogicLinc™

The logic Linc shares the core fragment®OAAN | which is an intuitionistic version of Church’s Simple Thgo
of Types. Formulae in the logic are built from predicate spialand the usual logical connectives T, A, V, D, V¢
and3;. Following Church, formulae will be given type The quantification type (omitted in the rest of the paper)
can have base or higher types, but those are restricted oohtaino. Thus the logic has a first-order proof theory but
allows the encoding of higher-order abstract syntax.

We assume the usual notion of capture-avoiding substitsitiSubstitutions are ranged over by lower-case Greek
letters, e.9.9, p anda. Application of substitution is written in postfix notatiomg. 9 denotes the term resulting from
an application of substitutiodito t. Composition of substitutions, denoted &yis defined as(60 p) = (t8)p.

The whole logic is presented in the sequent calculus in EiduiA sequent is denoted By— C whereC is a
formula and" is a multiset of formulae. Notice that in the presentatiothefrule schemes, we make use of HOAS,
e.g., in the applicatioB xit is implicit that B has no free occurrence »fln particular we work modula-conversion
without further notice. In th&® and3L rules,y is an eigenvariable that is not free in the lower sequent eftite.
Whenever we write a sequent, it is assumed implicitly thatfttmulae are well-typed and pn-long normal forms:
the type context, i.e., the types of the constants and treneggiables used in the sequent, is left implicit as welke Th
mcrule is a generalization of the cut rule that simplifies thespntation of the cut-elimination proof.

We extend the core fragment with a proof theoretic notioncpfadity and fixed points. Each of these extensions
are discussed below.

2.1 Equality

The right introduction rule for equality is the standard aihat is, it recognizes that two terms are syntacticallyakqu
The left introduction rule is more interesting. The sulbditin p in egL is aunifier of s andt. Note that we specify
the premise of e as a set, with the intention that every sequent in the set i®mipe of the rule. This set is of

Core rules:

BB, —C r—=cC
Br —>c ¢ Br—c " r st o R
B,r —D Cr—b r—B r—=c
Brcr —b Y Bacr b M r—erc K
Br—bD CI—bD r—B r—c
Bver b 't r—svc X T SBvc VR
Bt, —C — By By, —C r— Bt 5
vx.Bx I —C VL [— VX.Bx IxBxI —C [[— Ix.BXx R
r--B8 Cr—n BIr—C
B5cr —p - F r—eoc -k
. DN —B; -~ Ay—Bp By,...,Bh, T —C
c=c init AL AT —C mc, wheren > 0
Equality rules:
{Tp—Cp | sp=pytp
pn tP} ek,
s=t,r —C r—t=
Induction rules: = .
BSYy—Sy Irst—=cC " F— Bpt "
Fpf—C 1L, pX=BpX r— pt IR, pX=BpX
Co-induction rules: = .
Bpt,l —C r—st Sy—BSy

ClL, pX < Bpx CIR, pX< B pX

pt,r —C r— pft

Fig. 1. The inference rules of Linc

course infinite, since for every unifier ¢,t), we can extend it to another unifier (e.g., by adding suliggituairs
for variables not in the terms). However, in many cases, sufficient to consider a particular set of unifiers, which
is often called a&omplete set of unifiers (CS{4], from which any unifier can be obtained by composing a memb
of the CSU set with a substitution. In the case where the tamadirst-order terms, or higher-order terms with the
pattern restriction [30], the set CSU is a singleton, ileeré exists a most general unifier (MGU) for the terms.

In examples and applications, we shall use a more restnetesion of eqC using CSU:

{rp—0Cp | sp=p,tp,p€CSU(s 1)}
s=t, —C

€0gLcsu

Replacing eq with egLcsy does not change the class of provable formulae, as showjnNbte that in applying
eql and eqcsu, eigenvariables can be instantiated as a result. Note laddaf tthe premise set of @gand eqcsu
are empty, then the sequent in the conclusion is consideoxeg.

Our treatment of equality implicitly assumes the notiofreé equalityas commonly found in logic programming.
More specifically, the axioms of free equality [9], that isjeictivity of function symbols, inequality between distin
function symbols, and the “occur-check” are enforced vidication in the eq -rule. For instance, given a base type
nt (for natural numbers) and the constantsit (zero) ands: nt — nt (successor), we can derive. z= (s X) D L as
follows:

eqL

DR
VR

z=(sx)— L
—z=(sxY DL
— WX z=(sx DL

Sincez ands xare not unifiable, the egrule above has empty premise, thus concluding the derivaii® can also
prove the injectivity of the successor functidm®, VXVy.(SX) = (Sy) DX =Y.

This proof theoretic notion of equality has been considénesgveral previous work.g.by by Schroeder-Heister
[51], and McDowell and Miller [25].

2.2 Induction and co-induction

One way of adding induction and co-induction is to introdfixed point expressions and their associated introduction
rules,i.e. using they andv operators of the (first-ordep-calculus. This is essentially what we shall follow heret, bu
with a different notation. Instead of using a “nameless’ation usingu andv to express fixed points, we associate a
fixed point equation with an atomic formula. That is, we assecertain designated predicates witlhedinition This
notation is clearer and more convenient as far as our exanapig applications are concerned. For the proof system
using nameless notation for inductive and co-inductiveljpages, the interested reader is referred to a recent work b
Baelde and Miller [5].

Definition 1. Aninductive definition clausis writtenVvX. pxﬁ BX, where pis a predicate constant axits a sequence
of variables. The atomic formulaXps called theheadof the clause, and the formulaxXBwhere B is a closed term,
is called thebody. Similarly, aco-inductive definition clausis written vVX.pX = BX. The symbolé and= are used
simply to indicate a definition clause: they are not a logicahnective. Alefinitionis a set of definition clauses.

It is technically convenient to bundle up all the definitibolause for a given predicate in a single clause, so that
a predicate may occur only at most once in the heads of theetaaf a definition, following the same principles of
theiff-completionin logic programming [50]. Further, in order to simplify tpeesentation of some rules that involve
predicate substitutions, we sometimes denote a definisomguan abstraction over predicates, that is

VX pX £ B px

whereB is an abstraction with no free occurrence of predicate symband variableXX. Substitution ofp in the
body of the clause with a formul@ can then be written simply @& SX. When writing definition clauses, we often
omit the outermost universal quantifiers, with the assuompthat free variables in a clause are universally quantified

(such variables will often be denoted with capital letteYs® shall writevX. pxé B pX to denote a definition clause
generally, i.e., when we are not interested in the detailghadther it is an inductive or a co-inductive definition.

The introduction rules for (co-)inductively defined atoms given at the bottom of Figure 1. The abstract®&ia
an invariant of the (co-)induction rule, which is of the satyyge asp. The variable§ are new eigenvariables. For the
induction rule I, Sdenotes a pre-fixed point of the underlying fixed point oper&imilarly, for the co-induction rule
ClL, Scan be seen as denoting a post-fixed point of the same opédtata;, we use a characterization of induction
and co-induction proof rules as, respectively, the leadithe greatest solutions to a fixed point equation. To guaeant
soundness of these rules, we shall restrict the (co)indridifinitions to ones which are monotone. In this case, the
Knaster-Tarski fixed point theorems tell us that the existasf a pre-fixed point (respectively, post-fixed point) iragl
the existence of a least (resp., greatest) fixed point. Mmnioity is enforced by a syntactic condition on definitioas,
it is used for the logi¢c ONAN [25]: we rule out definitions with circular calling througimplications (negations) that
can lead to inconsistency [49]. The notion@felof a formula allows us to define a proper stratification on dtédins.

Definition 2. To each predicate p we associate a natural nuniiip), the level of p. Given a formula B, itsvel
Ivl(B) is defined as follows:

IvI (p) = VI (p),
IVI(L)=IvI(T)=0,
IvI(BAC) = IvI(BVC) = maxIvl(B),Ivl(C))
(
(

PwhpE

Ivl(B > C) = max(lvl(B) + 1,IvI(C))
5. IvI(¥x. Bx) = Ivl(3x. Bx) = IvI(Bt), for any term t.

The level of a sequemt — C is the level of C. A formula B is said to e®minatedby a predicate symbol p, if

Ivi(B) < Ivl(p) andIvl (B[AX.T/p]) < IvI(p), whereAX. T is of the same type as p. A definition clairge pX = BX is
stratifiedif BX is dominated by p.

Note that wherp is vacuous irB and p dominates$3, we obviously have {B) < Ivl(p).

From now on, we shall be concerned only with stratified deééing. An occurrence of a formulain a formulaC
is strictly positiveif that particular occurrence @& is not to the left of any implication i€. Stratification then implies
that all occurrences of the head in the body are strictlytivesiand that there is no mutual recursion between difteren
definition clauses. This restriction to non-mutual recumsis just for the sake of simplicity in the presentation of
the underlying idea of the cut elimination proof. This pr¢8éction 5) can be extended to handle mutually recursive
definitions with some straightforward, albeit tedious, fifiodtions. In the first-order case, the restriction to noutunal
recursion is immaterial, since one can easily encode mytregdursive predicates as a single predicate with an extra
argument. For example, consider the following mutual rsieerdefinitions for even and odd numbers.

even X£ X = zv Jyy=(sX)Aoddy
odd X £ Jy.y= (s X)Aeveny

We can collapse these two definition clauses into a singlewitie a parameter that takes a constaffor ‘even’) or
o (for ‘odd’):
evod W X£ W=eA(X=zvIy.y=(sX)Aevod 0y]V
W=0A(3y.y=(sX)Aevod eVy].

We then define even and odd as follows:
even X& evod e X
odd X£ evod o X

This definition can be stratified by assigning levels to tredprate symbols such that

Ivl(evod < Ivl(even < Ivl(odd).

3 Examples

We now give some examples, starting with some that make gsisgese of HOAS.

3.1 LazyA-Calculus

We consider an untyped version of the parealculus with lazy evaluation, following the usual HOAYlet i.e.,
object-level\-operator and application are encoded as constants(lam- tm) —tmand @ tm— tm— tm, where
tm is the syntactic category of object-levelterms. The evaluation relation is encoded as the follovimmatyictive
definition
MUN £ [AM. (M =lamM’) A (M = N)] v
[AM13IM23P. (M = M1 @M32) AMy L lamP A (P My) | N]

Notice that object-level substitution is realized figieduction in the meta-logic.
The notion ofapplicative simulatiorof A-expressions [1] can be encoded as the (stratified) co-tivéiaefinition

simR S~ VT. R{lamT > 3U. S| lamU AVP.sim (T P) (U P).

Given this encoding, we can prove the reflexivity propertgiofulation, i.e.Vs. sims s This is proved co-inductively
by using the simulationx\y. x = y. After applyingv®X_and CIR, it remains to prove the sequents> s=s, and

X=y— Vx1. X{ lamxg D (Ixz. y{ lamxa A VX3.(X1X3) = (X2 X3))

The first sequent is provable by an application aRemjle. The second sequent is proved as follows.

zlllamx; — (X1 X3) = (X1 %3) ¢
z| lamx; — z{} lamxy zl}lamxg — Vx3.(Xg X3) = (X1 X3)
zlllamx; — (z{ lamxy A VX3.(X1X3) = (X1 X3))
zl lamxg — (Ixp.z{ lamxp A VX3.(X1X3) = (X2X3))
x=y, x| lamx; — (Ixz.y lamxo AVx3.(X1X3) = (X2 X3))
x=y— x{lamxg D (Ixz.y lamxp AVX3.(X1 X3) = (X2X3))
X=Yy— ¥xg.X{lamxg D (Ixe.ydlamxp AVX3. (X1 X3) = (X2X3))

VR
AR

init

The transitivity property is expressed @svsvt.simr sAsims t D simr t. Its proof involves co-induction on
simr t with the simulatiomuAv.3w.simu wA simw v, followed by case analysis (i.edefL and edC rules) onsimr s
andsims t. The rest of the proof is purely logical.

We can also show the existence of divergent terms. Diverysrnencoded as follows.

divig T £ [3T13T. T = (TL@T2) Adivrg Ty] v
[3T13T2. T= (Tl@Tz) AJE. Ty lamE A diVI’g (E Tz)].

Let Q be the termlamx.(x@x)) @ (lamx.(x@x)). We show that divrd2 holds. The proof is straightforward by co-
induction using the simulatioB:= As. s= Q. Applying the CR_ produces the sequents+» Q = Q andT =Q —
S V S where

S =dT1dTL. T = (T]_@Tz) A\ (S-E_), and
S =dNdL.T= (Tj_@Tz) AJE. T lamE A S(E Tz).

Clearly, only the second disjunct is provable, i.e., byansiatingT: and T, with the same term lam(x@Xx), andE
with the functiomAx.(x @x).

3.2 Lists

Lists over some fixed type are encoded as the tyfs, with the usual constructor nilstfor empty list and :: of type
o — Ist— Ist. We consider here the append predicate for both the finitérdimite case.

Finite lists The usual append predicate on finite lists can be encoded asdiictive definition
appLi Lo L3 L [(Ll = nil) A (L2 e Lg)] V
(DAL} ILS. (L =x::L)) A (Ls =x::L5) AappL] Lo L)
Associativity of append is stated formally as
VI1VIaV112V13Vl4.(apply |2 12 Aappliz I3 14) D Vizz.applz 13 123 O apply 23 14.
Proving this formula requires us to prove first that the définiof append is functional, that is,
VI1VIZVI3VI4.appI1 P I3/\appI1 lolgDlg=l4.

This is done by induction oh, i.e., we apply the 4 rule on apg1 |2 I3, after the introduction rules for and D, of
course. The invariant in this case is

S:= AriArAra.vr.apprirar O r =rs.

It is a simple case analysis to check that this is the righdriiant. Back to our original problem: after applying the
introduction rules for the logical connectives in the fotenuhe problem of associativity is reduced to the following
sequent
apply 12 l12, appliz I3 14, applz I3 123 — apply 123 14. (1)

We then proceed by induction on the ligt that is, we apply the rule to the hypothesis agp I, 112. The invariant
is simply

S:=)\|1)\|2)\|12.V|3V|4.app|12 |3 |4 D) V|23.app|2 |3 |23 D) appll |23 |4.
Applying the IL rule, followed byv £, to sequent (1) reduces the sequent to the following sublsgoa

(i) Shlzliz, applizl3ls, applz 13123 — apply l23 14,
(II) (|1 =nilAly = |3) — S hlsls,
(i) 3x 13,15 = x: 1 Als=x:15AS K215 — S hlalz

The proof for the second sequent is straightforward. Thedegguent reduces to
appliz I3 14,appli2 13 123 — app nilloz 4.

This follows from the functionality of append an® | The third sequent follows by case analysis. Of coursegthes
proofs could have been simplified by usinglerivedprinciple of structuralinduction. While this is easy to do, we
have preferred here to use the primitiverule.

Infinite lists The append predicate on infinite lists is defined via co-our that is, we define the behavior of
destructor operationen lists (i.e., taking the head and the tail of the list). lis tase we never construct explicitly the
result of appending two lists, rather the head and the télil@fesulting lists are computed as needed. The co-reeursiv
append requires case analysis on all arguments.

coapply Ly Lz = [(Ly = nil) A (Lz = nil) A (Lz = nil)] v
[(L1 =nil) ADXAL,3LS. (Lo = x::L5) A (L3=x::L5) A coapp nilL, L5 v
(DAL}, (L =x::L]) A (Ls =x::L5) A coapplLj Lo Lj].
The corresponding associativity property is stated amalsly to the inductive one and the main statement reduces to
proving the sequent
coapply I2 l12, coappliz I3 14, coapplz I3 123 — coappla l23 4.

We apply the CR_rule to coapps I23 |4, using the simulation
S:=)\I1)\I2)\I12.EII233I33I4.c0appI12 I3 14 A coapplz I3 123/ coappl1 l23 4.

Subsequent steps of the proof involve mainly case analpsieapfi2 I3 4. As in the inductive case, we have to prove
the sub-cases wheiy is nil. However, unlike in the former case, case analysiherarguments of coapp suffices.

4 Properties of derivations

We discuss several properties of derivations in CinBome of them involve transformations on derivations which
will be used extensively in the cut-elimination proof in 8en 5. Before we proceed, some remarks on the use of
eigenvariables in derivations are useful. In proof seameblvingvVR, 3L | L, CIR or eqL, new eigenvariables can be
introduced in the premises of the rules. Let us refer to sactables as internal eigenvariables, since they occur only
in the premise derivations. We view the choice of such eigaables as arbitrary and therefore we identify derivation
that differ only in the choice of the eigenvariables introdd by those rules. Another way to look at it is to consider
eigenvariables as proof-level binders. Hence when we wadttk avderivation, we actually work with an equivalence
class of derivations modulo renaming of internal eigeralags.

4.1 Instantiating derivations

The following definition extends substitutions to apply &ridations. Since we identify derivations that differ oimy

the choice of variables that are not free in the end-sequenyill assume that such variables are chosen to be distinct
from the variables in the domain of the substitution and ftbmfree variables of the range of the substitution. Thus
applying a substitution to a derivation will only affect thariables free in the end-sequent.

Definition 3. If I is a derivation off — C and® is a substitution, then we define the derivatidé of '6 — C6
as follows:

1. Supposé€l ends with theeqL rule
ne
Mp—CpJ,
s=t,["—C

where ® =g, tp. Observe that any unifier for the pais, t0) can be transformed to another unifier f(s;t), by
composing the unifier with. Thusl is

rleop’
rep’ — Cop’ o
e
$H=1t0,r'0 —CH

where §p’ =g, t6p’.
2. If M ends with any other rule and has premise derivatibis. .., My, thenl6 also ends with the same rule and
has premise derivatiori316,...,M,6.

Among the premises of the inference rules of Lincertain premises share the same right-hand side formtia wi
the sequent in the conclusion. We refer to such premises g pr@mises. This notion of major premise will be
useful in proving cut-elimination, as certain proof trasfations involve only major premises.

Definition 4. Given an inference rule R with one or more premise sequesmtslafine its major premise sequents as
follows.

1. If Ris either> £,mcor | L, then its rightmost premise is the major premise
2. If RisCIR then its left premise is the major premise.
3. Otherwise, all the premises of R are major premises.

A minor premiseof a rule R is a premise of R which is not a major premise. Thenidiefn extends to derivations by
replacing premise sequents with premise derivations.

The following two measures on derivations will be usefuttdah proving many properties of the logic. Given a set
of measures, we denote with luks) the least upper bound of.

Definition 5. Given a derivatior1 with premise derivation$l; }i, the measurat(Mn) is lub({ht(;)}i) + 1.

Definition 6. Given a derivatiod1 with premise derivation$lT;};, the measurindm(I) is defined as follows

. ~ [lub({indm(M;)}i) + 1, if M ends withl L,
indm(fT) = { lub({indm(TT;)};), otherwise.

Note that given the possible infinite branching offequle, these measures in general can be ordinals. Therefore
in proofs involving induction on those measures, trandimtuction is needed. However, in most of the inductive
proofs to follow, we often do case analysis on the last rula dérivation. In such a situation, the inductive cases for
both successor ordinals and limit ordinals are basicaleoed by the case analysis on the inference figures involved,
and we shall not make explicit use of transfinite induction.

Lemma 1. For any substitutio® and derivation1 of T — C, M8 is a derivation off 6 — C8.
Proof. This lemma states that Definition 3 is well-constructed, fatidws by induction on h{1). O
Lemma 2. For any derivation1 and substitutio®, ht(M) > ht(M6) andindm(M) > indm(M8).

Proof. By induction on h{l1). The measures may not be equal because in the case whereithdaleends with the
egL rule, some of the premise derivationsgbimay not be needed to construct the premise derivationof O

Lemma 3. For any derivationl1 and substitution® andp, the derivationgIM8)p andl (B0 p) are the same deriva-
tion.

Proof. By induction on the measure(fit). O

4.2 Atomic initial rule

Itis a common property of most logics that the initial ruledze restricted to atomic form, that is, the rule
m init

wherep is a predicate symbol. The more general rule is derived émAfs|

Definition 7. We construct a derivatiofdc of the sequent G— C inductively as follows. The induction is on the
size of C. If C is an atomic formula we simply apply the atomitidl rule. Otherwise, we apply the left and right
introduction rules for the topmost logical constant in Cppably with some instances of the contraction and the
weakening rule.

The proof of the following lemma is straightforward by indieo on h{ldc).
Lemma 4. For any formula C, it holds thaindm(ldc) = 0.

Restricting the initial rule to atomic form will simplify sne technical definitions to follow. We shall use Id instead
of Id¢c to denote identity derivations since the form@lé always known from context.

4.3 Unfolding of derivations

Definition 8. Inductive unfoldingLet pii B pX be an inductive definition. L&t be a derivation of — C where
p dominates C. Let S be a closed term of the same type as p dngleta derivation of the sequent

BSX — SX

wherex are new eigenvariables not freefinand C. We define the derivatiof (i, Ms) of T — C[S/p] as follows.
If p is vacuous in C, then{I, Ms) = M. Otherwise, we defing(i, Ms) according to the last rule ofl.

. Suppos€l ends withinit

Then (M, MNg) is the derivation
Ms Id
BSX— SX St— St

pt — St

1L

. Suppos€l ends withD £
Mi My
r— D1 D27 M —=c

D1 DDy —C

oL

Then (M, MNg) is the derivation
I-I]_ IJ(’_J‘;(I-I27 I_IS)
r— Dj_ Dz, r— C[S/ p]
D; D> Dy, [N — C[S/p]

DL

. Suppos€l ends witho R

I
r,C1—>C2
[—>C1:)C2

O R

Note that since p dominates C, it must be the case that p ddescoor in G. The derivation (@1,Ms) is then
defined as follows.

KE, (M, Ms)
rCc. — GlS
1 2[S/pl S
I —>C1:)C2[S/p]
. Suppos€l ends withmc
M, Mm n’
A1—>Bl Am—>Bm Bl,...7Bm,r/—>C mc
Al,...7Am,rl—>C
Then (M, Mg) is
nj_ I_Im I‘Jg(n/ans)
A1—>Bl Am—>Bm Bl,,Bm,r/—>C[S/p] me

Ag,...,An T — C[S/p]
. Suppos€l ends withl L on some predicate g given a definition cIauﬁqu qz.

Y n’
DIZ— 12 If,l"—>C|L
gt,r" —C

Then (M, MNs) is the derivation
W LR (M, Ns)
DIZ—1Z I1T,I" — C[S/p|
qt,r" — C[S/p)

1L

. Supposél ends withl §
|—|/
r—Bpf
r— pft

IR.

Then (M, MNs) is the derivation
He(M.Ms) Msff/X
r—BS BS— St me
r— St

10

7. 1f N ends with any other rules, and has premise derivations

{r e
N —GJic

for some index set, then |£(M,Ms) also ends with the same rule and has premise derivat{pé:{l‘li ,Ns) bier.

Definition 9. Co-inductive unfoldingLet pX = B px be a co-inductive definition. Let S be a closed term of theesam
type as p and leffils be a derivation of
SX— BSX.

Let C be a formula dominated by p, and lébe a derivation of — C[S/p]. We define the derivatiorf (M, Ms) of
I — C as follows.

If p is vacuous in C, then2 (M, Ms) = M. If C = pt then 4S/p] = St andv (M, Ms) is the derivation

n Ms
[— St SXq—>BSX cIR
— pt

Otherwise, we defined (I, Ms) based on the last rule if.

1. Supposél ends witho £
My M;
" — D1 Dy, —C[S/p]

D1 D Dy, " — C[S/p]

DL

Thenv(N,Ms) is the derivation
n ez,
r— D1 Dz,r/ —C
DioDsl —C

2. Supposél ends witho R

I',Cl — Cz[S/p]
M — (Cj_ D Cz)[S/ p]

Note that since p dominates C, it must be the case that p isousdn G. Therefore we construct the derivation
v&(N,Ns) as follows.

DR

Ve, (M, Ms)
r,C1—>C2
[—>C1 :)Cz - K
3. Supposél ends withmc
My Mm rn’
A1—>Bl Am—>Bm Bl,,Bm,r/—>C[S/p] me
Ala"'aAmar/ —>C[S/p]
Thenv®(N,Ns) is
Ny M ve(M',Ms)
A1 — B ... An—Bm Bg,...,Bn " —C me

Ag,...,.0m T —C
4. Supposél ends withl £ on a predicate &, given an inductive definitionﬁi DqzZ.

Y n
DIZ—1Z I1T,I" — C[S/p] »
qt,I" — C[S/p]

11

Thenvd(M,Ms) is the derivation

va(M’,Ns)
DIzZ—12 ILI' —C
gt,r" —C

5. If M ends with any other rules, and has premise derivations

r sl
I—i —>CI[S/p] el
for some index set, thenv@(l‘l, MMs) also ends with the same rule and has premise derival{oésﬂi, Ms)}ier-

The following two lemmas state that substitutions commuité wnfolding of derivations. Their proofs follow
straightforwardly from the fact that the definitions of (jneuctive unfolding depend only on the logical structusés
conclusions of sequents, hence is orthogonal to substitsidf eigenvariables. In these lemmas, we assume that the
formulasC, p and derivation§l andlls satisfy the conditions of Definition 8 and Definition 9.

Lemma 5. The derivations §(M1,Ms)8 and |£(16,Ms) are the same derivation.

Lemma 6. The derivations£(1,Ms)8 andvl (M6, Ms) are the same derivation.

5 Cut elimination for Linc™

A central result of our work is cut-elimination, from whicbmsistency of the logic follows. Gentzen'’s classic proof
of cut-elimination for first-order logic uses an induction the size of the cut formula, i.e., the number of logical
connectives in the formula. The cut-elimination procedtossists of a set of reduction rules that reduce a cut of a
compound formula to cuts on its sub-formulae of smaller.diz¢he case of Linc, the use of induction/co-induction
complicates the reduction of cuts. Consider for examplet &ngolving the induction rules

My Mg Mn
A—Bpt BSy— Sy StI—C
1L
pt,r —C
mc

AT —C

There are at least two problems in reducing this cut. First,permutation upwards of the cut will necessarily involve
a cut withSthat can be of larger size than and hence a simple induction on the size of cut formula vatiwork.
Second, the invariarBdoes not appear in the conclusion of the left premise of theTte latter means that we need
to transform the left premise so that its end sequent wilkagrith the right premise. Any such transformation will
most likely beglobal, and hence simple induction on the height of derivationkwait work either.

We shall use theeducibility techniques to prove cut elimination. More specifically, walkbuild on the notion
of reducibility introduced by Martin-L6f to prove normadition of an intuitionistic logic with iterative inductiwaefi-
nition [24]. Martin-L6f's proof has been adapted to sedqumaiculus by McDowell and Miller [25], but in a restricted
setting where only natural number induction is allowed.c8iour logic involves arbitrary stratified inductive defi-
nitions, which also includes iterative inductive definitsy we shall need a more general cut reductions. But the real
difficulty in our case is really in establishing cut elimiiwat in the presence of co-inductive definitions, for whicarh
is no known cut elimination proof for the sequent calculusrfalation.

The main part of the reducibility technique is a definitiortlué family of reducible sets of derivations. In Martin-
Lof's theory of iterative inductive definition, this famgibf sets is defined inductively by the level of the derivatitimey
contain. Extending this definition of reducibility to Linds not obvious. In particular, in establishing the redudipi
of a derivatiorz ending with a CR _rule:

M Mg
r— St SX— BSX v
r— pt CIR,pX=BpX

12

one must first establish the reducibility of its premise diions. But a naive definition of reducibility fa, i.e., a
definition that postulates the reducibility &ffrom the reducibility of its premises, is not a monotone dééin, since
the premise derivations & may be derivations that have a higher level tRan

To define a proper notion of reducibility for the co-induetivases, we use a notion pérametric reducibility
similar to that used in the strong normalisation proof oft8gsF [19]. The notion of a parameter in our case is
essentially a coinductive predicate. As with strong noisadibn of System F, these parameters are substituted with
some “reducibility candidates”, which in our case are dpr&ets of derivations of a co-inductive invariant which
we call saturated setsl et us say that a derivatiof has typeB if its end sequent is of the forin — B, for some
I". Roughly, a parametric reducibility set of ty@e under a parameter substituti@® p|, wherep is a co-inductive
predicate and&is an invariant of the same type 8sis a certain set of derivations of ty@S/ p] satisfying some
closure conditions which are very similar to the definitidmeducibility sets, but without the co-inductive part. The
definition of reducibility in the case involving co-induati rules, e.g., as in the derivatidrabove, can then be defined
in terms parametric reducibility sets, under appropriat@meter substitutions. Details of the definition will beegi
later in this section.

5.1 Cutreduction

We follow the idea of Martin-Lof in using derivations diticas a measure by defining a well-founded ordering on
them. The basis for the latter relation is a set of reductidesr (called the contraction rules in [24]) that are used to
eliminate the applications of the cut rule. For the caseglifg logical connectives, the cut-reduction rules used t
prove the cut-elimination for Linc are the same to those BOA2N. The crucial differences are in the reduction rules
involving induction and co-induction rules.

Definition 10. We define aeductionrelation between derivations. The redex is always a deigvat ending with the

multicut rule
My My 1
A1—>Bl An—>Bn Bl,...7Bn,r—>Cm

Al,...7An,r —>C

We refer to the formulasB. .., B, produced by thencascut formulas

If n =0, = reduces to the premise derivatidh

For n > 0 we specify the reduction relation based on the last rule efglemise derivations. If the rightmost
premise derivatiorl ends with a left rule acting on a cut formula,Bhen the last rule ofl; and the last rule of1
together determine the reduction rules that apply. We dadisese rules according to the following criteria: we call
the rule anessentiatase whertl; ends with a right rule; if it ends with a left rule, it is left-commutativecase; if
M; ends with thanit rule, then we have aaxiomcase; amulticut case arises when it ends with thecrule. When
M does not end with a left rule acting on a cut formula, thenatt kule is alone sufficient to determine the reduction
rules that apply. If1 ends in a rule acting on a formula other than a cut formularnthe call this aight-commutative
case. Astructuralcase results wheR ends with a contraction or weakening on a cut formuldlIénds with thenit
rule, this is also an axiom case; similarly a multicut casesas ifl1 ends in thencrule.

For simplicity of presentation, we always show 1.

(o4

Essential cases:
AR/ AL: If Ny andl are

M Y n’
Ay —B] A —Bf B},B2,...,Bn, —C
/ /! /\“R» / /! /\L
A1—>Bl/\Bl Bl/\ 1,825---7Bn7r—>c)
then= reduces to
My M, Mn n
N —B] Ap— By -+ An— By B|,B,....By,[—C

AL AaT —C me

The case for the othex L rule is symmetric.

13

VR/V L: If N1 andl are

|'|3_ n’ n’
A — B) B},B2,...,Bn, —C B’/,Bz,...7Bn,I'—>CVL
A1—>B€L\/B/]{ B?I_\/BS_I,BZ,...,Bn,r—)C)
then= reduces to
M M2 M r
A1—>Bé|_ Ar — By An — By B&,Bz,...7Bn,r—>C me
Al,...,An,r —>C
The case for the otherR rule is symmetric.
DR/ D L: Supposél; andl are
I'I’1 n’ n”
B},A1 — Bf SR B2,...,Bn,T — B /{,Bz,...,Bn,I'—>CDL
Ay — B D Bf B; DB{,By,...,Bs, —C
Let=1 be
P
A — B; ic{2.n} By,...,By, [— B} n;
Do,....0nT — B) 1,01 — BY
mc
Aq,...,0nT — Bf
Then= reduces to
El { I-Ii } |—|//
N B/]{ AI — B| ie{Z..n} B&/,{Bl}le{zn}’r —_— C me
Ay,..., 00T, Do, ..., AT —C
Ar....5nT —C cL

We use the double horizontal lines to indicate that the sai¢nference rule (in this caseL) may need to be

applied zero or more times.
VYR /VL: If My andl are

M

n/
A1—>B/1[y/x] VR B?I_[t/x]aBZaBnar—)C VL
A — YX.B) Vx.B},Ba,...,Bn, — C ,
then= reduces to
Mty { m } v
D — Bt/ B Blicen L —c
Aq,..., AT —C me
JR /3L: If Ny and are
I_lél-/ / n/
A1 — By[t/X B, ly/x,Bo,...,By, — C
1 1[//] % 1[)’//] 2 n -/
A1 — IXB] Ix.B},Ba,...,Bn, [— C ;
then= reduces to ,
m, M'[t/y]
Ay — Bl[t/X] Bilt/x],B,.... —C
Aq,..., AT —C me

14

x/1L: Suppos€l is the derivation

Ms n’
DSX— SX St,By,...,B,, —C i
pt,By,...,By,T —C
where p?ﬁ B pX. Then= reduces to
'J-gf(rllarls) n/
N — ST ... SE...,B,,T—C me
Al,...7An,r —>C
CI® /CIL: Supposél; andll are
M Ms n’
Ay — ST SX— DSX Dpf,..., —C
L - CIR. e e
Dy — pt pt,....r —C
Let=4 be the derivation
ny Ns[t/X
N — ST ST— DST
— mc
A — DSt
Then= reduces to .
Vpp(Z1,Ms) Mn; n’
A1 — Dpt |Aj — B; ic(2..n) Dpf,....,l —C
DL AT —C me
eqR /eq’l: Supposél; andll are
{ew..ar0 — o)
B2p,....Bnp,Tp —CpJ
R eqL

A —s—t° S—t,By.. Bal —C

Then by the definition &R rule, s and t are equal terms (moduWeconversion), and hence are unifiable by the
empty substitution. Note that in this cd3&e< {MP},. Therefore= reduces to

PR 5

Di—Bi)icony By,...,By M —C
Dy BAaT —C me
Dby .bnT —cC W

Left-commutative cases: In the following cases, we supthagdl ends with a left rule, other thaficL, wL, 1L},

actingon B.
oL /o L: Supposely is _
L
All — Bl
Al — Bl * N

wheree £ is any left rule excepdb £, eqL, or | L. Then= reduces to

ni { m; }
;| A — B, i
Al — By i 1) je{z.n} By,...,Bh, —C

. mc
N D, 0T —C

Dby AT —C oL

15

D L/oL: Supposél is
n ny
A, — D] Df,A]—B;
D} > Dj,Al — By

DL
Let=4 be ,
My M, Mn n
Df,&) — By Dp—By --- Dy—Bn By,...,Bn,T —C e
/]f, &,AZ,...,An,r —>C

Then= reduces to
I—Il
/ L /
wL =1
’1,A2,...,An,l'—>D’1 /1’, ’1,A2,...,An,l' —C P
D, 5 DAL A, ... AT —C -

|L/o L: Supposély is

Ms ny
DSX— SX ST, — By

pf, Ag_ — B

where p?i D pX. Let=; be

= n Mn M
St,A] —B1 ... Ay— By Bg,....By,[—C

= mc
SEAL D, ..., Ay,T —C

ThenZ= reduces to _
Mg =1
DSX— SX St,AL,...,AnT —C

pt,AL,...,Ap— C =

{ap " 0o}
1P — B1p

SZI,A/l —B1

eqL/o L: Supposél; is

then= reduces to

e { Mip } Mp
1p—Bip (AP BiPfici L. —Cp

(o
Aél_paAzpa cee aAnpa rp — Cp

e
s=t,A,0,...,00,T —C a-

Right-commutative cases:

—/o L: Supposél is

ni
Bi,...,Bn, [—C

By,....Bn,l —C

oL

whereo £ is any left rule other thamm £, eq”, or | L acting on a formula other than<B...,B,. The derivatiore
reduces to

My Mn n
A —B; -~ Ay— B, Bi,....B,"—C
Ar,...,ATT—C

M. BT —C oL

16

—/ D L: Supposél is
I_I/ I—I//
Bi,...,Bn,l" — D’ Buy,...,Bn,D",I" —C

B,...,B,,DDOD"," —C 2L
Let=4 be
n, My n’
Al—>B]_ An—>Bn Blv"'aBnar/—>D/
N,Ay T — D
and=5 be
I—ll nn r]//
A1—>Bl An—>Bn Bla"'aBnaD//ar/—>C mc
Ap,....A D' " —C
Then= reduces to _ _
=1 =2
Np,...,0n, T — D' A,...,0D".T"—C /
Dg,..., 0, D' DD " —C >
—/1L: Suppos€l is
Ms n’
DSX — SX Bl,...7Bn,Sf,I"—>CIL
Bl,...,Bn,pf,r/—>C 5
where p?ﬁ D pX. Let=; be
My My n’
Al—>Bl An—>Bn Bl,...,Bn,Sf,r/—)C mc

Al,...,An,Sf,r/ —>C
Then= reduces to
Ms =
DSX— SX Aq,...,0n, ST —C 'L
Ny, ..., 0, pE T — C

—/eql: IfMis

e
Blpa"'7Bnp7rlp —>Cp
eqr
Bl,...,Bn,S:t,r/—>C 5

then= reduces to

{ rllp } ne
Aip—BipJicqiny Bip,...,M"p— Cp
mc
Alpa cee 7Anp7 r/p — Cp

e
Al,...,An,S:t,rl —>C qL
—/oR: IfMis
|-|i
Bi,...,Bn, [— C
B, .B.r —C °X.
whereoR _is any right rule excepCIR®, then= reduces to
M Mn n .
A1—>Bl An—>Bn Bl,...7Bn,rl—>C| mc
Ar,...,Ay T — C
oR.

Aq,...,0nT —C ,

17

—/CIR: Supposél is
rn’ Ms
Bi,...,Bn, I — ST SX— DSX al
By,...,Bn, T — pt

R

)

where p?i D pX. Let=; be

nj_ rln ﬂ’
A1—>Bl An—>Bn Bl,...7Bn,r—>Sf

Al,...7An,r—>Sf

mc

Then= reduces to _
=1 Ms
Ar,...,An T — ST SX— DSX

Al,...,An,r—> pf

CIR.

Multicut cases:

mc/ o L: If I ends with a left rule, other thao., w£ andl L, acting on B andl; ends with a multicut and reduces
to M7, then= reduces to

M M2 Mn
A1—>Bl A2—>Bz An—>Bn Bl,...,Bn,F—>C me
Al,...,An,r —>C

—/mc Supposél is

ni } :
. . _ mn
{{Bi}ielivrj — D jcim {D}jeqr.m {Bitier,I" —C

mc
Bi,...,Bn,lL,....,IM " —C ,
where ..., I™ |’ partition the formulagBi }ic(1.ny among the premise derivatiofl, ...,Mm,M’. For1< j<m
let =i be
RN T
A —Bilici (B}, — D mc
{Ai}ic, M — D
Then= reduces to .
{ Zohon (o ek
. — DM jeqamy A — Bi [y _.C
me
Ay,...,0nTL ... T —C
Structural cases:
—/cL: IfMis
n/
Bl,Bl,Bz,...,Bn,r —C
B.,Bz...Bal —C &,
then= reduces to
r].
My { ! } n’
A — By A — B ie{l.n} B1,B1,By,...,By, —C me

Al,Al,Az,...,An,An,r —C
Al,Az,...,An,r —C

cL

18

—/wL: IfMis

!
By,....BoT —C
B1.B,... Bnl —C "L

then= reduces to
My Mn rn’
A2—>BZ An—>Bn BZ,...,Bn,r—>CmC
AZ,...,An,r —>C

MD. . DoT —C W

Axiom cases:

init/ o L: Supposé1 ends with a left-rule acting on{Band[1; ends with thenit rule. Then it must be the case that
A1 = {B;1} and= reduces to
Mo Mn N
DAp— By -+ An— By Bl,Bz,...7Bn,|_ —C me
B1,A2,...,00,T —C

—/init: 1f M ends with thenit rule, then n= 1, I is the empty multiset, and C must be a cut formula, i.e B;.
Therefore= reduces td1;.

Notice that the reductions in the essential case for inda@nd co-induction are not symmetric. This is because we
use an asymmetric measure to show the termination of cuictieah, that is, the complexity of cut is always reduced
on the right premise. The difficulty in getting a symmetricasere, in the presence of contraction and implication (in
the body of definition), is already observed in logics witliiEons but without (co-)induction [49].

Itis clear from an inspection of the rules of the logic anddbénition of cut reduction that every derivation ending
with a multicut has a reduct. But because we use multisetsgonents, there may be some ambiguity as to whether a
formula occurring on the left side of the rightmost premifa multicut rule is in fact a cut formula, and if so, which
of the left premises corresponds to it. As a result, sevdrdlereduction rules may apply, and so a derivation may
have multiple redexes.

The following lemmas show that the reduction relation isspreed by some of the transformations of derivations
defined previously.

Lemma 7. Letl be a derivation off — C ending with amcand letB be a substitution. I1f16 reduces ta= then
there exists a derivatioll’ such that= = 1’6 and 1 reduces td1’.

Proof. Observe that the redexes of a derivation are not affectedubsgtisution, since the cut reduction rules are
determined by the last rules of the premise derivations efdérivation, which are not changed by substitution.
Therefore, any cut reduction rule that is applied6 to get= can also be applied tBl. Suppose thafl’ is the
reduct of obtained this way. In all cases, except for the cases whereettuction rule applied is eithey| L or
CIL/CIR, it is a matter of routine to check thét'® = =. For the reduction rules/I £ and CIL/CIR, we need
Lemma 5 and Lemma 6 which show that substitution commutés (@@-)inductive unfolding. O

Lemma 8. Let piﬁ D pX be an inductive definition and |€ts be a derivation of D8 — SX for some invariant S.
Let C be a non-atomic formula dominated by p. Oeand N’ be two derivations of the same sequEnt— C, and
M ends with anme-rule. If p2(MN,Ms) reduces t&E then there exists a derivatidi’ such that= = p2(M’,Ms) and M
reduces td1’.

Proof. By case analysis on the reduction rules. The case analysisea@uch simplified by the following observations.
First, the reduction rules are driven only by outermost emtimes in the formulas in the sequent. Second, the unfgldin
of a derivation affects only the right-hand-side of the ssds appearing in the derivation (or more specifically, only
the branches containing major premises). By a quick ingpeoin the definition of reduction rules in Definition 10,
we see that the only non-trivial case to consider is the tagimimutative case-/ o ®. SinceC is non-atomic (and
assuming that it has at least one occurrenge ofherwise it is trivial sinc€l = p@(l‘l, Ms) in this case), the only cases
we need to verify is when its topmost logical connective kaiA, Vv, D, V and3. In these cases, the unfolding does
not change the topmost connective, therefore any reduniierthat applies t@(I1,Ms) also applies td1. Lemma 5
and Lemma 6 are used when substitutions are involved (lefihtbmmutative cases with &q. O

19

Lemma 9. Let pii D pX be an inductive definition and |€ts be a derivation of D8 — SX for some invariant S.

LetI be the derivation
rll rln ﬂ’
A1—>Bl An—>Bn Bl,...,Bn,r—>pfm

Ar,..., Ay, T —s pt

C

Suppose thdil’ ends with a rule other thamit andIR. If ugf(ﬂ, Ms) reduces ta then there exists a derivatidi”
such thaE = ugf(ﬂ/’, Ms) and M reduces td1”.

Proof. The proof is straightforward by inspection on the cut returctules and the definition of inductive unfolding.
O

Lemma 10. Let pii D pX be a co-inductive definition and |Bts be a derivation of 8 — D SX for some invariant
S. Let C be a non-atomic formula dominated by p.Meindr’ be two derivations of the sequent— C[S/ p], where
M ends with amcrule. If v&(IN,Ms) reduces tc&E then there exists a derivatidit’ such that= = v(M’,Ms) and
reduces td1’.

Proof. Analogous to the proof of Lemma 8. O

5.2 Normalizability

Definition 11. We define the set aformalizablederivations to be the smallest set that satisfies the fotigwiondi-
tions:

1. If a derivationl ends with a multicut, then it is normalizable if every redoidfl is normalizable.
2. If a derivation ends with any rule other than a multicuterthit is normalizable if the premise derivations are
normalizable.

Following Martin-Lof [24], instead of assigning some ardi measures to derivations and define an ordering on
them, we shall use the derivation figures themselves as aumgedsach clause in the definition of normalizability
asserts that a derivation is normalizable if certain (gmgsnfinitely many) other derivations are normalizable. We
call the latter theoredecessorsf the former. Thus a derivation is normalizable if the tré#sosuccessive predecessors
is well-founded. We refer to this well-founded tree asnitsmalization

Since a normalization is well-founded, it has an associatédction principle: for any propertly of derivations,
if for every derivation in the normalizationP holds for every predecessor @fimplies thatP holds for1, thenP
holds for every derivation in the normalization.

The set of all normalizable derivations is denoted\i .

Lemma 11. If there is a normalizable derivation of a sequent, thené¢hera cut-free derivation of the sequent.

Proof. Let N be a normalizable derivation of the sequEnt— B. We show by induction on the normalization [af
that there is a cut-free derivation 6f— B.

1. If M ends with a multicut, then any of its reducts is one of its poedsors and so is normalizable. But the reduct
is also a derivation of — B, so by the induction hypothesis this sequent has a cut-geation.

2. Supposdl ends with a rule other than multicut. Since we are given Ehas normalizable, by definition the
premise derivations are normalizable. These premiseat@is are the predecessorsigfso by the induction
hypothesis there are cut-free derivations of the premidass there is a cut-free derivationlof— B.

O

The next lemma states that normalization is closed undestisutions.
Lemma 12. If M is a normalizable derivation, then for any substitut@r16 is normalizable.
Proof. We prove this lemma by induction on the normalizatioriof

1. If M ends with a multicut, thef® also ends with a multicut. By Lemma 7 every reducfi#f corresponds to a
reduct off1, therefore by induction hypothesis every reducflfis normalizable, and hen¢&d is normalizable.

2. Supposé€l ends with a rule other than multicut and has premise deoinafil; }. By Definition 3 each premise
derivation inM@ is eitherf; or ;0. Sincell is normalizablel1; is normalizable, and so by the induction hypoth-
esislj0 is also normalizable. Thu36 is normalizable. |

20

5.3 Parametric reducibility

Let us first define some terminology concerning derivatidvis say that a derivatiofl has typeC if the end sequent
of M is of the forml" — C for somel". We say that a set of derivatiofshas typeC, if every derivation1 € § has
typeC. A set of derivation®_is closed under substitutiaffor every M € ® and for every substitutio, 16 € R..

To simplify presentation, we shall use the following naiat to denote certain types of derivations. The derivation

M My
A — By - Ay—By T —C

M. BaT —C me

is abbreviated a4, ...,My,M). The derivation

Ms n
BSX— SX I',Su—C |

Mpu—=C

is abbreviated amd([Ms, M), and the derivation

r HSU SX I_lsBS)‘(f
— —
r— pu CIR

is abbreviated asoind(M,Ms).

Definition 12. Let F be a closed term of type, — --- — o, — 0. A set of derivations is said to be Findexedif
every derivation inS has type F{...t, for somet,... t,.

Given a sefs of derivations and a formul@, we denote withs | the set
{Nes|MisoftypeC }.
We shall now define a family of sets of derivations, which wik garametric reducibility sets.

Definition 13. Parametric Reduciblity.et (X = B pX be a co-inductive definition, let | be a closed term of theesam
type as p, lelR_be a set of derivations, and Igtbe an I-indexed set of derivations. Let C be a formula dorethaty

p. We define thparametric reducibility seIEEDg[R, S], consisting of derivations of typdIC p], by induction on the
size of C, as follows. (In the following, we shall refer to Cttaestype of REDE[Q{,S].)

1. If p does not appearinC theFRIEDg[K, Sl=Rlc.

2. If C= p, for somel, thenREDE[R,, 5] = S |1 q.

3. Otherwise, the family of parametric reducibility se{lBEDge[R,S]}e is the smallest family that satisfies the
following: for everyd and for every derivatiofl of type ®[l /p], M € REDSS[K, S] if one of the following holds:
(a) M ends with mc, and all its reducts are IRED&][R,S].

(b) Mendswitho R, i.e.,

r,B— DI[l/p]
r— BD>DIl/p]

n e REDB[R,.S], and for every substitutiop and for every derivatiore of A — Bp in &, we have
mq=,M'p) € RED (R, S].

(c) N ends with a rulg other than mc and X, the minor premise derivations of are normalizable, and its
major premise derivations are in the parametric reductjiets of the appropriate types.

O R

From now on, when we writREDg[K,S], it is understood thap is a co-inductive predicat€ is dominated by
p, R is a set of derivations, anflis anl-indexed set of normalizable derivations, for soime

Note that in Definition 13 (3), we define simultaneously theuability setsREDEg[R ,.$] for all substitution
0. This is because in the case the derivafibends with ed., reducibility of M may depend on the reducibility of
(possibly infinitely many) derivations which are IREDSp [R.,S] for somep. SinceCp is of the same size &3, its

21

parametric reducibility set may not yet be defined by inductn the size. We therefore need to define this and other
reducibility sets which are indexed by instance€aimultaneously.

As with the definition of normalizability, clause (3) in Deifion 13 defines a monotone fixed point operator
(assuming the parametric reducibility sets of smaller $yjpave been fixed), and it therefore induces a well-founded
tree of derivations in the famiI{REDge[K,S]}e. It is immediately clear from the definition that a derivatid’ in
the family is a predecessor Bf (in the same family) if either

— M ends with a left rule anfll’ is a major premise dfl, or
— N ends withmcandn’ is a reduct ofT1.

We shall call the well-founded tree of successive predecsssf a derivatiorT1 in the family {REDgg[R.,.5]}e the
parametric reductiorof . As with the normalization of a derivation, it has an ass@cianduction principle. Note
that, however, this ordering on derivations is defined onlthe case whel€ satisfies the syntactic condition defined
in Definition 13(3), i.e., it contains at least an occurreatp and is not an atomic formula.

The definition of parametric reducibility can be seen as dgjia function ors-indexed sets. In the case where the
type of the parametric reducibility set is the body of theimductive definition forp, this function corresponds to the
underlying fixed point operator fqr. We shall now define a class 8findexed sets which are closed under this fixed
point operator. These sets, called saturated sets in tloevingf, can be seen as post-fixed points of the fixed point
operator for the co-inductive definition far They will be used in defining the reducibility of derivat®mvolving
the co-induction rule CR..

Definition 14. LetVX. pii B pX be an co-inductive definition. Let S be a closed term of theedgpe as p. Ldlls
be a derivation of 8 — BSX. Let R be a set of derivations. An S-indexed seb a (R, MNs)-saturated seif the
following hold:

1. Every derivation ir§ is normalizable.
2. If M € $ thenl6 € S for any®.

3. IfM € $ andM is of type $i for somel, then m¢Mn, Mg[t/X) € REDY pal RS-

5.4 Reducibility
We now define a family of reducible sé®ED; of leveli.

Definition 15. Reducibility.We define the familyRED; }; of reducible setsf level i by induction oni. In defining the
reducible set of level i, we assume that reducible sets oflen@vels have been defined. Each R&D; the smallest
set that satisfies the following: For every derivatidrof level i, € RED; if one of the following holds:

1. M ends with mc and all its reducts are RED;.
2. Mis

!

rB—D
D DR,

r—BD>
N’ € REDy,(p), and for every substitutiof and for every derivatiorE of A —; B8 in REDygg), We have
mc(E, I'I’B) € REDIVl(DG)-
3. N ends withCIR, i.e.,l is

n. Ms
[— St SXq—>BSX CIR
r— pt

where X = B px, " andls are normalizable, and there exist§ &, Ms)-saturated se§, where® = J{RED; |
j <i}, such thafl’ € .

4. M ends with a rulep other than mc an® K, the minor premise derivations bf are normalizable, and its major
premise derivations are in the reducibility sets of the ayppiate levels.

22

As in the definition of normalizability, each clause in thefidigion of reducibility asserts that a derivation is
reducible provided that certain other derivations, calfedpredecessors of the derivation, are reducible. Theitiefin
of reducibility induces a well-founded ordering on derigas in the reducibility sets. We shall refer to this ordgrin
asreducibility orderingand the induced well-founded tree as thductionof the derivation. We say that a derivation
is reducibleif it is in RED; for somei.

Lemma 13. Every reducible derivation is normalizable.

Proof. Given areducible derivatidn, it is straightforward to show by induction on its reducttbat it is normalizable.
In the case wherB ends with CRR, by the definition of saturated sets (Definition 14) and réuility (Definition 15),
its premise derivations are normalizable, and therdfbigalso normalizable. O

Lemma 14. If M is reducible then for every derivatidh 10 is also reducible.

Proof. The proofis by induction on the reductionidf We consider two non-trivial cases here: the case whezads
with mcand the case where it ends with#CI For the former, suppose thet= mdMy,...,M,,M’). By Lemma 7,
every reduct of16, say=, is the result of substituting a reductidf By induction hypothesis, every reductldb is
reducible, hencé€l8 is also reducible.

We now consider the caséends with CR, i.e.,M is

n’ - Ms
[— St SXﬂ—)BSX CIR
r— pt

wherepx < B pX. Leti be the level ofp and let® = U{RED;j | j < IvI(p)}. By the definition of reducibility, we
have that'l’ andlMg are both normalizable, and moreover, there exist® d1s)-saturated ses, such thafl’ € §.
Suppose thad = ()0. To show thaf18 is reducible, we must first show that bdi® andMs are normalizable. This is
straightforward from the fact that boFl¥ ands are normalizable and that normalisation is closed undestigutions
(Lemma 12). It remains to show that there exist&Ra Ms)-saturated se$’ such thatf’d € §'. Let §’ = S. Since
saturated sets are closed under substitutionHrel.S’, we havd1’6 € §'. |

Lemma 15. Let p be a co-inductive predicate, let S be a closed term ofainge type as p. LR = U{RED; | j <

Ivi(p)}, let
S = J{= | Zis reducible and has typet$or somef}

and let C be a formula dominated by p. Then for every redudblévationr of type GS/p], I € REDE[R,, 5]

Proof. By induction on the reduction dil. If p does not occur i€ thenl € R, since in this case NC) < Ivl(p)
(recall thatC is dominated byp), thereforell € REDE[Q{,S]. If C= pthenl € S (sincel is reducible), hence
Mne RED@[K, S]. The other cases follow from straightforwardly from indoathypothesis. We show here the case
wherell ends withD R.
I—I/
r.B— D[S/p)
r— BD>DI[S/p|

Note that in this cas€ = B D D, and p does not occur iB by the restriction orC (p dominate<C). Sincell is
reducible, we have thal’ is a reducible predecessorldf and for every substitutiod and every reducible derivation
= of type B6, we havemd=,11'0) is also a reducible predecessorlof It thus follows from induction hypotheses
thatN’ € REDJ[R,S] and for every= € R of type B8 (which is reducible by the definition ak), mq=,1'8) €
RED{[R..S]. Therefore, by the definition of parametric reducibilitye Wave thafl € REDE[R ., S]. O

OR

5.5 Reducibility of unfolded derivations

The following lemmas state that reducibility is preservgddn)inductive unfolding, under certain assumptions.

Lemma 16. Inductive unfolding.Let pX = B pX be an inductive definition. Ldls be a reducible derivation of
B SX — SX. LetIN be a reducible derivation df — C such that p dominates C. Suppose the following statements
hold:

23

1. For every derivatiorE of A — B p, if W(=,Ms) is reducible, then the derivation €=, Ms), MNg[t/X)) is re-
ducible.

2. For every reducible derivatios of A — Su the derivation m(E, Idsg) is reducible.

3. The derivation inds, Idsy) is reducible, for everyi of the appropriate types.

Then the derivation(,Ms) of I — C[S/p| is reducible.

Proof. By induction on the reduction dfi. We show the non-trivial cases, assuming thas not vacuous irC. To
simplify presentation, we shall writg(.,.) instead oqu(., .), since in each of the following cases, it is easy to infer
from the context whicliF we are referring to.

1. Supposél ends withinit rule onpd. Thenu(M,MNg) = ind(Msg, ldsg), which is reducible by assumption.
2. Supposél ends withD R, that is,C=C; D C,.

I
F,C1—>C2

|_—>C1:)C2 - R

By the restriction orC, we know thatp is vacuous irnC;, henceC[S/p| = C1 D C[S/p]. By the definition of
reducibility, the derivatioril’ is reducible and for every substituti®and every reducible derivatidd of A —

C16, the derivatiort
W n'e
A — Cle I'G,Cle — C29 me
A, re —— Cze

is reducible. We want to show that the derivatjgifl,MNs)

'J'(rl/vrls)
I',Cl p— CzS

r—Cip>C[S/p|

O R

is reducible. This reduces to showing thiéffl’, Ms) is reducible and that
V)] u(rl/a ns)e
A—> Cle I'G,Cle — Cze[S/ p]
A,TO — C0[S/p

is reducible. The first follows from induction hypothesisi@h For the second derivation, we know from Lemma 5
that
|.1(|_|/, I‘IS)G = u(l‘l/e, ns).

It follows from this and the definition of inductive unfoldj(Definition 8) that
moW, u(M’, Ms)8) = mgW, ('8, Ms)) = p(mW, M'6), Ms) = p(=,Ms)

We can apply induction hypothesis &psince it is a predecessor Bf to establish the reducibility qf(=,Ms).
This, together with reducibility ofi(1’, Ms) implies thatu(I,Msg) is reducible.
3. Supposé&l ends with R rule onpd.

I-I/
I — Bpl

T —pn X

Thenp(M,MNs) is the derivation
H(r’, Ms) Msld/]
r—BSd BSGi—SU .
I — Su

The derivationu(M’, Mg) is reducible by induction hypothesis. This, together wishuanption (1) of the lemma,
imply thatp(M,Ms) is reducible.

24

4. Supposél ends withme.
My Mn rn’
A1—>D1 An—>Dm Dl,...7Dm,rl—>C mc
Al,...,Am,r/ —>C

Thenp(M,MNs) is the derivation

nj_ rln u(n/ans)
A1—>D1 An—>Dm Dl,,Dm,r/—>C[S/p]

Ag,.... A" — C[S/p]

By the definition of reducibility, every reduct 6F is reducible. We need to show that every reduqi(@t,Ms) is
reducible.

From Lemma 8, we know that for the case whéris not atomic every reduct @f(1,Ms) corresponds to some
reduct off1. Similarly, for the case wherd’ ends with a rule other thamit or I, by Lemma 9, the reducts of
u(M,Ns) are in one-to-one correspondence with the reduck$.dtherefore in these cases, the inductive hypoth-
esis can be applied to show the reducibility of each redugt@f Ms). This leaves us the following two cases,

whereC = pd andrl’ ends with either®_ or init rules.
— Supposél’ is the derivation

mc

I-I//
Di,...,Dm, " — Bpl 1%
Di,...,Dm," — p
Let =1 be the derivation
{ m; } n”
Aj—>Dj je{L,...m} Dl,...,r’—>BpU me
Dg,...,0m " — Bpl
then the derivation _
Av.... AnT’ —sBpd %

Al,... ,Am,r/ — pU
is a reduct of1 (by the reduction rule-/IR), and therefore by the definition of reducibility both thesluct
and=; are reducible predecessordbfLet W be the derivation

p‘(n//’ Ms) I_|/S
D4,...," — BSU BSU— Su me
Dl,...,l'/ — Su

Then the derivatiop(I1,Ms) is the following

M Y
Aj—>Dj jel1 D1,...,r/—>SU

mc
A1, A, T’ — SU

The only applicable reduction rule (g1, Ms) is —/mg which gives us the redug

g Mg
Nq,....Am, " — BSU BSU— Su me
Al,...7Am,rl—>SU 5
whereW' is the derivation
M; u(n”,Ms)
Aj — D; iefL,..m} Dy,...," — BSl
me

Ar,....Am T — BSU

Notice thatV’ is exactlyu(=1,Ms), and is reducible by inductive hypothesis. Therefore agsiom (1) applies,
and the reduck is reducible, hencp(,Ms) is also reducible.

25

— Otherwise, suppod@’ ends withinit, thenD; = pU andr is the derivation

My s
Ay — pd pUd— pU ’:7’;

Ay — pU

The only reduct of1 is My since the only applicable reduction-s/init. On the other hand, the derivation
u(l’l,l’ls) is
Ms Id
My BSX— SX Su— Siu
Ay — pU pu— Su
Al — St

1L

Its only reduct is (by/I L)

H(M1,Ms) Id
A1 — SU SU— SU

Al—)SU

The derivatiorpy(My, Ms) is reducible by inductive hypothesiB{ is a predecessor &f) and assumption (2)
applies, and the above reduct is reducible.
O

Remark 1.Intuitively, condition (1) of Lemma 16 can be seen as agssgttiat the set of reducible derivations whose
types are instances 8K forms a pre-fixed point of the fixed point operator inducedhsyinductive definition op.

Lemma 17. Co-inductive unfoldingLet pii B pX be a co-inductive definition. LEts be a normalizable derivation
of SX — BSX for some invariant S. LeR = {RED; | j < IvI(p)}, and letS be a(R ,Ms)-saturated set. Ldil be a
derivation off — C[S/p] for some C dominated by p.llf € RED¢[R., 5] thenv® (I, Ms) is reducible.

Proof. By induction on the size dE, with sub-induction on the parametric reductiofbfAs in the proof of inductive
unfolding, we omit the subscript and superscript ingHfanction to simplify the presentation of the proof.

1. If pis not free inC, thenv(M,Ms) = M. Sincel € RED¢[R.,.5], it follows from the definition of parametric
reducibility thatl € &, hence it is reducible by assumption.
2. Suppos€ = pu. ThenC[S/p] = St andv(I,Ms) is the derivation

I_|SU SX s X
r— —B
r— pu CIX

To show that this derivation is reducible, we first show thate exist 4 R, Ms)-saturated sef’ such thafl € §'.
Sincell REDEU[R, S], by the definition of parametric reducibility, we haMec §. Let S’ = 5. Thens’ is indeed
a(R,Ms)-saturated set containiig. It remains to show that boffi andls are normalizable. This follows from
the assumption ofls and the fact that saturated sets contain only normalizadsieations.

3. Suppose occurs inC butC # pt for anyd. There are several subcases, depending on the last fdlelihen we
show by induction on parametric reducibility Gfthat it is also reducible.

(@) The base cases are those wharends with a rule with empty premises and whErends with a right-
introduction rule. In the former case, its reducibility mmediate from the definition of reducibility (Def-
inition 15). For the latter, in most cases, the reducibitify1 follows from the outer induction hypothesis
(since in this case, the premise derivation$loére in the parametric reducibility sets of smaller typeg) an
Definition 15. We show here a non-trivial case involving ifogtion-right: Supposé€l ends withD R, i.e.,

C =C; D C, for someC; andCo.

!
r,C]_ — CZ[S/p]
r—Ci DC[S/p]

O R

26

Note thatp is vacuous irCy by the restriction oi€. The derivatiorv(M,Ms) is

v(I‘I’, ns)

F,Cl — Cz
F—Gog %
To show thaw(M,Ms) is reducible, we need to show thaf1’,Ms) is reducible, and for ever§ and every
W € REDc, 9, we havemqW,v(M’,Ms)6) € REDc,p.
The parametric reducibility ofl implies thatl’ € REDc, [R.,.S] and for everyd and every derivatioN' €
R, mW,M'6) € REDc,p[R.,S]. Note thatW is in R since IV(C.8) < Ivl(p). Therefore we also have
mgW,M'6) € REDc,p[R.,.S]. By the outer induction hypothesis, we have that both

v(N',Ms) and v(mgW¥,n’e),MNs)

are reducible. It remains to show that the(\W, v(’, Ms)0) is reducible. Note that by Lemma 6 this derivation
is equivalent tancW,v ('8, Ms)). To show that this derivation is reducible, there are twasds consider.

If C; is non-atomic then it is easy to see thadW,v(1'6,Ms)) is equivalent toy(mg W, M'6),Ms), which is
reducible by the outer induction hypothesis. If, howe@ar= p for somel, thenmgW,v (1’6, Ms)) is the
derivation (supposing that the end sequer¥as A — C16):

n’'e Ms
C16,l6 — St SX— BSX CIR
A —>C19 Cle,l'e — pU me
ATO— pl

To show that this derivation is reducible, we must show thidtsareducts are reducible. There is only one
reduction rule that is applicable in this case, i.e.,th€IR -case, which leads to the following derivation:

Y ne
A—>C16 Cle,re—)SU me |'|S
AT — SU SX— BSX cl
ATO— pl R

But notice that this is exactly the derivatioimaW,M’8),Ms), which is reducible by the outer induction
hypothesis.
Having shown thae(M’,Ms) andmda W, v(M’,Mg)0) are reducible, we have sufficient conditions to conclude
thatv(IN,Msg) is indeed reducible.

(b) For the inductive caseBl ends either withmcor a left-rule. We show the former case here (the other cases
are straightforward). Suppo§kis

My My n’
A1—>D1 An—>Dm Dl,,Dm,r/—>C[S/p] mc
Dg,...,00 T — C[S/p]
Thenv(M,Ms) is the derivation
My Mn V(. Ms)
A —D1 -+ Ay—Dm Dy,....,Dm " —C me

Al,...,An,r/—>C

The derivatiorw(M,Ms) is reducible if every reduct of(I1M, M) is also reducible. From Lemmalo, it follows
that every reduct 09(M,Ms) is of the formv(=,Ms) where= is a reduct off1. Since all reducts of1 are
predecessors @1 in the parametric reducibility ordering, we can apply théuative hypothesis to show that
every reduct of(IM,Ms) is reducible, hence(MN,Ms) is also reducible.

O

27

5.6 Cut elimination

Most cases in the cut elimination proof for Lindn the following are similar to those ¢&fFOA2N. The crucial differ-
ences are in the handling of the essential cut reductiorisdoictive and co-inductive rulésin the case of derivations
of inductive predicates, a crucial part of the proof is inabfishing that theS-indexed set of reducible derivations
(whereSis an inductive invariant) satisfies the conditions of Lemb@a(in effect, demonstrating that the said set
forms a pre-fixed point). Dually, in the case for co-induetproofs, one must show that tBendexed set of reducible
derivations, wher&is a co-inductive invariant, forms a saturated set (i.eqst fixed point of the co-inductive defini-
tion involved).

Lemma 18. For any derivation1 of By, ...,Bn, T — C, for any reducible derivations

My Mn
A1—>Bl, 7A|’]—>Bﬂ

where n> 0, and for any substitutionds, ...,y such that B = Bjy for every i€ {1,...,n}, the derivatiorE

M101 Mndn ny
Al6l — Bl6l e Anén — Bn6n B_‘Ly7 ey Bny7 ry — Cy me

Al6l, e ,Anén, ry—) Cy

is reducible.

Proof. The proof is by induction on ind(fl) with subordinate induction on i), on n and on the reductions of
My,...,Mnh. The proof does not rely on the order of the inductions on ¢édans. Thus when we need to distinguish
one of thell;, we shall refer to it agl; without loss of generality. The derivatighis reducible if all its reducts are
reducible.

If n= 0, then= reduces tdly, thus in this case we show thidl is reducible. Since reducibility is preserved by
substitution (Lemma 14), it is enough to show thiis reducible. This is proved by a case analysis of the lastirul
M. For each case, the result follows easily from the indudtigpothesis on iif1) and Definition 15. The> ® case
requires that substitution for variables does not incréheemeasures of a derivation. In the casesFof and 1L
we need the additional information that reducibility ingdinormalizability (Lemma 13). The case forfCtequires

special attention. LepX <D pX be a co-inductive definition. SuppoBeis the derivation

n’ - Mg
r— St SXﬂ—>DSX CIR
r— pt

for some invariant. Let X = U{RED; | j < IvI(p)}. To show thafT is reducible we must show that its premises
are normalizable and that there exist&Ra Ms)-saturated sef such thafl’ € S. The former follows from the outer
induction hypothesis and Lemma 13. For the latter, thgs setdefined as follows:

S ={W| Wis areducible derivaiton of typs, for someu}.

Sincell’ is reducible by induction hypothesis, we hdvec S. It remains to show thas is a (% ,Mg)-saturated set.
More specifically, we show that has the following properties.

1. Every derivation ins is normalizable.
2. If W e § thenWo € § for any®.
3. If We S andW¥ is of typeSti for somet, thenm W, Mg[t/X]) € RED} LN

4 We also note that McDowell and Miller's proof of cut elimiiat for FONN given in [25] appears to contain a small gap in
the proof of a main technical lemma. More specifically, theg a similar technical lemma as Lemma 18, but without theaextr
assumptions about the substitutidns. . ., &n, 6. The problem with their formulation of the lemma appearsimdase involving
the eqC/ o L reduction rule. This problem is fixed in our cut eliminatiom@f with the more general statement of Lemma 18.
See http://www.lix.polytechnique.fr/ dale/papers/&sbrata.html for details of the errata in their paper.

28

Property (1) follows from the fact that reducibility impsiéormalizability (Lemma 13). Property (2) follows from the
fact that reducibility is closed under substitution (Lemi#a. To prove (3), first notice that by Lemma 2, indig[t/X]) <
indm(Ms) = indm(M) and h{Mg[t/X]) < ht(Ms) < ht(M). Therefore, by the outer induction hypothesis, we have that
mo(W, Ng[t/x]) is reducible. By Lemma 15, we have tiat(\W, Ns[t/X]) € RED§ pal R S]. ThereforeSis a(®,Ms)-
saturated set containifd/, henced is reducible.

Forn > 0, we analyze all possible cut reductions and show for eash tbee reduct is reducible. Some cases follow
immediately from inductive hypothesis. We show here the-iwial cases.

DR/ D L: Supposél; andll are

I'I’1 n’ n”
A, B, — B! Bp,...., — B, B!By,... —C
% DR / 77 L ! oL
AL — B, DB B, D BY,By,...,Bn,l —C
The derivatiorey
M>5; Mndn n'y
DO — Bpd ... Andy — Bndn Bay,...,Bny,l'y— By me

02Dy, ..., 0ndn, Ty — By

is reducible by induction hypothesis since indih) < indm(M) and h{N’) < ht(M). SinceM; is reducible, by
Definition 15 the derivatioxs

Z1 Mi&
A262, R Fy — B&y B/161,A161 — B/1/61

D101, ..., D000, TY — B/£51

is a predecessor ©f; and therefore is reducible. The reductoin this case is the following derivation

= { Mid } n"y
sy, B0 —Bdficon By By, Ty—Cy

A161,---7An5narV7A252,---aAnVa ry—>Cy ./
C.

mc

D101, ..., 000, Ty —> Cy

which is reducible by induction hypothesis and Definition 15
YL/VR: Supposdl; andll are

M n'
A — Bl y/x Bi[t/x],By,...,By, — C
1[y//] VR l //] n VI
N — VX.B] vx.B4,B>,...,.B, — C

Since we identify derivations that differ only in the choigeintermediate eigenvariables that are not free in the
end sequents, we can choose a varigislech that it is not free in the domains and range® aindy. We assume
without loss of generality thatis chosen to be fresh with respect to the free variables istbstitutions so we
can push the substitutions under the binder. The derivatiisrthus

nid1 n'y
A& — Byda[y/x] R Wity/H,....,Ty — Cy
0101 — VX.Bj&y vx.Bly,...,ly—Cy me
A161, e ,An6n, Fy — Cy

Let 8] = 01 0 [ty/y]. The reduct o in this case is
Mm%, n'y
010y — BiSafty/x] ... Byyity/x),...,[y—Cy me
N101,...,Andn, Ty — Cy

which is reducible by induction hypothesis.

29

eqR /eql: Supposél; andll are

e a0 —cp)

B2p,...,Bap,Tp—Cp |,
eqL

s=t,...,Bp, —C

R

Al —>s=t €
ThenZ= is the derivation
ryer’
Bayp',....Bayp', I — Cyp'J

e e
w (s=t)y,...,Bay,ly—Cy me
A161, . ,An6n,ry—> Cy

N0 — (S= t)51

The edR tells us thas andt are unifiable via empty substitution (i.e., they are the saorenal terms). The reduct
of =
ﬂ262 ny
A262 — 8262 Bzy,...,ry—>Cy

DOy, ..., AnOn, Ty —> Cy

mc

A1617A2621 s 7An5m ry — Cy WL
is therefore reducible by induction hypothesis.
x/1L: SupposdTl is the derivation
Mg n’
DSX— SX St —C
p 1L
pt, —C

Wherepii D pX. Let pi be the result of applying; to pt. Then= is the derivation

|_|3 ﬂ/y
M8, Mndn DSX— SX SU,...7I'y—>CyI
D1 — Pl -+ Dadn — Badn pd, [y —Cy L

D101, ..., 0000, Ty — Cy
The derivatiore reduces to the derivaticel

H(M1,Ms)d1 Mndn n'y
Al6l — SU R An6n — Bn6n SU, ry — Cy me

D101, ..., 0000, Ty — Cy

Notice that we have used the fact that
M(M181,Ns) = u(M1,Ms)dy

in the derivation above, which follows from Lemma 5. Therefdan order to prove tha' is reducible, it remains
to show that the unfolding dfl; produces a reducible derivation. This will be proved usiegnima 16, but we
shall first prove the following properties, which are the ditions for applying Lemma 16:

1. For every derivatioW of A — D p§, if u(W,Ms) is reducible, then the derivatianqu(W, Ms),Mg[S/X]) is

reducible.

2. For every reducible derivatidH of A — Sii the derivatiormd W, Idgg) is reducible.

3. The derivationnd(Ms,|dsy) is reducible, for everyi of the appropriate types.
To prove (1), we observe that indfs[t/X]) < indm(Ms) < indm(M), so by the outer induction hypothesis, the
derivationmd(pu(=, Ms), Mg[t/X]) is reducible. Property (2) is proved similarly, by obsegvthat indnfldsg) <
indm(M) (since identity derivations do not use theule; c.f. Lemma 4). Property (3) follows from the fact that
Idsg is reducible and thdfls is reducible (hence, also normalizable). Having shownethieee properties, using
Lemma 16 we conclude thai4,Ms) is reducible, hence, by the outer inductidi (s smaller tharf), the
reduct=’ is reducible.

30

CIR /CIL: Supposdls andll are

ny Ms n’
A St Sy D SX D f,B,...,r—>C
— — 2 g .52 ciz
A — pt pt,By,.... —C

wherepX = D pX. Supposépt)d; = (pf)y = pi. Then= is the derivation

Mo s Dpu I'Iéy C
N1d1 — Sl SX— DSX pd,...,'y— Cy

Alé]_, e ,An6n, ry—) Cy

Let ® = U{REDf | WI(F) < IvI(p)}. Sincell; is reducible, there exists @, Ms)-saturated se$ such that
M} € 5. Let=4 be the derivation
nid: Ms[d/X]
016 — SU SU— DSU
A151 — DS

Sinces is a (R ,Mg)-saturated set, by Definition 1&; REDBPU[K,S]. It then follows from Lemma 17 that
v(=1,Ms) is reducible.
The reduct oE is the derivation

V(El,l_ls) Mndn I'I’y
Al6l—>DpU Anén—)Bnén DpU,,Bny,ry—)Cy mc
D101, ..., 0000, TYy— Cy

Its reducibility follows from the reducibility 0b(=1,Ms) and the outer induction hypothesis.
D L/oL: Supposél; is
ng ny
A, — Dy Df,A]— B

D} 5 DJ.0, —» By

DL

Sincelly is reducible, it follows from Definition 15 thdll is normalizable andll’ is reducible. Le&E; be the
derivation
rlll/él M2, My
D/1/61,A/l61 — 5161 A262 — 8262 cee 5161, ceey Fy—> Cy m

D{51,A3_51,A252, R I'y — CV

c

=1 is reducible by induction hypothesis on the reductiofl@{[17 is a predecessor 6f;). The reduct of in this
case is the derivation

M5,
A/lél — D/161 WL _
=1
A/léj_,A252, R I'y — D/161 D/1/51,A/151,A252, R I'y — Cy 51

(D} D DY)d1,4181,828,...,Ty — Cy

Sincell) is normalizable and substitutions preserve normalizgbldy Definition 11 the left premise of the reduct
is normalizable, and hence the reduct is reducible.

p

S:t,A/l — B3

31

ThenZ= is the derivation

o™ s
&619/ — Blalp/ o e M3, I-Iy
(s=1)d, 3_51 — B161 DOy —» Bpdy -+ Bay,...,['y—Cy me

(s=1)81,4101,428,...,T'y — Cy

Notice that each premise derivatibi:°f’ of M,3; is a also a premise derivation Bf;, since for every unifiep’
of (s=1)dy, there is a unifier 06 =t, i.e., the substitutiod; o p’. Therefore ever‘J/‘IeSlop is a predecessor of;.
Let = be the derivation

e M350 Myp’
101p" — B1d1p’ Dodop’ — Bodop’ T Biyp,....Typ' — Cyp’ m
N 810, 82820, ..., Typ" — Cyp/

C

The reduct o

=
{A’lélp’, Ly — Cyp/}p/
e
(s=1)d1,A18y,...,T'y— Cy

is then reducible by Definition 15.

|L/oL: Supposél; is

Ms My
DSX— SX St,A] — B |
pf,A/l—> Bl

Sincel; is reducible, it follows from the definition of reducibilithat} is reducible predecessor @f andls
is normalizable. Suppogel = (pt)d; = (pt)y. Let =; be the derivation

I-I€|.6l nnén ﬂy
SU,A181 — B1d1 -+ Andy — Bndn Bay,...,Bay,l'y— Cy me

Sa, A&él, ..., 000, Ty — Cy

=, is reducible by induction on the reductionldf, therefore the reduct &
Ms =
DSX— SX SU,A}81,...,A000, Y — Cy |
pU,A81,...,0000, Yy — Cy

is reducible.
—/ D L: Supposél is
I—I/ I-I//
Bi,..Bol'—D Bi..B\D'.I"—~C
Bi,....Bn,D OD'.I —C -
Let=; be
My1d; Mndn n'y
A0 — B1d1 -+ Apdy — Bpdn Buy,...,Bny,'y— Dy me
Al6l, e ,Anén, r/y — D/y
and=» be
M1d1 Mndn n"y
A0 — B1d1 oo+ Andn — Bpdn Buy,...,Bny, D"y, Iy — Cy me

A1617 fe 7An6n7 D//y7 r/y — Cy

32

Both=; and=5 are reducible by induction hypothesis. Therefore the reoiie

=1 =

D101, ., 000, T'Yy— Dy D10, ..., 0000, D"y, 'y — Cy P
D13y, Bodn, (D' 5 D)y, 'y — Cy -
is reducible (reducibility oE implies its normalizability by Lemma 12).
—/CIR: Supposél is
n’ Ms
Bi,...,B t
1, B n,r—)St SXT)DSX ClR
Bi,...,Bn, [— pt ,
wherepX £ D pX. Supposel = (pt)d; = (pi)y. Let =1 be the derivation
M1d1 Mndn n'y
A161 — 8161 e Anén e Bnan B]_y, ey Bny7 ry e SU mc

Alé]_, e ,An6n, ry—) SU
The derivation$1’y, Ms, =1 and the derivation

) MNs[w/X|
N —SW SW— DSW

- — mc
AN — DSW

3

whereW is any reducible derivation, are all reducible by inductigmpothesis on the length &f. Again, we use
the same arguments as in the case where) to construct 4% ,NMs)-saturated sef such thaE; € S. Therefore
by Definition 15, the reduct cf:
=1 Ms
D101, ..., 0ndn, Ty —> ST SX— DSX
A161, e ,Anén, Fy — pU

CIR.

is reducible.

mc/ o L: Supposdl; ends with amc Then any reduct of116; corresponds to a predecessoilbf by Lemma 7.
Therefore the reduct i is reducible by induction on the reductionldf.

—/init: = reduces td116;. Sincell; is reducible, by Lemma 14740 is reducible and hencgis reducible.

Corollary 1. Every derivation is reducible.

Proof. The proof follows from Lemma 18, by settimg= 0. O
Since reducibility implies cut-elimination, it follows @ every proof can be transformed into a cut-free proof.
Corollary 2. Given a fixed stratified definition, a sequent has a prodfint ™~ if and only if it has a cut-free proof.

The consistency of Lincis an immediate consequence of cut-elimination. By coestst we mean the following:
given a fixed stratified definition and an arbitrary form@lat is not the case that bo@andC > 1 are provable.

Corollary 3. The logicLinc™ is consistent.

Proof. Suppose otherwise, that is, there is a formQlauch that there is a prodl; of C and another proofl;
for C O L. Since cut elimination holds, we can assume, without losseoferality, thaf1, andll, are cut free. By
inspection of the inference rules of Lincwe see thall, must end withD R, that is,M> is
My
C— L

—CDO L - R

Cutting M1 with N’ we get a derivation of — _L, and applying the cut-elimination procedure we get a ce-fr
derivation of — 1. Butthere cannot be such a derivation since there is no-nigidduction rule forl, contradiction.
O

33

6 Related Work

Of course, there is a long association between mathemédgaland inductive definitions [2] and in particular with
proof-theory, starting with the Takeuti’s conjecture, trealiest relevant entry for our purposes being Martin‘6.6f
original formulation of the theory dferated inductive definitiong@4]. From the impredicative encoding of inductive
types [7] and the introduction of (co)recursion [16, 29] yistem F, (co)inductive types became common and made it
into type-theoretic proof assistants such as Coq [37] Miesh primitive recursive operator, but eventually in thterkc
style of functional programming languages, as in Gimen€akulus of Infinite Constructior{48]; here termination
(resp. productivity) is ensured by a syntactic check knowigwarded by destructorfl7]. Note that Coq forbids
altogether the introduction of blocks of mutually depertdgpes containing both inductive and co-inductive ones,
even though they could be stratified. Moreover, while a sstitacheck has obvious advantages, it tends to be too
restrictive, as observed and improved upon in [6] by usime tyased termination. The same can be said abgda
[36], where size types termination will eventually supeesguardedness [28].

Baelde and Miller have recently introduced an extensionnafdr logic with least and greatest fixed points [5].
However, cut elimination is proved indirectly via a secarder encoding of the least and the greatest fixed point
operators into higher-order linear logic and via an appea&leteness of focused proofs for higher-order linear
logic.

Circular proofs are also connected with the emerging ptheéry of of fixed point logics and process calculi [48,
55], as well as in traditional sequent calculi such as in T8 issue is the equivalence between systems with local vs
global induction, that is, between fixed point rules vs. vielinded and guarded inductioing(circular proofs). In the
sequent calculus it is unknown whether every inductive pcao be obtained via global induction.

In higher order logic (co)inductive definitions are obtalvéa the usual Tarski fixed point constructions, as realized
for example in Isabelle/HOL [38]. As we mentioned befor@dh approaches are at odd with HOAS even at the level
of the syntax. This issue has originated a research field mwnh that we can only try to mention the main contenders:
in the Twelf system [41] the LF type theory is used to encod#udtve systems as judgments and to specify meta-
theorems as relations (type families) among them; a logigm@mming-like interpretation provides an operational
semantics to those relations, so that an external checlofality (incorporating termination, well-modedness and
coverage [42,53]) verifies that the given relation is indeeelalizer for that theorem. Coinduction is still unacceuant
for and may require a switch to a different operational sdmaffor LF. There exists a second approach to reasoning
in LF that is built on the idea of devising an explicit (metaéta-logic (M) for reasoning (inductively) about the
framework, in a fully automated way [52]. It can be seen asrstactive first-order inductive type theory, whose
guantifiers range over possibly open LF objects over a sigealn this calculus it is possible to express and induc-
tively prove meta-logical properties of an object leveltsys. M, can be also seen as a dependently-typed functional
programming language, and as such it has been refined fiosthaElphin programming language [54] and more
recently inDelphin[47]. In a similar vein the context modal logic of PientkagRhing and Naneski [34] provides a
basis for a different foundation for programming with HOASladependent types based on hereditary substitutions,
see the programming languaBeluga([43,44]). Because all of these systems are programmirygkages, we refrain
from a deeper discussion. We only note that systems likelbelpr Beluga separate data from computations. This
means they are always based on eager evaluation, whereasursive functions should be interpreted lazily. Using
standard techniques suchthsnksto simulate lazy evaluation in such a context seems prohilerfiRientka, personal
communication).

Weak higher-order abstract synt§ikl] is an approach that strives to co-exist with an indwcsetting, where the
positivity condition for datatypes and hypothetical judgms must be obeyed. The problem of negative occurrences
in datatypes is handled by replacing them with a new type.dpproach is extended to hypothetical judgments by
introducing distinct predicates for the negative occuresn Some axioms are needed to reason about hypothetical
judgments, to mimic what is inferred by the cut rule in ourhdtecture. Micularet al’s framework [22] embraces
this axiomaticapproach extending Coq with the “theory of contexts” (ToQ)e theory includes axioms for the the
reification of key properties of names akinfteshnessFurthermore, higher-order induction and recursion satam
on expressions are also assumidgbrid [3] is a A-calculus on top of Isabelle/HOL which provides the usehveit
Full HOAS syntax, compatible with a classical (co)-inductiviéisg. Linc™ improves on the latter on several counts.
First it disposes of Hybrid notion abstraction which is used to carve out the “parametric” function spaocenfthe
full HOL space. Moreover it is not restricted to second-omestract syntax, as the current Hybrid version is (and as
ToC cannot escape from being). Finally, at higher typesaeiag viadefL is more powerful than inversion, which
does not exploit higher-order unification.

34

ToC can be seen as a stepping stone towards Gabbay andd?itisal logiG which aims to be a foundation of
programming and reasoning wittameslt can be presented as a first-order theory [45], which thesuprimitives for
variable renaming and variable freshness, and a (derived)'fieshness” quantifier. Using this theory, it is possible
to prove properties by structural induction and also to @efimctions by recursion over syntax [46]. Urbatnal.s
have engineeredreominal datatype packagdeside Isabelle/HOL [35] analogous to the standard datapgrkage but
defining equivalence classes of term constructors. In nement versions, principles of primitive recursion andrsfyo
induction have been added [60]. Coinduction on nominaltgipéss is not available, but to be fair it is also absent from
Isabelle/HOL due to some technical limitations in the awdton of the inductive package

7 Conclusion and Future Work

We have presented a proof theoretical treatment of bothcimtuand co-induction in a sequent calculus compatible
with HOAS encodings. The proof principle underlying the koipproof rules is basically fixed point (co)induction.
We have shown some examples where informal (co)inductivefprusing invariants and simulations are reproduced
formally in Linc™.

Consistency of the logic is an easy consequence of cut+itioin. Our proof system is, as far as we know, the
first which incorporates a co-induction proof rule with aedir cut elimination proof. This schema can be used as a
springboard towards cut elimination procedures for mopessive (conservative) extensions of Linéor example
in the direction off OA" [31], or more recently, the logicG® [57] by Tiu and the logiag by Gaceket al. [14].

As far as future work, we may investigate loosening the ifization condition for example in the senselotal
stratification, possibly allowing to encode proofs suchyae tpreservation in operational semantics directly in Cinc
rather than with the 2-level approach [26, 32]. More geneadibns of stratifications are already allowed in practice,
see the proof by logical relations in [15], but not formallgiified.

Another interesting problem is the connection wattcular proofs which is particularly attractive from the view-
point of proof search, both inductively and co-inductivaliis could be realized by directly proving a cut-elimioati
result for a logic where circular proofs, under terminathonl guardedness conditions completely replace (co)inaduct
rules. Indeed, the question whether “global” proofs arawedent to “local” proofs [8] is still unsettled.

AcknowledgementsThe Linc™ logic was developed in collaboration with Dale Miller. Albe Momigliano has
been supported by EPSRC grant GR/M98555 and partly by the diRfect (IST-2001-33149), funded by the EC
under the FET proactive initiative on Global Computing.

References

[1] S. Abramsky and C.-H. L. Ong. Full abstraction in the lé&aynbda calculusinf. Comput, 105(2):159-267, 1993.

[2] P. Aczel. An introduction to inductive definitions. InBarwise, editorHandbook of Mathematical Logiolume 90 of
Studies in Logic and the Foundations of Mathematitepter C.7, pages 739-782. North-Holland, Amsterdaffi7 19

[3] S. Ambler, R. Crole, and A. Momigliano. Combining higherder abstract syntax with tactical theorem proving and
(co)induction. In V. A. Carrefio, editoRroceedings of the 15th International Conference on ThaodRzoving in Higher
Order Logics, Hampton, VA, 1-3 August 2002lume 2342 of. NCS Springer Verlag, 2002.

[4] F. Baader and W. Snyder. Unification theory. In J. A. Rebimand A. Voronkov, editorgjandbook of Automated Reasoning
pages 445-532. Elsevier and MIT Press, 2001.

[5] D. Baelde and D. Miller. Least and greatest fixed pointbriear logic. INnLPAR Lecture Notes in Computer Science, pages
92-106. Springer, 2007.

[6] G.Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalype-based termination of recursive definitioMathematical
Structures in Computer Sciencet(1):97-141, 2004.

[7] C. Bohm and A. Berarducci. Automatic synthesis of typathbda -programs on term algebrasheoretical Computer
Science39(2-3):135-153, Aug. 1985.

[8] J. Brotherston and A. Simpson. Complete sequent caloulinduction and infinite descent. ICS pages 51-62. IEEE
Computer Society, 2007.

[9] K. L. Clark. Negation as failure. In J. Gallaire and J. Mém, editorsLogic and Data Basepages 293—-322. Plenum Press,
New York, 1978.

[10] N. de Bruijn. A plea for weaker frameworks. In G. Huet a@d Plotkin, editors Logical Frameworkspages 40-67.

Cambridge University Press, 1991.

35

[11] J. Despeyroux, A. Felty, and A. Hirschowitz. Higheder abstract syntax in Cog. Becond International Conference on
Typed Lambda Calculi and Applicationsages 124-138. Spring&ecture Notes in Computer Scienégr. 1995.

[12] J. Despeyroux and A. Hirschowitz. Higher-order aldtsyntax with induction in Cog. IRifth International Conference on
Logic Programming and Automated Reasonipgges 159-173, June 1994.

[13] L.-H. Eriksson. A finitary version of the calculus of piaf inductive definitions. In L.-H. Eriksson, L. Hallnaand
P. Schroeder-Heister, editoRtoceedings of the Second International Workshop on Extesiso Logic Programmingvol-
ume 596 ofLecture Notes in Artificial Intelligencgages 89—-134. Springer-Verlag, 1991.

[14] A. Gacek, D. Miller, and G. Nadathur. Combining genguidgments with recursive definitions. IHiCS pages 33-44. IEEE
Computer Society, 2008.

[15] A. Gacek, D. Miller, and G. Nadathur. Reasoning in Ahelbout structural operational semantics specificationé. Abel
and C. Urban, editordnformal proceedings of LFMTP'08o appearin ENTCS, 2008.

[16] H. Geuvers. Inductive and coinductive types with itema and recursion. In B. Nordstrom, K. Pettersson, and IGtki,
editors,Informal Proceedings Workshop on Types for Proofs and Ruogy, Bastad, Sweden, 8—-12 June 192@es 193-217.
Dept. of Computing Science, Chalmers Univ. of Technology @dteborg Univ., 1992.

[17] E. Giménez. Codifying guarded definitions with reéansschemes. In P. Dybjer and B. Nordstrom, editSaslected Papers
2nd Int. Workshop on Types for Proofs and Programs, TYPE®8dtad, Sweden, 6-10 June 199dlume 996 of_ecture
Notes in Computer Sciengaages 39-59. Springer-Verlag, Berlin, 1994.

[18] E. Giménez.Un Calcul de Constructions Infinies et son Application a laifi@tion des Systemes CommunicanBhD
thesis PhD 96-11, Laboratoire de I'Informatique du Petalihe, Ecole Normale Supérieure de Lyon, Dec. 1996.

[19] J.-Y. Girard, P. Taylor, and Y. LafonProofs and TypesCambridge University Press, 1989.

[20] L. Hallnas. Partial inductive definition§.heor. Comput. S¢i87(1):115-142, 1991.

[21] R. Harper, F. Honsell, and G. Plotkin. A framework foffidng logics. Journal of the ACM40(1):143-184, 1993.

[22] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatjgpeoach to metareasoning on nominal algebras in HOAS. In
F. Orejas, P. G. Spirakis, and J. van Leeuwen, edit@A&| P, volume 2076 ofLecture Notes in Computer Sciengages
963-978. Springer, 2001.

[23] B. Jacobs and J. Rutten. A tutorial on (co)algebras anyir{duction. Bulletin of the European Association for Theoretical
Computer Scien¢é2:222—-259, June 1997. Surveys and Tutorials.

[24] P. Martin-Lof. Hauptsatz for the intuitionistic thgoof iterated inductive definitions. In J. Fenstad, edifmceedings of the
Second Scandinavian Logic Symposiuniume 63 ofStudies in Logic and the Foundations of Mathematiegjes 179-216.
North-Holland, 1971.

[25] R. McDowell and D. Miller. Cut-elimination for a logic ith definitions and induction.Theoretical Computer Science
232:91-119, 2000.

[26] R. McDowell and D. Miller. Reasoning with higher-ordabstract syntax in a logical frameworldCM Transactions on
Computational Logic3(1):80-136, January 2002.

[27] R. McDowell, D. Miller, and C. Palamidessi. Encodingrsition systems in sequent calculi€§ 294(3):411-437, 2003.

[28] K. Mehltretter. Termination checking for a dependgntiped language. Master’s thesis, LMU, Dec. 2007. Dipldmeér

[29] N. P. Mendler. Inductive types and type constraintdhimdecond order lambda calculdémnals of Pure and Applied Logic
51(1):159-172, 1991.

[30] D. Miller. Alogic programming language with lambdasataction, function variables, and simple unification. .I8€hroeder-
Heister, editorExtensions of Logic Programming: International Worksh®pbingen volume 475 ofLNAI, pages 253—-281.
Springer-Verlag, 1991.

[31] D. Miller and A. Tiu. A proof theory for generic judgmentACM Trans. Comput. Logi®(4):749-783, 2005.

[32] A. Momigliano and S. Ambler. Multi-level meta-reasngiwith higher order abstract syntax. In A. Gordon, ediE®S-
SACS’'03volume 2620 oL.NCS pages 375-392. Springer Verlag, 2003.

[33] A. Momigliano and A. Tiu. Induction and co-inductionsequent calculus. In S. Berardi, M. Coppo, and F. Damiaiitioes]
TYPESvolume 3085 of_ecture Notes in Computer Scienpages 293-308. Springer, 2003.

[34] A. Nanevski, B. Pientka, and F. Pfenning. Contextuataidype theory ACM Transactions on Computational LogR00?
To appear.

[35] Nominal Methods Group. Nominal Isabelle. isabellgtim.de/nominal/, 2008, Accessed 2 July 2008.

[36] U. Norell. Towards a practical programming language based on depetrtgipa theory PhD thesis, Department of Computer
Science and Engineering, Chalmers University of Technol8g-412 96 Goteborg, Sweden, September 2007.

[37] C. Paulin-Mohring. Inductive definitions in the syst&@nq: Rules and properties. In M. Bezem and J. Groote, edRoos
ceedings of the International Conference on Typed LambdeuG@and Applications pages 328-345, Utrecht, The Nether-
lands, Mar. 1993. Springer-Verlag LNCS 664.

[38] L. C. Paulson. Mechanizing coinduction and corecurgmhigher-order logicJournal of Logic and Computatiof@(2):175—
204, Mar. 1997.

[39] F. Pfenning. Logical frameworks. In A. Robinson and Ardhkov, editorsHandbook of Automated Reasonichapter 17,
pages 1063-1147. Elsevier Science Publisher and MIT F2@8%§,

[40] F. Pfenning and C. Elliott. Higher-order abstract syatin PLDI, pages 199-208, 1988.

36

[41] F. Pfenning and C. Schirmann. System description:|fTwe a meta-logical framework for deductive systems. In
H. Ganzinger, editorProceedings of the 16th International Conference on Auteth®eduction (CADE-16pages 202—
206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

[42] B. Pientka. Verifying termination and reduction proges about higher-order logic programsl]. Autom. Reasoning
34(2):179-207, 2005.

[43] B. Pientka. A type-theoretic foundation for programigniwith higher-order abstract syntax and first-class subgths. In
G. C. Necula and P. Wadler, editoBQPL, pages 371-382. ACM, 2008.

[44] B. Pientka and J. Dunfield. Programming with proofs axlieit contexts. InPPDP. ACM Press, 2008.

[45] A. M. Pitts. Nominal logic, a first order theory of namewdabinding. Information and Computatiqri86(2):165-193, 2003.

[46] A. M. Pitts. Alpha-structural recursion and inductiah ACM 53(3):459-506, 2006.

[47] A. Poswolsky and C. Schirmann. Practical programmivith higher-order encodings and dependent types. In
S. Drossopoulou, editoESOR volume 4960 ot.ecture Notes in Computer Scienpages 93—-107. Springer, 2008.

[48] L. Santocanale. A calculus of circular proofs and itegarical semantics. In M. Nielsen and U. Engberg, edifedS§SaCS
volume 2303 oL ecture Notes in Computer Scienpgages 357—-371. Springer, 2002.

[49] P.Schroeder-Heister. Cut-elimination in logics wdgfinitional reflection. In D. Pearce and H. Wansing, edjtdmnclassical
Logics and Information Processingolume 619 olLNCS pages 146-171. Springer, 1992.

[50] P. Schroeder-Heister. Definitional reflection and thmpletion. In R. Dyckhoff, editoProceedings of the 4th International
Workshop on Extensions of Logic Programmipgges 333—-347. Springer-Verlag LNAI 798, 1993.

[51] P. Schroeder-Heister. Rules of definitional reflectiomM. Vardi, editor,Eighth Annual Symposium on Logic in Computer
Sciencepages 222-232. IEEE Computer Society Press, IEEE, Jurg 199

[52] C. SchurmannAutomating the Meta-Theory of Deductive SysteRisD thesis, Carnegie-Mellon University, 2000. CMU-
CS-00-146.

[53] C. Schurmann and F. Pfenning. A coverage checkingriigo for LF. In D. A. Basin and B. Wolff, editorsTPHOLs
volume 2758 oL ecture Notes in Computer Scienpgages 120-135. Springer, 2003.

[54] C. Schirmann, A. Poswolsky, and J. Sarnat. Thealculus. Functional programming with higher-order afings. In
Seventh International Conference on Typed Lambda Calewli &pplications pages 339-353. Springérecture Notes in
Computer Sciencé\pr. 2005.

[55] C. Spenger and M. Dams. On the structure of inductivearimg: Circular and tree-shaped proofs in fhealculus. In
A. Gordon, editorFOSSACS’03volume 2620 o NCS pages 425-440,. Springer Verlag, 2003.

[56] A. Tiu. A Logical Framework for Reasoning about Logical Specifaadi PhD thesis, Pennsylvania State University, May
2004.

[57] A. Tiu. A logic for reasoning about generic judgmenEectr. Notes Theor. Comput. Sci74(5):3-18, 2007.

[58] A.Tiuand D. Miller. A proof search specification of theqalculus.Electr. Notes Theor. Comput. Sci38(1):79-101, 2005.

[59] A. F. Tiu. Model checking for pi-calculus using proofaseh. InProceedings of CONCUR 200%olume 3653 ol ecture
Notes in Computer Scienggages 36-50. Springer, 2005.

[60] C. Urban and S. Berghofer. A recursion combinator faniml datatypes implemented in Isabelle/HOL. In U. Furbact
N. Shankar, editordJCAR volume 4130 of_ecture Notes in Computer Scienpages 498-512. Springer, 2006.

37

